JPH08226443A - Superconductive magnetic bearing device - Google Patents

Superconductive magnetic bearing device

Info

Publication number
JPH08226443A
JPH08226443A JP3103195A JP3103195A JPH08226443A JP H08226443 A JPH08226443 A JP H08226443A JP 3103195 A JP3103195 A JP 3103195A JP 3103195 A JP3103195 A JP 3103195A JP H08226443 A JPH08226443 A JP H08226443A
Authority
JP
Japan
Prior art keywords
magnet
annular
superconductor
arc
bearing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3103195A
Other languages
Japanese (ja)
Inventor
Norio Ito
紀夫 伊東
Junichiro Shinozaki
順一郎 篠崎
Hiroshi Imaizumi
寛 今泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP3103195A priority Critical patent/JPH08226443A/en
Publication of JPH08226443A publication Critical patent/JPH08226443A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE: To provide a superconductive magnetic bearing device capable of coping with high speed rotation and supporting a heavy weight by improving the mechanical strength of an annular permanent magnet, particularly a large- sized annular permanent magnet. CONSTITUTION: In a superconductive magnetic bearing device 1 composed of a superconductor part 5 attached to one of a rotor part A and a stator part B and a magnet part 8 attached to the other, the magnet part is a integral annular magnet structure having a plurality of annular magnets manufactured by hot bending work and attached circumferentially adjacent to each other in combination, and further a reinforcing member 6 is disposed on the outer periphery of the magnet part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば、高速回転を必
要とする流体機械や工作機械、余剰電力をフライホイー
ルの運動エネルギーに変換して貯蔵する電力貯蔵装置等
に用いられる超電導体を利用した超電導軸受装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a superconductor used in, for example, a fluid machine or a machine tool that requires high-speed rotation, an electric power storage device for converting surplus electric power into kinetic energy of a flywheel, and storing the electric power. The present invention relates to a superconducting bearing device.

【0002】[0002]

【従来の技術】近年、超電導体を利用して、回転体(回
転軸)を非接触状態で軸支することにより高速回転を可
能とした超電導磁気軸受装置が開発されている。超電導
磁気軸受装置の基本構造は、例えば特開平5−1802
25に示されるように、環状の永久磁石を埋設した回転
体が、固定部となる超電導体とピン止め力により空間固
定され、回転軸を中心に回転するのが一般的である。ま
た、超電導体と永久磁石のピン止め力を利用した超電導
磁気軸受装置は、大きな載荷力を発生する特徴も有し、
その特徴を生かしてフライホイールの様な重量物を高速
に回転させて、フライホイールの運動エネルギーとし
て、電力を貯蔵するエネルギー密度の大きな電力貯蔵装
置への応用が考えられている。電力貯蔵を目的とした、
フライホイール搭載型の超電導磁気軸受装置は、例えば
平成4年電気学会全国大会8−134頁の8MWH級高
温超電導浮上式フライホイール電力貯蔵システムの概念
設計のなかで、材料にCFRPを使用した場合、フライ
ホイール部は直径6.7m、重量103トンに及ぶこと
が報告されている。その際、使用する永久磁石は、少な
くとも直径数mにおよぶ大口径磁石が必要とされるが、
大きな永久磁石製造は困難であるため、磁石を分割して
組み立てる必要があり、幾つかの例が示されていた。
(例えば、特開平6−2646) 一方、フライホイール電力貯蔵装置において、大重量フ
ライホイールを支えるために、超電導磁気軸受装置には
大きな載荷力が、かかることになる。超電導体と永久磁
石を使用した超電導磁気軸受装置の載荷力は永久磁石の
発生する磁場勾配と超電導体の磁化モーメントの大きさ
に比例する。そこで、永久磁石の磁束の反発を利用して
永久磁石の磁場勾配を大きくする提案が例えば特開平6
−42532の図32に示されていた。
2. Description of the Related Art In recent years, a superconducting magnetic bearing device has been developed which utilizes a superconductor to support a rotating body (rotating shaft) in a non-contact state so as to rotate at a high speed. The basic structure of a superconducting magnetic bearing device is, for example, Japanese Patent Laid-Open No. 5-1802.
As shown in 25, a rotating body in which an annular permanent magnet is embedded is generally fixed in space by a superconductor serving as a fixed portion and a pinning force, and rotates about a rotation axis. Further, the superconducting magnetic bearing device utilizing the pinning force of the superconductor and the permanent magnet also has a feature of generating a large loading force,
Taking advantage of these characteristics, it is considered that a heavy object such as a flywheel is rotated at high speed to store electric power as kinetic energy of the flywheel, which is applied to a power storage device having a large energy density. For the purpose of power storage,
The flywheel-mounted superconducting magnetic bearing device is, for example, when CFRP is used as a material in the concept design of the 8MWH class high temperature superconducting levitation flywheel power storage system of the 1992 National Conference of the Electrical Society of Japan, page 8-134. It is reported that the flywheel part has a diameter of 6.7 m and a weight of 103 tons. At that time, the permanent magnet used must be a large-diameter magnet having a diameter of at least several meters.
Due to the difficulty of manufacturing large permanent magnets, it was necessary to assemble the magnets in pieces and some examples were given.
(For example, Japanese Patent Laid-Open No. 6-2646) On the other hand, in a flywheel power storage device, a large load is applied to the superconducting magnetic bearing device in order to support a heavy flywheel. The loading force of a superconducting magnetic bearing device using a superconductor and a permanent magnet is proportional to the magnetic field gradient generated by the permanent magnet and the magnitude of the magnetization moment of the superconductor. Therefore, a proposal to increase the magnetic field gradient of the permanent magnet by utilizing the repulsion of the magnetic flux of the permanent magnet is disclosed in, for example, Japanese Patent Laid-Open No. Hei 6
-42532 was shown in FIG.

【0003】[0003]

【発明が解決しようとする課題】ところが、上記公報記
載の従来技術では以下のような課題を抱えていた。
However, the prior art described in the above publication has the following problems.

【0004】フライホイール電力貯蔵装置に使用される
ような、超電導磁気軸受には、大口径磁石が必要とされ
ることは勿論であるが、電力貯蔵装置としてのエネルギ
ー密度を高めるために、高速回転に耐える回転機械強度
の大きな大口径永久磁石が必要とされる。即ち、フライ
ホイール本体は、例えばCFRPのような高強度な材料
を使用すれば、高速に回転させることは可能であるが、
その場合、フライホイールとともに回転する永久磁石に
もCFRPと同等の機械強度が要求されることになる。
ところが、一般的に永久磁石材料の機械強度は非常に弱
い。例えば高性能磁石として代表的なNd−Fe−B系
や、Sm−Co系の焼結磁石の単位平方mm当たりの引
張強度は、数kg程度であるのに対してCFRP材料の
強度は数100kgに達するものもあり、比較にならな
いほど両者の機械強度には差がある。従って、フライホ
イール材料に高強度材料を使用したとしても、永久磁石
の機械強度を上げない限り、回転数は永久磁石の強度限
界により低く抑えなければならないことになる。仮に、
回転中に磁石の亀裂等が生じた場合、磁石部の飛散が生
ずる前に、回転体としてのダイナミックバランスが崩
れ、極めて危険な状態となる。また、特開平6ー264
6において示されているように、あらかじめ分割した磁
石を組み合わせた場合、回転により分割した磁石間に隙
間が生じ、前述同様、回転体としてのダイナミックバラ
ンスが崩れ、極めて不安定となる。磁石間に隙間が生じ
ないように、磁石同士を接着剤を使用した場合、その接
着強度は使用する接着剤によって決定されてしまう。一
般的に接着剤は樹脂系のものが多用され、その接着強度
は前述の焼結法で製造された、永久磁石同様、単位平方
mm当たり数kg程度であり、CFRPのような材料に
比べると2桁以上小さくなる。以上のように、永久磁石
の強度限界により、超電導磁気軸受装置の回転数限界が
決定してしまうことになる。
Needless to say, a large-diameter magnet is required for a superconducting magnetic bearing used in a flywheel power storage device, but in order to increase the energy density of the power storage device, high speed rotation is required. A large-diameter permanent magnet with high mechanical strength that withstands the above is required. That is, the flywheel main body can be rotated at high speed if a high-strength material such as CFRP is used,
In that case, the permanent magnet rotating with the flywheel is required to have the same mechanical strength as CFRP.
However, the mechanical strength of permanent magnet materials is generally very weak. For example, the tensile strength per unit square mm of a Nd-Fe-B system or Sm-Co system sintered magnet, which is a typical high-performance magnet, is about several kilograms, whereas the strength of a CFRP material is several hundred kilograms. There is a difference in mechanical strength between the two so that they cannot be compared. Therefore, even if a high-strength material is used as the flywheel material, the rotation speed must be kept low due to the strength limit of the permanent magnet unless the mechanical strength of the permanent magnet is increased. what if,
When a magnet cracks or the like during rotation, the dynamic balance of the rotating body is lost before the magnet portion scatters, resulting in an extremely dangerous state. In addition, JP-A-6-264
As shown in FIG. 6, when the divided magnets are combined in advance, a gap is generated between the divided magnets due to the rotation, and the dynamic balance as the rotating body is lost as described above, resulting in extremely unstable. When an adhesive is used for the magnets so that no gap is generated between the magnets, the adhesive strength is determined by the adhesive used. Generally, a resin-based adhesive is often used, and its adhesive strength is about several kg per unit square mm like the permanent magnet manufactured by the above-mentioned sintering method, which is more than that of a material such as CFRP. It will be more than 2 digits smaller. As described above, the rotational speed limit of the superconducting magnetic bearing device is determined by the strength limit of the permanent magnet.

【0005】一方、特開平6−42532の図32に示
された例のように、載荷力の増強を目指して磁場強度及
び磁場勾配を大きくした磁気回路では、磁石の着磁方向
を半径方向に着磁する、いわゆるラジアル着磁が必要と
なる。ところが、半径方向に着磁された大型の環状永久
磁石を得ることは困難であることが一般的に知られてい
る。それは、焼結方法にて製造されるNd−Fe−B,
Sm−Co系等の異方性磁石では、磁気異方性を与える
ために、磁場中プレスを行う必要があるが、プレス機と
配向磁場を与えるためのコイルヨークとは配置上、大型
化が非常に困難となる。また、円弧状または環状磁石に
対して径方向に異方性を与えるためには、点配向した磁
場が必要となり、さらに困難性が高まる。また、着磁工
程においても例えば直径1m以上の環状磁石の着磁を行
うことは極めて困難である。従って特開平6−4253
2の図32に示されるような磁気回路は細かく円弧状に
加工した後、着磁を行った磁石片を環状に組立る方法が
とられていた。しかし、着磁された磁石を密に並べるこ
とは、磁石間に働く吸引反発力により、極めて難しく、
組み立て用に治具等を使用したとしても、磁石間に隙間
や段差が生じてしまう。超電導磁気軸受装置において永
久磁石の機械的精度は軸受けの振動、損失の原因とな
り、高速回転を行うことは不可能となる。また、このよ
うにして製造された、環状永久磁石は完全な点配向がな
されていないため、前記環状永久磁石の表面磁束密度に
は大きなムラが生じ、大きな回転損失を生むことにな
る。
On the other hand, as in the example shown in FIG. 32 of Japanese Patent Laid-Open No. 6-42532, in a magnetic circuit in which the magnetic field strength and the magnetic field gradient are increased in order to increase the loading force, the magnetizing direction of the magnet is in the radial direction. So-called radial magnetization, which is to magnetize, is required. However, it is generally known that it is difficult to obtain a large annular permanent magnet magnetized in the radial direction. It is a Nd-Fe-B produced by a sintering method,
An anisotropic magnet such as an Sm-Co system needs to be pressed in a magnetic field in order to give magnetic anisotropy. However, the pressing machine and the coil yoke for giving an orientation magnetic field are large in size due to their arrangement. It will be very difficult. Further, in order to give radial anisotropy to the arcuate or annular magnet, a point-oriented magnetic field is required, which further increases the difficulty. Also, in the magnetizing step, it is extremely difficult to magnetize an annular magnet having a diameter of 1 m or more, for example. Therefore, JP-A-6-4253
The magnetic circuit as shown in FIG. 32 of No. 2 is formed by finely processing an arc shape and then assembling magnetized magnet pieces into an annular shape. However, it is extremely difficult to arrange magnetized magnets closely because of the repulsive force of attraction between the magnets.
Even if a jig or the like is used for assembly, a gap or a step is generated between the magnets. In the superconducting magnetic bearing device, the mechanical accuracy of the permanent magnet causes vibration and loss of the bearing, making it impossible to rotate at high speed. Further, since the ring-shaped permanent magnet manufactured in this manner is not perfectly point-oriented, the surface magnetic flux density of the ring-shaped permanent magnet is greatly uneven, resulting in a large rotation loss.

【0006】そこで、本発名の目的とするところは、フ
ライホイールのような大重量物を、高速で安定に回転さ
せることができる超電導磁気軸受装置を、実現するとこ
ろにある。
Therefore, the purpose of the present invention is to realize a superconducting magnetic bearing device capable of stably rotating a large heavy object such as a flywheel at a high speed.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本願第1請求項に係る超電導磁気軸受装置は、回転
体部及び固定体部の一方に装着される超電導体部と他方
に装着される磁石部とを備え、前記超電導体部は、前記
磁石部との間に復元力を有する超電導体と、この超電導
体を支持する支持体とから構成され、前記磁石部は回転
体部の軸心を同心とする環状磁石を備えて構成される形
式の超電導磁気軸受装置において、前記磁石部は、熱間
で曲げ加工により製造した円弧状磁石を複数個組み合わ
せ、周方向に隣り合う前記円弧状磁石同士を接着した一
体環状磁石構造をなし、更に前記磁石部の外周に強化部
材を配した構成となっている。
In order to achieve the above object, a superconducting magnetic bearing device according to the first aspect of the present invention is mounted on one of a rotating body portion and a fixed body portion and on the other. And a magnet part, wherein the superconductor part is composed of a superconductor having a restoring force between the magnet part and the support part supporting the superconductor, and the magnet part is a rotor part. In a superconducting magnetic bearing device of a type configured to include an annular magnet whose axis is concentric, the magnet portion is a combination of a plurality of arc-shaped magnets manufactured by hot bending, and the circles adjacent to each other in the circumferential direction. The structure is such that an arcuate magnet is bonded to each other to form an integral annular magnet structure, and a reinforcing member is arranged on the outer circumference of the magnet portion.

【0008】本願第2請求項に係る超電導磁気軸受装置
は、 回転体部及び固定体部の一方に装着される超電導
体部と他方に装着される磁石部とを備え、前記超電導体
部は、前記磁石部との間に復元力を有する超電導体と、
この超電導体を支持する支持体とから構成され、前記磁
石部は回転体部の軸心を同心とする環状磁石を備えて構
成される形式の超電導磁気軸受装置において、前記磁石
部は、熱間で曲げ加工により製造した複数の円弧状磁石
と、前記円弧状磁石の外周部に外接する環状部材から形
成されており、前記環状部材の内側に前記円弧状磁石を
環状に配置するとともに、前記環状部材と前記環状磁石
と接着された一体環状磁石構造となっている。
A superconducting magnetic bearing device according to a second aspect of the present application comprises a superconductor portion mounted on one of a rotating body portion and a fixed body portion and a magnet portion mounted on the other, and the superconductor portion comprises: A superconductor having a restoring force between the magnet part,
In a superconducting magnetic bearing device of a type configured with a support body that supports this superconductor, and the magnet portion is provided with an annular magnet whose axis is concentric with the rotating body portion, the magnet portion is hot. Is formed by a plurality of arc-shaped magnets manufactured by bending at, and an annular member circumscribing the outer peripheral portion of the arc-shaped magnet, and the arc-shaped magnet is annularly arranged inside the annular member, It has an integral annular magnet structure in which a member and the annular magnet are bonded.

【0009】本願第3請求項に係る超電導磁気軸受装置
は、前記環状部材の熱膨張係数は前記円弧状磁石の熱膨
張係数よりも低い。
In the superconducting magnetic bearing device according to the third aspect of the present application, the coefficient of thermal expansion of the annular member is lower than the coefficient of thermal expansion of the arc-shaped magnet.

【0010】本願第4請求項に係る超電導磁気軸受装置
は、前記磁石部は異径の複数の一体環状磁石からなり、
前記複数の一体環状磁石は前記回転体部の軸心を同心と
する多重化構造により形成されている。
In the superconducting magnetic bearing device according to the fourth aspect of the present invention, the magnet portion is composed of a plurality of integral annular magnets having different diameters.
The plurality of integral annular magnets are formed by a multiplex structure in which the axis of the rotating body is concentric.

【0011】本願第5請求項に係る超電導磁気軸受装置
は、回転体部及び固定体部の一方に装着される超電導体
部と他方に装着される磁石部とを備え、前記超電導体部
は、前記磁石部との間に復元力を有する超電導体と、こ
の超電導体を支持する支持体とから構成され、前記磁石
部は回転体部の軸心を同心とする環状磁石を備えて構成
される形式の超電導磁気軸受装置において、前記磁石部
は、熱間で曲げ加工により製造して、径方向に磁気異方
性を与えた円弧状磁石を複数個組み合わせ、周方向に隣
り合う前記円弧状磁石同士を接着した一体環状磁石構造
であり、前記一体環状磁石として、径方向に同極が対向
するように着磁された少なくとも異径の2以上の一体環
状磁石を配置し、径方向に隣接する環状磁石の間に環状
部材を設け、前記磁石部の外周に強化部材を配した構成
となっている。
A superconducting magnetic bearing device according to a fifth aspect of the present invention comprises a superconducting portion mounted on one of the rotating body portion and the fixed body portion and a magnet portion mounted on the other, and the superconducting portion comprises: It is composed of a superconductor having a restoring force between the magnet part and a support body that supports the superconductor, and the magnet part is provided with an annular magnet having the axis of the rotor part as a concentric axis. In the superconducting magnetic bearing device of the type, the magnet portion is manufactured by hot bending, and a plurality of arc-shaped magnets having magnetic anisotropy in the radial direction are combined, and the arc-shaped magnets that are adjacent in the circumferential direction are combined. It is an integrated annular magnet structure in which the two are bonded to each other. As the integrated annular magnet, two or more integrated annular magnets of different diameters magnetized so that the same poles face each other in the radial direction are arranged and are adjacent in the radial direction. An annular member is provided between the annular magnets, It has a configuration which arranged reinforcing member on the outer periphery of Ishibe.

【0012】本願第6請求項に係る超電導磁気軸受装置
は、回転体部及び固定体部の一方に装着される超電導体
部と他方に装着される磁石部とを備え、前記超電導体部
は、前記磁石部との間に復元力を有する超電導体と、こ
の超電導体を支持する支持体とから構成され、前記磁石
部は回転体部の軸心を同心とする環状磁石を備えて構成
される形式の超電導磁気軸受装置において、前記磁石部
は、熱間で曲げ加工により製造して、径方向に磁気異方
性を与えた円弧状磁石を複数個組み合わせ、周方向に隣
り合う前記円弧状磁石同士を接着した一体環状磁石構造
であり、前記一体環状磁石として、径方向に同極が対向
するように着磁された少なくとも異径の2以上の一体環
状磁石を配置し、径方向に隣接する環状磁石の間に環状
部材を設け、前記環状部材は2重に径方向に重ねられた
構造をなし、前記磁石部の外周に強化部材を配した構成
となっている。
A superconducting magnetic bearing device according to a sixth aspect of the present invention comprises a superconductor portion mounted on one of the rotating body portion and the fixed body portion and a magnet portion mounted on the other, and the superconductor portion comprises: It is composed of a superconductor having a restoring force between the magnet part and a support body that supports the superconductor, and the magnet part is provided with an annular magnet having the axis of the rotor part as a concentric axis. In the superconducting magnetic bearing device of the type, the magnet portion is manufactured by hot bending, and a plurality of arc-shaped magnets having magnetic anisotropy in the radial direction are combined, and the arc-shaped magnets that are adjacent in the circumferential direction are combined. It is an integrated annular magnet structure in which the two are bonded to each other. As the integrated annular magnet, two or more integrated annular magnets of different diameters magnetized so that the same poles face each other in the radial direction are arranged and are adjacent in the radial direction. An annular member is provided between the annular magnets, Jo member forms a superposed structure radially double, has a configuration which arranged reinforcing member on the outer periphery of the magnet part.

【0013】本願第7請求項に係る超電導磁気軸受装置
は、回転体部及び固定体部の一方に装着される超電導体
部と他方に装着される磁石部とを備え、前記超電導体部
は、前記磁石部との間に復元力を有する超電導体と、こ
の超電導体を支持する支持体とから構成され、前記磁石
部は回転体部の軸心を同心とする環状磁石を備えて構成
され、前記環状磁石と前記超電導体部とが、前記回転体
部の半径方向で間隔を設けて向き合うように配設される
形式の超電導磁気軸受装置において、前記磁石部は、熱
間で曲げ加工により製造した円弧状磁石を複数個組み合
わせ、周方向に隣り合う前記円弧状磁石同士を接着した
一体環状磁石構造であり、前記一体環状磁石として、同
径の軸方向に同極が対向するように着磁された少なくと
も2以上の一体環状磁石を配置し、軸方向に隣接する一
体環状磁石の間に環状部材を設けた構成となっている。
A superconducting magnetic bearing device according to a seventh aspect of the present invention comprises a superconductor portion mounted on one of the rotating body portion and the fixed body portion and a magnet portion mounted on the other, and the superconductor portion comprises: A superconductor having a restoring force between the magnet portion and a support for supporting the superconductor, wherein the magnet portion is provided with an annular magnet concentric with the axis of the rotor portion, In a superconducting magnetic bearing device of a type in which the annular magnet and the superconductor portion are arranged to face each other with a gap in the radial direction of the rotating body portion, the magnet portion is manufactured by hot bending. A plurality of arc-shaped magnets are combined and the arc-shaped magnets adjacent to each other in the circumferential direction are bonded to each other to form an integrated annular magnet structure. The integrated annular magnet is magnetized so that the same poles face each other in the axial direction of the same diameter. At least two integrated rings A magnet disposed, it has a structure in which an annular member between the integral annular magnet axially adjacent.

【0014】本願第8請求項に係る超電導磁気軸受装置
は、前記磁石部は前記一体環状磁石構造を形成した後、
着磁をされる。
In the superconducting magnetic bearing device according to the eighth aspect of the present invention, after the magnet portion forms the integral annular magnet structure,
It is magnetized.

【0015】本願第9請求項に係る超電導磁気軸受装置
は、前記円弧状磁石同士の接着部の機械強度は前記円弧
状磁石単体と同等である構成となっている。
In the superconducting magnetic bearing device according to the ninth aspect of the present application, the mechanical strength of the bonded portion between the arc-shaped magnets is the same as that of the arc-shaped magnet alone.

【0016】[0016]

【実施例】【Example】

(実施例1)図1は超電導軸受装置の主要部を示す縦断
図面であり、この超電導軸受装置1は図示しないハウジ
ング内に設けられている。即ち、ハウジング内には、ハ
ウジングに支持固定された冷却ケース2が設けられ、こ
の冷却ケース2の内側には円盤状の支持体3が固定され
ている。この支持体3は、銅または他の金属材料により
形成されており、支持体3内には超電導体4が環状に埋
設され、支持体3と超電導体4とにより超電導体部5を
構成している。この実施例では超電導体部5が固定体部
Bに、後述する磁石部8が回転体部Aに、それぞれ設け
られている。前記超電導体4は、イットリウム系高温超
電導体、例えば、YBa2Cu3Xからなる基板の内部
に常電導粒子Y2Ba1Cu1を均一に混在させたものか
らなり、後述する環状永久磁石11が発生する磁束侵入
を拘束する性質を有する。超電導体4と環状永久磁石1
1の軸方向の幅は、略等しく設定されている。更に、超
電導体4は、後述する環状永久磁石11と対面し、この
環状永久磁石 からの磁束が所定量侵入する位置におい
て、後述の回転体7の回転により侵入磁束の分布が変化
しない位置で、離間して配置されている。このような超
電導軸受装置1においては、超電導体4が冷却ケース2
内の循環冷媒により冷却され、超電導状態に保持され
る。そして超電導状態では、回転体7の環状永久磁石1
1からの磁束が超電導体4内部に侵入し、超電導体4内
部では、均一に混在された常電導体粒子により超電導体
4内部の侵入磁束分布が一定となり、超電導体4に立設
した仮想ピンに回転体7の環状永久磁石11が貫かれた
ように、回転体7が環状永久磁石11とともに超電導体
4に拘束された状態(ピンニング現象)で、環状永久磁
石11が回転する。また、ハウジング内には、回転体
(実施例では回転軸)7が垂直方向に配置され、下端側
が上記挿通穴3Aに挿通され、上端側には磁石部(実施
例では永久磁石部)8が設けられている。この磁石部8
を前記回転体7に固着することにより回転体部Aを構成
している。
(Embodiment 1) FIG. 1 is a longitudinal sectional view showing a main part of a superconducting bearing device. The superconducting bearing device 1 is provided in a housing (not shown). That is, a cooling case 2 supported and fixed to the housing is provided inside the housing, and a disc-shaped support body 3 is fixed inside the cooling case 2. The support 3 is made of copper or another metal material, and the superconductor 4 is embedded in the support 3 in an annular shape. The support 3 and the superconductor 4 form a superconductor portion 5. There is. In this embodiment, the superconductor portion 5 is provided on the fixed body portion B, and the magnet portion 8 described later is provided on the rotating body portion A, respectively. The superconductor 4 is composed of a yttrium-based high-temperature superconductor, for example, a mixture of normal conductive particles Y 2 Ba 1 Cu 1 uniformly in a substrate made of YBa 2 Cu 3 O x , and an annular permanent magnet described later. 11 has the property of restraining the magnetic flux penetration generated. Superconductor 4 and annular permanent magnet 1
The widths of 1 in the axial direction are set to be substantially equal. Further, the superconductor 4 faces an annular permanent magnet 11 described later, and at a position where the magnetic flux from the annular permanent magnet enters a predetermined amount, at a position where the distribution of the invading magnetic flux does not change due to the rotation of the rotating body 7 described later, It is spaced apart. In such a superconducting bearing device 1, the superconductor 4 has the cooling case 2
It is cooled by the circulating refrigerant inside and kept in a superconducting state. In the superconducting state, the ring-shaped permanent magnet 1 of the rotating body 7
The magnetic flux from No. 1 enters the inside of the superconductor 4, and the inside magnetic flux distribution inside the superconductor 4 becomes constant due to the uniformly mixed normal conductor particles inside the superconductor 4. The annular permanent magnet 11 rotates while the rotor 7 is constrained by the superconductor 4 together with the annular permanent magnet 11 (pinning phenomenon) such that the annular permanent magnet 11 of the rotor 7 is penetrated through. Further, in the housing, a rotating body (rotating shaft in the embodiment) 7 is vertically arranged, a lower end side is inserted into the insertion hole 3A, and a magnet portion (permanent magnet portion in the embodiment) 8 is provided on the upper end side. It is provided. This magnet part 8
Is fixed to the rotating body 7 to form a rotating body portion A.

【0017】磁石部8はこの実施例では、磁石固定部9
と環状永久磁石11と強化部材6から構成されている。
環状永久磁石11は、例えばチタン等の非磁性の強化材
料からなる磁石固定部9の円筒部10に圧入、冷やしバ
メ、焼きバメ等の隙間を生じない固定方法または、隙間
バメによって固定されている。更に、上記環状永久磁石
11は、図2に示すように、複数(本実施例では4分
割)の円弧状磁石片12、12・・・を周方向(円周に
沿う方向)に順次接着することにより構成されている。
本実施例では、円弧状磁石片12、12・・・はPr−
Fe−B−Cuを基本組成とした鋳造インゴットを熱間
圧延により磁気異方性を与え、更に不活性ガス中にて、
加熱した後、円弧状に曲げ加工が施された永久磁石を使
用した。前記熱間圧延加工方法による前記永久磁石の機
械強度はその加工方法故、他の焼結磁石等に較べて、3
倍以上強く、曲げ加工がされた、前記円弧状磁石片1
2、12・・・同士は不活性ガス中で加熱することによ
り、溶融してしみだした粒界相により、他の接着材料を
用いずに接着されている。従って前記円弧状磁石片1
2、12・・・同士の接着面の強度は、円弧状磁石片1
2、12・・・の他の部分と差はないものである。この
ようにして製造された環状永久磁石11は、例えばCF
RP等の強化材料からなる強化部材6によって外圧力を
かけ締め上げられ、高速回転に耐え得る磁石部8を形成
している。環状永久磁石11に対して強化部材6によっ
て外圧力をかけて強化する方法は、強化部材6に高張力
鋼のような金属材料を使用した場合は圧入が最適であ
り、CFRPからなる強化部材6を用いた場合は上記同
様、圧入するか、または炭素入りの繊維を圧力をかけな
がら環状永久磁石11を巻き上げ、強化部材6を形成す
る方法がある。この時の強化部材6による外圧力は、環
状永久磁石11の最大圧縮強度以下に設定される必要が
ある。強化部材6を用いて環状永久磁石11の外圧力を
かけることにより、回転体7の回転限界が高まることに
なり、高速回転化が可能となる。
The magnet portion 8 is, in this embodiment, a magnet fixing portion 9
And an annular permanent magnet 11 and a reinforcing member 6.
The annular permanent magnet 11 is fixed to the cylindrical portion 10 of the magnet fixing portion 9 made of, for example, a non-magnetic reinforcing material such as titanium by press-fitting, a cooling fit, a shrink fit, or the like, or a clearance fit. . Further, in the annular permanent magnet 11, as shown in FIG. 2, a plurality (four in this embodiment) of arc-shaped magnet pieces 12, 12, ... Are sequentially bonded in the circumferential direction (direction along the circumference). It is composed of
In this embodiment, the arc-shaped magnet pieces 12, 12 ...
A cast ingot having a basic composition of Fe-B-Cu is hot-rolled to impart magnetic anisotropy, and further in an inert gas,
After heating, a permanent magnet bent in an arc shape was used. The mechanical strength of the permanent magnet produced by the hot rolling method is 3% higher than that of other sintered magnets due to the processing method.
The arc-shaped magnet piece 1 that has been bent more than twice as strongly
.. are bonded together without using any other adhesive material due to the grain boundary phase melted and exuded by heating in an inert gas. Therefore, the arc-shaped magnet piece 1
The strength of the bonding surface between the two, 12 ...
There is no difference from other parts such as 2, 12 ... The annular permanent magnet 11 manufactured in this way is, for example, CF
An external pressure is applied and tightened by a reinforcing member 6 made of a reinforcing material such as RP to form a magnet portion 8 capable of withstanding high speed rotation. In the method of strengthening the annular permanent magnet 11 by applying external pressure by the reinforcing member 6, press fitting is optimal when a metal material such as high-strength steel is used for the reinforcing member 6, and the reinforcing member 6 made of CFRP is used. In the same manner as above, there is a method of forming the reinforcing member 6 by pressing the carbon-containing fiber or rolling up the annular permanent magnet 11 while applying pressure. The external pressure of the reinforcing member 6 at this time needs to be set to be equal to or lower than the maximum compressive strength of the annular permanent magnet 11. By applying the external pressure of the annular permanent magnet 11 using the reinforcing member 6, the rotation limit of the rotating body 7 is increased, and high speed rotation is possible.

【0018】環状永久磁石11の着磁方向は図1に示す
ように、軸方向に向いている。本実施例において、着磁
工程は環状永久磁石11の製造工程の中で、円弧状磁石
片12、12・・・を相互に接着して、一体化した後、
実施する。着磁工程では環状永久磁石11に大きな力が
働くが、環状永久磁石11は接着された部分と他の部分
とに強度面で差がなく、安定した磁石部8を構成してい
る。本実施例に使用した、Pr−Fe−B−Cu系の熱
間圧延加工方法による永久磁石は、機械的強度に優れて
おり、前述の説明の通り曲げ加工方法、粒界相による接
着工程を経た後にも、その強度に劣化を生じないため、
本実施例に使用する磁石としては最適なものであるが、
前記加工方法が可能な永久磁石ならば、全て同様な効果
が期待できる。
The magnetizing direction of the annular permanent magnet 11 is in the axial direction, as shown in FIG. In this embodiment, the magnetizing step is a step of manufacturing the annular permanent magnet 11 after the arc-shaped magnet pieces 12, 12 ...
carry out. Although a large force acts on the ring-shaped permanent magnet 11 in the magnetizing step, the ring-shaped permanent magnet 11 does not have a difference in strength between the bonded portion and the other portion, and forms a stable magnet portion 8. The Pr-Fe-B-Cu based hot rolling method permanent magnet used in this example is excellent in mechanical strength, and as described above, the bending method and the grain boundary phase bonding step are performed. Since the strength does not deteriorate even after passing through,
Although it is the most suitable magnet for use in this embodiment,
The same effect can be expected in all permanent magnets that can be processed as described above.

【0019】また、円弧状磁石片12、12・・・相互
の接着工程において、本実施例では不活性ガス中にて加
熱しながら実施したが、接着面をプラズマ処理等により
活性化することで常温においても、強固に接合すること
ができる。
Further, in the step of adhering the arc-shaped magnet pieces 12, 12, ... To each other, the present embodiment was carried out while heating in an inert gas, but by activating the adhesion surface by plasma treatment or the like. A strong bond can be achieved even at room temperature.

【0020】更に本実施例中で強化部材6により、環状
永久磁石11を締め上げる方法を提示したが、このよう
な工法が可能なのも熱間圧延加工方法、曲げ加工、粒界
相による接着という工程を経た高強度な環状永久磁石1
1故に可能な方法である。もし、分割して接着剤等を使
用した永久磁石では、加工精度に限界があるために、少
なからず永久磁石間に隙間が生じ、応力集中を起こすた
めに、外圧力をかけた強化部材による締め上げは困難と
なる。
Further, in the present embodiment, a method of tightening the annular permanent magnet 11 by the reinforcing member 6 was presented. Such a construction method can be performed by a hot rolling method, a bending method, and an adhesion by a grain boundary phase. High-strength ring-shaped permanent magnet 1
1 is a possible method. If permanent magnets that are divided and used with an adhesive or the like are used, there is a limit to the processing accuracy.Therefore, a gap is created between the permanent magnets, and stress is concentrated. Raising becomes difficult.

【0021】尚、前記実施例において超電導体4の冷却
に支持体3による間接冷却方法を使用した例を示すが、
冷却効率を高めるために支持体3を中空として、内部に
液体窒素等の冷媒を流しても良い。その場合は支持体3
は外部への熱的な漏洩を防ぐために、熱電導の低い材料
を使用するのが望ましい。
In the above embodiment, an example of using the indirect cooling method with the support 3 for cooling the superconductor 4 is shown.
In order to enhance the cooling efficiency, the support 3 may be hollow and a coolant such as liquid nitrogen may be flown inside. In that case, support 3
In order to prevent thermal leakage to the outside, it is desirable to use a material with low thermal conductivity.

【0022】(実施例2)次に第2実施例を説明する。
尚、以下の各実施例では、前記第1実施例と共通する構
成については同一符号を付して説明を省略し、実施構成
の要点について説明する。図3に本実施例の超電導磁気
軸受装置の主要部を、図3のII−II矢視図を図4に
示す。本実施例の磁石部8は、実施例1同様、4分割さ
れた円弧状磁石片12、12・・・からなる環状永久磁
石11、環状部材13、強化部材6と磁石固定部9から
構成されている。円弧状磁石片12、12・・・は、実
施例1で説明した磁石と同じくPr−Fe−B−Cuを
基本組成とした鋳造インゴットを熱間圧延により磁気異
方性を与え、更に不活性ガス中にて、加熱した後、円弧
状に曲げ加工が施された永久磁石を使用した。前記熱間
圧延加工方法による前記永久磁石はその加工方法故、他
の焼結磁石等に較べて、3倍以上強い。曲げ加工がされ
た、前記円弧状磁石片12、12・・・は金属材料から
なる環状部材13の内側に円弧面が接するように環状に
並べ、不活性ガス中で加熱することにより、溶融してし
みだした粒界相により、環状部材13と接着した。前記
円弧状磁石片12、12・・・と環状部材13の接着面
の強度は、高く、磁石部8の高速回転化を可能としてい
る。
(Second Embodiment) Next, a second embodiment will be described.
In each of the following embodiments, the same components as those in the first embodiment will be designated by the same reference numerals, and the description thereof will be omitted. FIG. 3 shows a main part of the superconducting magnetic bearing device of this embodiment, and FIG. 4 is a view taken along the line II-II of FIG. Similar to the first embodiment, the magnet portion 8 of the present embodiment is composed of an annular permanent magnet 11, which is composed of four arc-shaped magnet pieces 12, 12, ..., An annular member 13, a reinforcing member 6, and a magnet fixing portion 9. ing. The arc-shaped magnet pieces 12, 12 ... Give a magnetic anisotropy by hot rolling a cast ingot having a basic composition of Pr--Fe--B--Cu as in the magnet described in Example 1, and are further inert. A permanent magnet was used which was heated in gas and then bent into an arc shape. Due to the processing method, the permanent magnet produced by the hot rolling method is three times stronger than other sintered magnets. The bent arc-shaped magnet pieces 12, 12, ... Are arranged annularly so that the arc surfaces are in contact with the inside of the annular member 13 made of a metal material, and are melted by heating in an inert gas. The exuded grain boundary phase adhered to the annular member 13. The strength of the bonding surface between the arc-shaped magnet pieces 12, 12 ... And the annular member 13 is high, and the magnet portion 8 can be rotated at high speed.

【0023】このようにして製造された環状永久磁石1
1は、例えばCFRP等の強化材料からなる強化部材6
によって外圧力をかけ締め上げることにより、強度は更
に高まり、更なる高速回転化が可能となる。
The annular permanent magnet 1 manufactured in this way
1 is a reinforcing member 6 made of a reinforcing material such as CFRP.
By applying external pressure and tightening up, the strength is further increased, and further high speed rotation is possible.

【0024】環状部材6と円弧状磁石片12、12・・
・の接着工程において、環状部材6に使用する材料の熱
膨張係数を環状永久磁石11よりも低くすることによっ
て、接着性をより向上することが可能である。接着工程
は、高温で粒界相が溶融することを利用して行われてい
るために、粒界相の融点以上の温度が必要となる。本実
施例で使用したPr−Fe−B−Cu系を含むR−Fe
−B磁石合金は強磁性体の特徴としてキュリー温度まで
体積変化は殆どないが、粒界相融点を越えると熱膨張係
数は著しく高くなる。環状永久磁石11の外周部に配置
された環状部材6の熱膨張が環状永久磁石11よりも小
さければ、円弧状磁石片12、12・・・の接触界面に
圧力が発生し、液相による接着が効果的に行われる。環
状部材6としては熱膨張係数が低いという点で、耐熱
鋼、Mo合金、セラミックス等が望ましい。環状部材6
にしようする材料の熱膨張係数が低いほど、接触面に発
生する力が大きく、圧接の効果が高い。また、環状部材
6には低炭素鋼を使用し、低炭素鋼が高温下にて起こす
α−γ変態による、急激な熱膨張係数の変化を利用する
方法も有効である。更に、環状部材6にはインバー合金
を用いることによって、寸法の高精度化を図るととも
に、冷却時に発生する割れの危険性を低減することがで
きる。
The annular member 6 and the arc-shaped magnet pieces 12, 12 ...
In the bonding step of, by making the coefficient of thermal expansion of the material used for the annular member 6 lower than that of the annular permanent magnet 11, it is possible to further improve the adhesiveness. Since the bonding step is performed by utilizing the fact that the grain boundary phase melts at a high temperature, a temperature higher than the melting point of the grain boundary phase is required. R-Fe containing Pr-Fe-B-Cu system used in this example
The -B magnet alloy has almost no volume change up to the Curie temperature, which is a characteristic of a ferromagnetic material, but the coefficient of thermal expansion becomes remarkably high when it exceeds the grain boundary phase melting point. If the thermal expansion of the annular member 6 arranged on the outer peripheral portion of the annular permanent magnet 11 is smaller than that of the annular permanent magnet 11, pressure is generated at the contact interface between the arc-shaped magnet pieces 12, 12, ... Is effectively done. The annular member 6 is preferably made of heat-resistant steel, Mo alloy, ceramics or the like because of its low coefficient of thermal expansion. Annular member 6
The lower the coefficient of thermal expansion of the material to be used, the greater the force generated on the contact surface and the higher the effect of pressure welding. Further, a method of using low carbon steel for the annular member 6 and utilizing a rapid change in the thermal expansion coefficient due to the α-γ transformation of the low carbon steel at high temperature is also effective. Furthermore, by using an Invar alloy for the annular member 6, it is possible to improve the dimensional accuracy and reduce the risk of cracking that occurs during cooling.

【0025】永久磁石円弧状磁石片12、12・・・と
環状部材6との接着工程において、本実施例では不活性
ガス中にて加熱しながら実施する方法を中心に示してき
たが、接着面をプラズマ処理等により活性化することで
常温においても、強固に接合することができる。
In the bonding step of the permanent magnet arcuate magnet pieces 12, 12 ... And the annular member 6, the method of heating while being heated in an inert gas has been mainly described in the present embodiment. By activating the surfaces by plasma treatment or the like, strong bonding can be achieved even at room temperature.

【0026】環状永久磁石11の着磁方向は図3に示す
ように、軸方向に向いている。本実施例において、着磁
工程は環状永久磁石11の製造工程の中で、円弧状磁石
片12、12・・・と環状部材6を接着して、一体化し
た後、実施する。着磁工程では環状永久磁石11に大き
な力が働くが、環状永久磁石11は環状部材6に対して
高強度に接着されているため、安定した磁石部8を構成
している。
The annular permanent magnet 11 is magnetized in the axial direction, as shown in FIG. In the present embodiment, the magnetizing step is performed after the arc-shaped magnet pieces 12, 12 ... And the annular member 6 are bonded and integrated in the manufacturing process of the annular permanent magnet 11. A large force acts on the annular permanent magnet 11 in the magnetizing step, but since the annular permanent magnet 11 is bonded to the annular member 6 with high strength, it forms a stable magnet portion 8.

【0027】(実施例3)次に、環状永久磁石を多重化
した例を示す。図5は、円弧状磁石片の相互接着によっ
て一体化した環状永久磁石を、多重化したときの磁石部
の断面図を示す。実施例1に示したように、環状永久磁
石11A、11B、11C、11Dは、各々4分割され
た円弧状磁石片が粒界相により相互に接着され、回転体
7(実施例では回転軸)を中心に、同心状に多重化した
構造からなる。環状永久磁石11A、11B、11C、
11Dの間に挿入されている環状部材13A、13B、
13Cは、非磁性材料からなり、回転強度向上に対する
強化策になるとともに、各々の環状永久磁石の磁気的短
絡を防ぐ役割を果たす。環状永久磁石11A、11B、
11C、11Dの着磁方向は図5に示すように、軸方向
に向き、隣合う各前記環状永久磁石は異極となるように
配置されている。着磁工程は環状永久磁石11A、11
B、11C、11Dの製造工程の中で、円弧状磁石片を
相互に接着して、一体化した後、環状永久磁石11A、
11B、11C、11Dを各々着磁する。その上で、環
状永久磁石11A、11B、11C、11Dを順次多重
化組立する。着磁工程と多重化組立工程では、環状永久
磁石11A、11B、11C、11Dに大きな力が働く
が、環状永久磁石11A、11B、11C、11Dは接
着された部分と他の部分とに強度面で差がなく、磁石部
8に対する損傷はない。
(Embodiment 3) Next, an example in which annular permanent magnets are multiplexed will be shown. FIG. 5 shows a cross-sectional view of a magnet portion when the annular permanent magnets integrated by mutual adhesion of arc-shaped magnet pieces are multiplexed. As shown in Example 1, in the annular permanent magnets 11A, 11B, 11C and 11D, the arcuate magnet pieces divided into four are adhered to each other by the grain boundary phase, and the rotating body 7 (rotating shaft in the example) is used. It is composed of a concentrically multiplexed structure centered on. Annular permanent magnets 11A, 11B, 11C,
Annular members 13A, 13B inserted between 11D,
13C is made of a non-magnetic material, serves as a reinforcing measure for improving the rotational strength, and plays a role of preventing a magnetic short circuit of each annular permanent magnet. Annular permanent magnets 11A, 11B,
As shown in FIG. 5, the magnetizing directions of 11C and 11D are oriented in the axial direction, and the adjacent annular permanent magnets are arranged so as to have different polarities. The magnetizing step is performed by the annular permanent magnets 11A, 11
In the manufacturing process of B, 11C and 11D, the arc-shaped magnet pieces are adhered to each other and integrated, and then the annular permanent magnet 11A,
11B, 11C and 11D are magnetized respectively. After that, the annular permanent magnets 11A, 11B, 11C and 11D are sequentially multiplexed and assembled. A large force acts on the annular permanent magnets 11A, 11B, 11C, and 11D in the magnetizing process and the multiplex assembling process, but the annular permanent magnets 11A, 11B, 11C, and 11D have a strong surface in the bonded portion and other portions. There is no difference and there is no damage to the magnet portion 8.

【0028】このようにして製造された環状永久磁石1
1は、例えばCFRP等の強化材料からなる強化部材6
によって、外周部より外圧力をかけ締め上げることによ
り、強度は更に高まり、更なる高速回転化が可能とな
る。
The annular permanent magnet 1 manufactured in this way
1 is a reinforcing member 6 made of a reinforcing material such as CFRP.
By further tightening by applying an external pressure from the outer peripheral portion, the strength is further increased, and a further high speed rotation is possible.

【0029】(実施例4)次に円弧状磁石片を環状部材
に接着して一体化した環状永久磁石を、多重化した例を
示す。図6は本実施例の磁石部の断面図を示す。環状永
久磁石11Aは、4分割された円弧状磁石片からなり、
環状部材13Aに対して、粒界相により接着されてい
る。同様に環状永久磁石13Bは環状部材13Bに、環
状永久磁石13Cは環状部材13Cに、更に、環状永久
磁石13Dは環状部材13Dに各々粒界相による接着が
されている。接着された前記各環状永久磁石は回転体7
(実施例では回転軸)を中心に、同心状に多重化した構
造からなる。環状部材13A、13B、13C、13D
は、非磁性材料からなり、回転強度向上に対する強化策
になるとともに、各々の前記環状永久磁石の磁気的短絡
を防ぐ役割を果たす。環状永久磁石11A、11B、1
1C、11Dの着磁方向は図6に示すように、軸方向に
向き、隣合う各前記環状永久磁石は異極となるように配
置されている。着磁工程は環状永久磁石11A、11
B、11C、11Dの製造工程の中で、円弧状磁石片を
環状部材13A、13B、13C、13Dに接着して、
一体化した後、環状永久磁石11A、11B、11C、
11Dを各々着磁する。その上で、環状永久磁石11
A、11B、11C、11Dを順次多重化組立する。
(Embodiment 4) Next, an example in which an annular permanent magnet in which an arc-shaped magnet piece is adhered to and integrated with an annular member is multiplexed is shown. FIG. 6 shows a sectional view of the magnet portion of this embodiment. The annular permanent magnet 11A is made up of four arc-shaped magnet pieces,
The grain boundary phase adheres to the annular member 13A. Similarly, the ring-shaped permanent magnet 13B is bonded to the ring-shaped member 13B, the ring-shaped permanent magnet 13C is bonded to the ring-shaped member 13C, and the ring-shaped permanent magnet 13D is bonded to the ring-shaped member 13D by the grain boundary phase. Each of the bonded annular permanent magnets is a rotor 7
It has a concentric multiplex structure centered on the (rotational axis in the embodiment). Annular members 13A, 13B, 13C, 13D
Is made of a non-magnetic material, serves as a reinforcing measure for improving the rotational strength, and serves to prevent a magnetic short circuit of each of the annular permanent magnets. Annular permanent magnets 11A, 11B, 1
As shown in FIG. 6, the magnetizing directions of 1C and 11D are oriented in the axial direction, and the adjacent annular permanent magnets are arranged so as to have different polarities. The magnetizing step is performed by the annular permanent magnets 11A, 11
In the manufacturing process of B, 11C, 11D, the arc-shaped magnet pieces are bonded to the annular members 13A, 13B, 13C, 13D,
After being integrated, the annular permanent magnets 11A, 11B, 11C,
11D is magnetized. Then, the annular permanent magnet 11
A, 11B, 11C and 11D are sequentially multiplexed and assembled.

【0030】また、実施例2の中で説明した内容と同様
に、環状部材に使用する材料は、前記環状永久磁石の熱
膨張係数よりも低いものを選定することで、接着工程を
より確実なものにすることができるが、隣り合う前記環
状永久磁石の磁気的短絡を防ぐためには、非磁性材料に
する必要がある。
Further, similarly to the contents described in the second embodiment, the material used for the annular member is selected to be lower than the thermal expansion coefficient of the annular permanent magnet, so that the bonding process can be made more reliable. However, in order to prevent a magnetic short circuit between the adjacent annular permanent magnets, it is necessary to use a non-magnetic material.

【0031】このようにして製造された環状永久磁石1
1は、例えばCFRP等の強化材料からなる強化部材6
によって、外周部より外圧力をかけ締め上げることによ
り、強度は更に高まり、更なる高速回転化が可能とな
る。
The annular permanent magnet 1 manufactured in this way
1 is a reinforcing member 6 made of a reinforcing material such as CFRP.
By further tightening by applying an external pressure from the outer peripheral portion, the strength is further increased, and a further high speed rotation is possible.

【0032】(実施例5)本実施例は、互いに隣接し径
方向に着磁された環状永久磁石11A、11Bを用いて
磁場強度の向上を図るとともに、回転強度の向上を図っ
たものである。即ち、図7に示すように、互いに径が異
なり、それぞれ径方向に磁気異方性を与え、着磁された
環状永久磁石11A、11Bの間に磁性体からなる環状
部材13を挟んで配置した構造となっている。また、内
周側の環状永久磁石11Aと外周側の環状永久磁石11
Bとは環状部材13を挟んで同極が向き合っている。こ
のような構造においては、環状永久磁石11A、11B
のN極からの磁束は、磁性体からなる環状部材13を通
り、環状永久磁石11A、11Bの表面に現れて各々の
環状永久磁石11A、11BのS極に戻る。この際、各
環状永久磁石11からの磁束は環状部材により絞られる
ため、環状永久磁石11A、11Bの表面磁束密度は大
幅に向上する。
(Embodiment 5) In this embodiment, the magnetic field strength is improved and the rotation strength is improved by using annular permanent magnets 11A and 11B which are adjacent to each other and are magnetized in the radial direction. . That is, as shown in FIG. 7, an annular member 13 made of a magnetic material is arranged between annular permanent magnets 11A and 11B that have different diameters and are given magnetic anisotropy in the radial direction. It has a structure. In addition, the annular permanent magnet 11A on the inner peripheral side and the annular permanent magnet 11 on the outer peripheral side
The same pole faces B with the annular member 13 interposed therebetween. In such a structure, the annular permanent magnets 11A, 11B
The magnetic flux from the N pole passes through the annular member 13 made of a magnetic material, appears on the surface of the annular permanent magnets 11A and 11B, and returns to the S pole of each of the annular permanent magnets 11A and 11B. At this time, since the magnetic flux from each annular permanent magnet 11 is narrowed down by the annular member, the surface magnetic flux density of the annular permanent magnets 11A and 11B is significantly improved.

【0033】各環状永久磁石11A、11Bの製造方法
は、実施例1にて説明方法と同様で、複数(本実施例で
は4分割)の円弧状磁石片を周方向(円周に沿う方向)
に順次接着することにより構成されている。本実施例で
は、前記円弧状磁石片はPr−Fe−B−Cuを基本組
成とした鋳造インゴットを熱間圧延により磁気異方性を
与え、更に不活性ガス中にて、加熱した後、円弧状に曲
げ加工が施された永久磁石を使用した。ここで磁気異方
性の方向は、曲げ加工する方向に設定することにより、
曲げ加工後、図8に示すように円弧状磁石片12の円弧
の径方向(矢印方向)に与えられる。従って、図9に示
すように、円弧状磁石片12、12・・・を4つ使用し
て環状に形成した環状永久磁石11は、中心部に向けて
磁気異方性を持ったいわゆるラジアル異方性磁石とな
る。前記熱間圧延加工方法による前記永久磁石はその加
工方法故、他の焼結磁石等に較べて、3倍以上強く。曲
げ加工がされた、前記円弧状磁石片12、12・・・同
士は不活性ガス中で加熱することにより、溶融してしみ
だした粒界相により、他の接着材料を用いずに接着され
ている。本実施例において、着磁工程は環状永久磁石1
1A、11Bの製造工程の中で、円弧状磁石片12、1
2・・・を相互に接着して、一体化した後、環状永久磁
石11A、11B各々独立に実施する。着磁された環状
永久磁石11A、11B間に大きな反発力が働くため、
環状部材13を挟んで組立を行う際、大きな加圧力を必
要とするが、環状永久磁石11A、11Bは接着された
部分と他の部分とに強度面で差がなく高強度な環状永久
磁石11A、11Bを形成しているために損傷すること
はない。
The method of manufacturing each of the annular permanent magnets 11A and 11B is the same as the method described in the first embodiment, and a plurality of (four in this embodiment) arc-shaped magnet pieces are circumferentially (along the circumference).
It is configured by sequentially adhering to. In the present embodiment, the arc-shaped magnet piece is a cast ingot having a basic composition of Pr-Fe-B-Cu to give magnetic anisotropy by hot rolling, and is further heated in an inert gas to form a circle. A permanent magnet bent in an arc shape was used. Here, by setting the direction of magnetic anisotropy to the bending direction,
After bending, as shown in FIG. 8, it is given in the radial direction (arrow direction) of the arc of the arc-shaped magnet piece 12. Therefore, as shown in FIG. 9, the annular permanent magnet 11 formed in an annular shape by using four arc-shaped magnet pieces 12, 12 ... Is a so-called radial anomaly having magnetic anisotropy toward the center. It becomes a direction magnet. Due to the processing method, the permanent magnet produced by the hot rolling method is three times stronger than other sintered magnets. The bent arc-shaped magnet pieces 12, 12 ... Are bonded together by heating in an inert gas to melt and exude the grain boundary phase without using another adhesive material. ing. In this embodiment, the magnetizing step is performed by the annular permanent magnet 1
In the manufacturing process of 1A and 11B, the arc-shaped magnet pieces 12, 1
After bonding 2 ... to each other and integrating them, the annular permanent magnets 11A and 11B are individually implemented. Since a large repulsive force acts between the magnetized annular permanent magnets 11A and 11B,
When assembling the annular member 13 while sandwiching the annular member 13, a large pressure is required, but the annular permanent magnets 11A and 11B have high strength without any difference in strength between the bonded portion and other portions. , 11B are formed so that they are not damaged.

【0034】(実施例6)また、環状部材を環状永久磁
石の内外径に配置することによって、更に組立性を向上
することも可能である。図10に示すように、環状永久
磁石11Aの内外径部には、磁性体からなる環状部材1
3A、13Bが接着されている。同様に環状永久磁石1
1Bの内外径部には環状部材13C、13Dが、環状永
久磁石11Cの内外径部には環状部材13E、13F
が、更に環状永久磁石11Dの内外径部には13G、1
3Hが接着されている。隣接する各環状永久磁石11
A、11B、11C、11Dの着磁方向は径方向に同極
に対向するようになされており、通常、実施例5に示し
たように各環状永久磁石間には大きな反発力が働くこと
になるが、本実施例では、環状部材13A〜13Hによ
って、反発力が緩和される効果を持つため、容易に多重
化組立を行うことができる。例えば最内周の環状永久磁
石11Aと2番目の環状永久磁石11Bを組み立てる場
合、最初に環状永久磁石11Aを磁石固定部9の円筒部
10に圧入方法等により、固定した上で、環状永久磁石
11Bを環状永久磁石11Aの外周部に挿入する。その
際、各々の環状永久磁石11A、11Bの接触面に配さ
れた環状部材13B、13Cにより磁束の流れが容易と
なり、吸引反発力が軽減され、組立作業は容易となる。
フライホイールのような大重量物を支える大口径永久磁
石の吸引反発力は、巨大なものとなり、組立作業を容易
にすることは極めて重要な効果であるといえる。
(Embodiment 6) Further, by disposing the annular member on the inner and outer diameters of the annular permanent magnet, it is possible to further improve the assembling property. As shown in FIG. 10, the annular member 1 made of a magnetic material is provided on the inner and outer diameter portions of the annular permanent magnet 11A.
3A and 13B are adhered. Similarly, an annular permanent magnet 1
Annular members 13C and 13D are provided on the inner and outer diameter portions of 1B, and annular members 13E and 13F are provided on the inner and outer diameter portions of the annular permanent magnet 11C.
However, the inner and outer diameter portions of the annular permanent magnet 11D are 13G and 1
3H is glued. Adjacent annular permanent magnets 11
The magnetizing directions of A, 11B, 11C and 11D are arranged so as to face each other in the radial direction with the same pole, and normally, as shown in the fifth embodiment, a large repulsive force acts between the annular permanent magnets. However, in this embodiment, the annular members 13A to 13H have the effect of relieving the repulsive force, so that the multiplex assembly can be easily performed. For example, when assembling the innermost annular permanent magnet 11A and the second annular permanent magnet 11B, first, the annular permanent magnet 11A is first fixed to the cylindrical portion 10 of the magnet fixing portion 9 by a press fitting method or the like, and then the annular permanent magnet 11A is fixed. 11B is inserted in the outer peripheral portion of the annular permanent magnet 11A. At this time, the flow of magnetic flux is facilitated by the annular members 13B and 13C arranged on the contact surfaces of the respective annular permanent magnets 11A and 11B, the repulsive force of attraction is reduced, and the assembly work is facilitated.
The attraction and repulsion force of a large-diameter permanent magnet that supports a heavy object such as a flywheel becomes enormous, and it can be said that facilitating assembly work is an extremely important effect.

【0035】(実施例7)以上の実施例は全て回転軸方
向に超電導体部と永久磁石部が対向した通称アキシャル
型超電導磁気軸受の例であったが、本発明は径方向に超
電導体とが対向したいわゆるラジアル型超電導磁気軸受
の例を示す。
(Embodiment 7) Although all of the above embodiments are examples of so-called axial superconducting magnetic bearings in which the superconductor portion and the permanent magnet portion are opposed to each other in the direction of the rotation axis, the present invention is not limited to the superconductor in the radial direction. An example of a so-called radial type superconducting magnetic bearing facing each other is shown.

【0036】図11に、回転体7が超電導体部5の外側
に配置された外転型の超電導軸受装置の主要部の縦断面
図を示す。図11において図示されないハウジング内に
固定部となる支持体3と回転体7に納められており、支
持体3には超電導体4が配置され、磁石部8は2つの環
状永久磁石11A、11Bと磁性体からなる環状部材1
3により構成されている。磁気的な作用は、前述の実施
例6同様であり、環状永久磁石11A、11Bから発せ
られた磁束が、環状部材13により絞られて磁束密度を
高め、超電導体4に対して一部入り込み大きなピン止め
力を生じさせる。大口径の軸受を構成する必要がある場
合や、外径より回転出力を取り出すような用途には図1
1による構成が好適である。
FIG. 11 is a vertical cross-sectional view of the main part of an outer rotation type superconducting bearing device in which the rotating body 7 is arranged outside the superconducting portion 5. In a housing (not shown in FIG. 11), a support body 3 serving as a fixed portion and a rotating body 7 are housed, a superconductor 4 is arranged on the support body 3, and a magnet portion 8 includes two annular permanent magnets 11A and 11B. Ring member 1 made of magnetic material
3. The magnetic action is the same as that of the above-described sixth embodiment, and the magnetic flux generated from the annular permanent magnets 11A and 11B is narrowed by the annular member 13 to increase the magnetic flux density, and partly enters the superconductor 4 and becomes large. Generate pinning force. If you need to construct a bearing with a large diameter, or if you want to extract rotational output from the outer diameter,
The configuration according to No. 1 is preferable.

【0037】更に、上記環状永久磁石11A、11B
は、実施例1同様、複数(本実施例では4分割)の円弧
状磁石片を周方向(円周に沿う方向)に順次接着するこ
とにより構成されている。前記円弧状磁石片はPr−F
e−B−Cuを基本組成とした鋳造インゴットを熱間圧
延により磁気異方性を与え、更に不活性ガス中にて、加
熱した後、円弧状に曲げ加工が施された永久磁石を使用
した。前記熱間圧延加工方法による前記永久磁石はその
加工方法故、他の焼結磁石等に較べて、3倍以上強く、
曲げ加工がされた、前記円弧状磁石片同士は不活性ガス
中で加熱することにより、溶融してしみだした粒界相に
より、他の接着材料を用いずに接着されている。このよ
うにして製造された環状永久磁石11A、11Bは、例
えばCFRP等の強化材料からなる強化部材6によって
外圧力をかけ締め上げられ、高速回転に耐え得る磁石部
8を形成している。
Furthermore, the annular permanent magnets 11A and 11B
Is formed by sequentially adhering a plurality (four in this embodiment) of arc-shaped magnet pieces in the circumferential direction (direction along the circumference), as in the first embodiment. The arc-shaped magnet piece is Pr-F.
A cast ingot having a basic composition of e-B-Cu was hot-rolled to impart magnetic anisotropy, and after heating in an inert gas, a permanent magnet bent in an arc shape was used. . The permanent magnet produced by the hot rolling method is three times or more stronger than other sintered magnets due to the processing method.
The arc-shaped magnet pieces that have been subjected to bending are adhered to each other without using any other adhesive material due to the grain boundary phase melted and exuded by heating in an inert gas. The annular permanent magnets 11A and 11B manufactured in this manner form a magnet portion 8 that can endure high speed rotation by being tightened by an external pressure by a reinforcing member 6 made of a reinforcing material such as CFRP.

【0038】環状永久磁石11の着磁方向は図11に示
すように、軸方向に向いている。本実施例において、着
磁工程は環状永久磁石11A、11Bの製造工程の中
で、前記円弧状磁石片を相互に接着して、一体化してた
後、実施する。着磁工程や着磁後の組立工程では環状永
久磁石11A、11Bに大きな力が働くが、環状永久磁
石11は接着された部分と他の部分とに強度面で差がな
く、環状永久磁石11A、11Bに対して損傷を与える
ことはない。本実施例に使用した、Pr−Fe−B−C
u系の熱間圧延加工方法による永久磁石は、機械的強度
に優れており、前述の説明の通り曲げ加工方法、粒界相
による接着工程を経た後にも、その強度に劣化を生じな
いため、本実施例に使用する磁石としては最適なもので
あるが、前記加工方法が可能な永久磁石ならば、全て同
様な効果が期待できる。
The magnetizing direction of the annular permanent magnet 11 is in the axial direction, as shown in FIG. In the present embodiment, the magnetizing step is carried out after the arc-shaped magnet pieces are bonded and integrated with each other in the manufacturing steps of the annular permanent magnets 11A and 11B. Although a large force acts on the annular permanent magnets 11A and 11B in the magnetizing step and the assembling step after the magnetizing, the annular permanent magnet 11 has no difference in strength between the bonded portion and other portions, and the annular permanent magnet 11A , 11B is not damaged. Pr-Fe-B-C used in this example
The permanent magnet produced by the u-based hot rolling method is excellent in mechanical strength, and does not deteriorate in its strength even after the bending method and the bonding step by the grain boundary phase as described above. Although it is the most suitable magnet for use in this embodiment, the same effect can be expected in all permanent magnets that can be processed by the above-mentioned processing method.

【0039】本実施例の構成では、軸受として重要な要
素となるラジアル剛性を向上することが可能となること
に加えて、軸受の載荷力を大きくすることができる。即
ち、軸受の外径状が半径方向に大きくできないような形
状的制約を受けた場合、前記環状永久磁石を軸方向に積
層していけば、外径状を変えずに載荷力を大きくするこ
とができる。それにより、高速回転化と高載荷力化が必
要なフライホイール用超電導磁気軸受装置には極めて有
効となる。
With the structure of this embodiment, it is possible to improve the radial rigidity, which is an important factor for the bearing, and to increase the bearing load of the bearing. That is, if the outer diameter of the bearing is constrained so that it cannot be increased in the radial direction, if the annular permanent magnets are laminated in the axial direction, the loading force can be increased without changing the outer diameter. You can This is extremely effective for a superconducting magnetic bearing device for flywheels, which requires high speed rotation and high loading force.

【0040】尚、前述までの実施例1乃至7において、
超電導軸受装置は超電導体部5が固定体部Bに、磁石部
8が回転体部Aに、それぞれ設けられている構造につい
て説明したが、本発明は、逆に超電導体部5が回転体部
Aに、磁石部8が固定体部Bに、それぞれ設けられる構
造であっても同様な作用効果を奏することができるもの
である。また、磁石にはPr−Fe−B−Cu系磁石を
使用した例を示したが、本発明はこれに限らず、フェラ
イト、アルニコ、或はネオジウム系、サマリウム系等、
他の全ての永久磁石を使用することができることは勿論
であり、更に電磁石、超電導コイル等、磁束を発生する
もの全て適用可能であり、加えて、ピンニング効果によ
り磁束が封じ込められたいわば超電導体そのものを、固
定体部、固定体部に設置する磁石として使用することも
できるものである。更に、超電導体についてもイットリ
ウム高温超電導体を例に示してきたが、磁石との間で復
原力をもつ事のできる、例えば希土類系の元素を含む
(RE−Ba−Cu−O)系等全ての超電導体が適用可
能である。ここで、REはY、Sm、Eu、Nd、D
y、Ho、Er、Ybからなる元素群から選ばれた1又
は2以上の元素を表す。
In the first to seventh embodiments described above,
In the superconducting bearing device, the superconductor portion 5 is provided in the fixed body portion B, and the magnet portion 8 is provided in the rotating body portion A, respectively. However, the present invention, conversely, the superconductor portion 5 is provided in the rotating body portion. Even if the magnet portion 8 is provided in A and the magnet portion 8 is provided in the fixed body portion B, the same operational effect can be obtained. Also, an example using a Pr-Fe-B-Cu magnet as the magnet is shown, but the present invention is not limited to this, and ferrite, alnico, neodymium, samarium, etc. may be used.
Of course, all other permanent magnets can be used, and all those that generate magnetic flux, such as electromagnets and superconducting coils, are also applicable. In addition, the magnetic flux is contained by the pinning effect, so to speak, a superconductor itself. Can also be used as a fixed body part and a magnet installed on the fixed body part. Further, as for the superconductor, the yttrium high temperature superconductor has been shown as an example, but all of the (RE-Ba-Cu-O) -based materials including a rare earth-based element that can have a restoring force with a magnet are also used. The superconductor of is applicable. Where RE is Y, Sm, Eu, Nd, D
It represents one or more elements selected from the group of elements consisting of y, Ho, Er and Yb.

【0041】[0041]

【発明の効果】本発明は、以上説明したように、この種
の超電導磁気軸受装置において円弧状磁石同士を接着し
て一体環状永久磁石を形成した上で着磁して外周部より
強化部材により外圧力をかけて強化するために高速回転
化が可能となる。また、円弧状磁石を環状部材に接着し
て一体環状磁石を形成するため、更なる回転強度の向上
が図れる。更に前記環状部材に前記円弧状磁石より熱膨
張係数の低い材料を使用することにより、前記環状部材
と前記円弧状磁石の接着性をより向上でき高速回転化が
可能となる。また、前記一体環状磁石を多層化する際、
一体環状磁石とすることで、組立性を良好なものとし
た。また、径方向に曲げ加工を行い、ラジアル磁気異方
性磁石を使用することにより、高磁場強度で、高機械強
度な回転体を実現することができる。更にラジアル磁気
異方性磁石の内外径に環状磁性体を接着することによっ
て、多重化組立工程が容易となる。更にラジアル軸受構
成とすることで高剛性化を図ることができる。
As described above, according to the present invention, in this type of superconducting magnetic bearing device, arcuate magnets are adhered to each other to form an integral annular permanent magnet, which is then magnetized and strengthened from the outer peripheral portion. High-speed rotation is possible because external pressure is applied for reinforcement. Further, since the arcuate magnet is bonded to the annular member to form the integral annular magnet, the rotation strength can be further improved. Further, by using a material having a coefficient of thermal expansion lower than that of the arc-shaped magnet for the annular member, the adhesiveness between the annular member and the arc-shaped magnet can be further improved, and high speed rotation can be achieved. In addition, when forming the multi-layered annular magnet,
The use of an integral annular magnet made it easy to assemble. Further, by performing bending in the radial direction and using the radial magnetic anisotropic magnet, it is possible to realize a rotating body having high magnetic field strength and high mechanical strength. Further, by bonding the annular magnetic body to the inner and outer diameters of the radial magnetic anisotropic magnet, the multiplex assembling process is facilitated. Further, by adopting a radial bearing structure, high rigidity can be achieved.

【0042】即ち、高速回転を必要とする流体機械や工
作機械、余剰電力をフライホイールの運動エネルギーに
変換して貯蔵する電力貯蔵装置、とりわけ載荷力を要求
される大型のシステムに適用することが可能である。
That is, the present invention can be applied to a fluid machine or a machine tool that requires high-speed rotation, an electric power storage device that converts surplus electric power into kinetic energy of a flywheel and stores it, and particularly to a large system that requires a loading force. It is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1実施例に係わり、超電導磁気軸
受装置の主要部を示す図2中のI−I矢視断面図。
1 is a sectional view taken along the line I-I in FIG. 2 showing a main part of a superconducting magnetic bearing device according to a first embodiment of the invention.

【図2】 本発明の第1実施例に係わり、永久磁石部の
底面を示す図1中のII−II矢視図。
FIG. 2 is a view taken along the line II-II in FIG. 1 showing the bottom surface of the permanent magnet portion according to the first embodiment of the invention.

【図3】 本発明の第2実施例に係わり、超電導磁気軸
受装置の主要部を示す図4中のI−I矢視断面図。
FIG. 3 is a sectional view taken along the line I-I in FIG. 4 showing a main part of a superconducting magnetic bearing device according to the second embodiment of the invention.

【図4】 本発明の第2実施例に係わり、永久磁石部の
底面を示す図3中のII−II矢視図。
FIG. 4 is a view taken along the line II-II in FIG. 3 showing the bottom surface of the permanent magnet portion according to the second embodiment of the present invention.

【図5】 本発明の第3実施例に係わり、永久磁石部の
主要部を示す縦断面図。
FIG. 5 is a longitudinal sectional view showing a main part of a permanent magnet part according to a third embodiment of the present invention.

【図6】 本発明の第4実施例に係わり、永久磁石部の
主要部を示す縦断面図。
FIG. 6 is a longitudinal sectional view showing a main part of a permanent magnet part according to a fourth embodiment of the present invention.

【図7】 本発明の第5実施例に係わり、永久磁石部の
主要部を示す縦断面図。
FIG. 7 is a vertical cross-sectional view showing a main part of a permanent magnet part according to a fifth embodiment of the present invention.

【図8】 本発明の第5実施例に係わり、円弧状磁石片
の射視図。
FIG. 8 is a perspective view of an arcuate magnet piece according to a fifth embodiment of the present invention.

【図9】 本発明の第5実施例に係わり、図8の円弧状
磁石を環状にした射視図。
9 is a perspective view related to the fifth embodiment of the present invention in which the arc-shaped magnet of FIG. 8 is formed into an annular shape.

【図10】本発明の第6実施例に係わり、永久磁石部の
主要部を示す縦断面図。
FIG. 10 is a longitudinal sectional view showing a main part of a permanent magnet part according to a sixth embodiment of the present invention.

【図11】本発明の第7実施例に係わり、超電導軸受装
置の主要部の縦断面図。
FIG. 11 is a longitudinal sectional view of a main part of a superconducting bearing device according to a seventh embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 超電導軸受装置 2 冷却ケース 3 支持体 4 超電導体 5 超電導体部 6 強化部材 7 回転体 8 磁石部 9 磁石固定部 10 円筒部 11、11A、11B、11C、11D 環状永久
磁石 12 円弧状磁石片 13、13A、13B、13C、13D、13E,13
F、13G、13H環状磁性体 A 回転体部 B 固定体部
DESCRIPTION OF SYMBOLS 1 Superconducting bearing device 2 Cooling case 3 Support body 4 Superconductor 5 Superconductor part 6 Reinforcing member 7 Rotating body 8 Magnet part 9 Magnet fixing part 10 Cylindrical part 11, 11A, 11B, 11C, 11D Annular permanent magnet 12 Arc-shaped magnet piece 13, 13A, 13B, 13C, 13D, 13E, 13
F, 13G, 13H Ring magnetic body A Rotating body portion B Fixed body portion

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 回転体部及び固定体部の一方に装着され
る超電導体部と他方に装着される磁石部とを備え、前記
超電導体部は、前記磁石部との間に復元力を有する超電
導体と、この超電導体を支持する支持体とから構成さ
れ、前記磁石部は回転体部の軸心を同心とする環状磁石
を備えて構成される形式の超電導磁気軸受装置におい
て、前記磁石部は、熱間で曲げ加工により製造した円弧
状磁石を複数個組み合わせ、周方向に隣り合う前記円弧
状磁石同士を接着した一体環状磁石構造をなし、更に前
記磁石部の外周に強化部材を配したことを特徴とする超
電導磁気軸受装置。
1. A superconductor part mounted on one of a rotating body part and a fixed body part and a magnet part mounted on the other, the superconductor part having a restoring force between the superconductor part and the magnet part. In a superconducting magnetic bearing device of a type that is composed of a superconductor and a support that supports the superconductor, and the magnet portion is provided with an annular magnet having the axis of the rotor portion as a concentric axis, the magnet portion Is a combination of a plurality of arc-shaped magnets manufactured by hot bending, to form an integral annular magnet structure in which the arc-shaped magnets adjacent to each other in the circumferential direction are adhered, and a reinforcing member is arranged on the outer periphery of the magnet portion. A superconducting magnetic bearing device characterized by the above.
【請求項2】 回転体部及び固定体部の一方に装着され
る超電導体部と他方に装着される磁石部とを備え、前記
超電導体部は、前記磁石部との間に復元力を有する超電
導体と、この超電導体を支持する支持体とから構成さ
れ、前記磁石部は回転体部の軸心を同心とする環状磁石
を備えて構成される形式の超電導磁気軸受装置におい
て、前記磁石部は、熱間で曲げ加工により製造した複数
の円弧状磁石と、前記円弧状磁石の外周部に外接する環
状部材から形成されており、前記環状部材の内側に前記
円弧状磁石を環状に配置するとともに、前記環状部材と
前記環状磁石と接着された一体環状磁石構造としたこと
を特徴とする超電導磁気軸受装置。
2. A superconductor part mounted on one of the rotating body part and the fixed body part, and a magnet part mounted on the other, the superconductor part having a restoring force between the superconductor part and the magnet part. In a superconducting magnetic bearing device of a type that is composed of a superconductor and a support that supports the superconductor, and the magnet portion is provided with an annular magnet having the axis of the rotor portion as a concentric axis, the magnet portion Is formed by a plurality of arc-shaped magnets manufactured by hot bending and an annular member circumscribing the outer peripheral portion of the arc-shaped magnet, and the arc-shaped magnets are annularly arranged inside the annular member. At the same time, a superconducting magnetic bearing device having an integral annular magnet structure in which the annular member and the annular magnet are bonded together.
【請求項3】 前記環状部材の熱膨張係数は前記円弧状
磁石の熱膨張係数よりも低いことを特徴とする請求項2
記載の超電導磁気軸受装置。
3. The thermal expansion coefficient of the annular member is lower than the thermal expansion coefficient of the arc-shaped magnet.
The superconducting magnetic bearing device described.
【請求項4】 前記磁石部は異径の複数の一体環状磁石
からなり、前記複数の一体環状磁石は前記回転体部の軸
心を同心とする多重化構造により形成されていることを
特徴とする請求項1及び2記載の超電導磁気軸受装置。
4. The magnet portion is composed of a plurality of integral annular magnets having different diameters, and the plurality of integral annular magnets are formed by a multiplex structure in which the shaft center of the rotating body portion is concentric. The superconducting magnetic bearing device according to claim 1 or 2.
【請求項5】 回転体部及び固定体部の一方に装着され
る超電導体部と他方に装着される磁石部とを備え、前記
超電導体部は、前記磁石部との間に復元力を有する超電
導体と、この超電導体を支持する支持体とから構成さ
れ、前記磁石部は回転体部の軸心を同心とする環状磁石
を備えて構成される形式の超電導磁気軸受装置におい
て、前記磁石部は、熱間で曲げ加工により製造して、径
方向に磁気異方性を与えた円弧状磁石を複数個組み合わ
せ、周方向に隣り合う前記円弧状磁石同士を接着した一
体環状磁石構造であり、前記一体環状磁石として、径方
向に同極が対向するように着磁された少なくとも異径の
2以上の一体環状磁石を配置し、径方向に隣接する環状
磁石の間に環状部材を設け、前記磁石部の外周に強化部
材を配したことを特徴とする超電導磁気軸受装置。
5. A superconductor portion mounted on one of the rotating body portion and the fixed body portion and a magnet portion mounted on the other, the superconductor portion having a restoring force between the superconductor portion and the magnet portion. In a superconducting magnetic bearing device of a type that is composed of a superconductor and a support that supports the superconductor, and the magnet portion is provided with an annular magnet having the axis of the rotor portion as a concentric axis, the magnet portion Is manufactured by hot bending, combining a plurality of arc-shaped magnets that are given magnetic anisotropy in the radial direction, and is an integral annular magnet structure in which the arc-shaped magnets that are adjacent to each other in the circumferential direction are bonded together, As the integrated annular magnet, two or more integrated annular magnets having at least different diameters that are magnetized so that the same poles face each other in the radial direction are arranged, and an annular member is provided between the annular magnets that are adjacent in the radial direction, It is characterized by arranging a reinforcing member on the outer periphery of the magnet part Superconducting magnetic bearing device.
【請求項6】 回転体部及び固定体部の一方に装着され
る超電導体部と他方に装着される磁石部とを備え、前記
超電導体部は、前記磁石部との間に復元力を有する超電
導体と、この超電導体を支持する支持体とから構成さ
れ、前記磁石部は回転体部の軸心を同心とする環状磁石
を備えて構成される形式の超電導磁気軸受装置におい
て、前記磁石部は、熱間で曲げ加工により製造して、径
方向に磁気異方性を与えた円弧状磁石を複数個組み合わ
せ、周方向に隣り合う前記円弧状磁石同士を接着した一
体環状磁石構造であり、前記一体環状磁石として、径方
向に同極が対向するように着磁された少なくとも異径の
2以上の一体環状磁石を配置し、径方向に隣接する環状
磁石の間に環状部材を設け、前記環状部材は2重に径方
向に重ねられた構造をなし、前記磁石部の外周に強化部
材を配したことを特徴とする超電導磁気軸受装置。
6. A superconductor part mounted on one of the rotating body part and the fixed body part and a magnet part mounted on the other, the superconductor part having a restoring force between the superconductor part and the magnet part. In a superconducting magnetic bearing device of a type that is composed of a superconductor and a support that supports the superconductor, and the magnet portion is provided with an annular magnet having the axis of the rotor portion as a concentric axis, the magnet portion Is manufactured by hot bending, combining a plurality of arc-shaped magnets that are given magnetic anisotropy in the radial direction, and is an integral annular magnet structure in which the arc-shaped magnets that are adjacent to each other in the circumferential direction are bonded together, As the integrated annular magnet, two or more integrated annular magnets having at least different diameters that are magnetized so that the same poles face each other in the radial direction are arranged, and an annular member is provided between the annular magnets that are adjacent in the radial direction, The annular members have a structure in which they are doubly stacked in the radial direction. A superconducting magnetic bearing device is characterized in that a reinforcing member is arranged on the outer periphery of the magnet portion.
【請求項7】 回転体部及び固定体部の一方に装着され
る超電導体部と他方に装着される磁石部とを備え、前記
超電導体部は、前記磁石部との間に復元力を有する超電
導体と、この超電導体を支持する支持体とから構成さ
れ、前記磁石部は回転体部の軸心を同心とする環状磁石
を備えて構成され、前記環状磁石と前記超電導体部と
が、前記回転体部の半径方向で間隔を設けて向き合うよ
うに配設される形式の超電導磁気軸受装置において、前
記磁石部は、熱間で曲げ加工により製造した円弧状磁石
を複数個組み合わせ、周方向に隣り合う前記円弧状磁石
同士を接着した一体環状磁石構造であり、前記一体環状
磁石として、同径の軸方向に同極が対向するように着磁
された少なくとも2以上の一体環状磁石を配置し、軸方
向に隣接する一体環状磁石の間に環状部材を設けたこと
を特徴とする超電導磁気軸受装置。
7. A superconductor portion mounted on one of the rotating body portion and the fixed body portion and a magnet portion mounted on the other, the superconductor portion having a restoring force between the superconductor portion and the magnet portion. A superconductor and a support for supporting the superconductor, the magnet portion is provided with an annular magnet having the axis of the rotor portion as a concentric axis, the annular magnet and the superconductor portion, In a superconducting magnetic bearing device of a type arranged so as to face each other at intervals in the radial direction of the rotating body portion, the magnet portion is a combination of a plurality of arc-shaped magnets manufactured by hot bending, and a circumferential direction. Is an integrated annular magnet structure in which the arc-shaped magnets adjacent to each other are adhered to each other, and as the integrated annular magnet, at least two integrated annular magnets are magnetized so that the same poles face each other in the axial direction of the same diameter. The axially adjacent integral annular magnet A superconducting magnetic bearing device characterized in that an annular member is provided between stones.
【請求項8】 前記磁石部は前記一体環状磁石構造を形
成した後、着磁をすることを特徴とする請求項1乃至7
記載の超電導磁気軸受装置。
8. The magnet portion is magnetized after forming the integral annular magnet structure.
The superconducting magnetic bearing device described.
【請求項9】 前記円弧状磁石同士の接着部の機械強度
は前記円弧状磁石単体と同等であることを特徴とする請
求項1、5、6及び7記載の超電導磁気軸受装置。
9. The superconducting magnetic bearing device according to claim 1, wherein mechanical strength of a bonding portion between the arc-shaped magnets is equal to that of the arc-shaped magnet alone.
JP3103195A 1995-02-20 1995-02-20 Superconductive magnetic bearing device Pending JPH08226443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3103195A JPH08226443A (en) 1995-02-20 1995-02-20 Superconductive magnetic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3103195A JPH08226443A (en) 1995-02-20 1995-02-20 Superconductive magnetic bearing device

Publications (1)

Publication Number Publication Date
JPH08226443A true JPH08226443A (en) 1996-09-03

Family

ID=12320150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3103195A Pending JPH08226443A (en) 1995-02-20 1995-02-20 Superconductive magnetic bearing device

Country Status (1)

Country Link
JP (1) JPH08226443A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6806604B2 (en) * 2000-07-13 2004-10-19 Kendro Laboratory Products Gmbh Centrifuge with a magnetically stabilized rotor for centrifugal goods
JP2008228535A (en) * 2007-03-15 2008-09-25 Railway Technical Res Inst Flywheel energy storage device for stationary energy storage
JP2014084911A (en) * 2012-10-22 2014-05-12 Oriental Motor Co Ltd Electromagnetic brake, electromagnetic brake assembling method, and assembling method for electromagnetic brake for stepping motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6806604B2 (en) * 2000-07-13 2004-10-19 Kendro Laboratory Products Gmbh Centrifuge with a magnetically stabilized rotor for centrifugal goods
JP2008228535A (en) * 2007-03-15 2008-09-25 Railway Technical Res Inst Flywheel energy storage device for stationary energy storage
JP2014084911A (en) * 2012-10-22 2014-05-12 Oriental Motor Co Ltd Electromagnetic brake, electromagnetic brake assembling method, and assembling method for electromagnetic brake for stepping motor

Similar Documents

Publication Publication Date Title
US4942322A (en) Permanent magnet rotor with bonded sheath
EP0956634B1 (en) Improvements in high speed rotor shafts
US7492073B2 (en) Superconducting rotating machines with stationary field coils
US5223759A (en) DC brushless motor with solid rotor having permanent magnet
US20060028085A1 (en) Superconducting rotating machines with stationary field coils
US8471660B2 (en) Assembly for magnetization of rare-earth permanent magnets
US6169352B1 (en) Trapped field internal dipole superconducting motor generator
JPH1189142A (en) Permanent magnet type synchronous electric motor, its manufacture and centrifugal compressor provided with the permanent magnet type synchronous electric motor
EP2761729B1 (en) Electromechanical flywheels
US4308479A (en) Magnet arrangement for axial flux focussing for two-pole permanent magnet A.C. machines
JPH08334123A (en) Superconductive bearing device and its manufacture
US20190238016A1 (en) Rotor for an electric machine, electric machine with the rotor and to method for producing the rotor
WO1993016294A1 (en) Superconducting bearing
JPH0638415A (en) Permanent magnet type rotor
US20030141774A1 (en) Rotor for rotating electric machine, method of fabricating the same, rotating electric machine and gas turbine power plant
JPH08284956A (en) Super-conductive magnetic bearing device
JPH08226443A (en) Superconductive magnetic bearing device
JP3554054B2 (en) Superconducting bearing device
KR20030040529A (en) Device comprising a component, which is ferromagnetic in the cryogenic temperature range and which can be subjected to mechanical stresses
JP2799802B2 (en) Superconducting levitation type rotating device
JP3367068B2 (en) Superconducting bearing
JPH0226310A (en) Magnetic thrust bearing
JP2004128302A (en) Rare earth sintered magnet
US6621396B2 (en) Permanent magnet radial magnetizer
JP3397823B2 (en) Superconducting bearing device