JPH1197210A - Semiconductor with positive resistance temperature coefficient - Google Patents

Semiconductor with positive resistance temperature coefficient

Info

Publication number
JPH1197210A
JPH1197210A JP9255301A JP25530197A JPH1197210A JP H1197210 A JPH1197210 A JP H1197210A JP 9255301 A JP9255301 A JP 9255301A JP 25530197 A JP25530197 A JP 25530197A JP H1197210 A JPH1197210 A JP H1197210A
Authority
JP
Japan
Prior art keywords
alloy
semiconductor
curie point
resistance
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9255301A
Other languages
Japanese (ja)
Other versions
JP3829431B2 (en
Inventor
Hideaki Niimi
秀明 新見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP25530197A priority Critical patent/JP3829431B2/en
Publication of JPH1197210A publication Critical patent/JPH1197210A/en
Application granted granted Critical
Publication of JP3829431B2 publication Critical patent/JP3829431B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To hold resistance changing ratio around Curie point and further reduce Curie point by using a material equal to or higher than resistivity specific value as a principal component, and dispersing Bi-Sn alloy into the material as sub-component. SOLUTION: A material used may be a ceramic such as almina and zirconia or alternatively an inorganic material such as glass as long as the resistivity is 1 kΩ.cm or more. An organic material may be used such as a thermosetting resin, for example epoxy resin, phenolic resin or a thermoplastic resin, for example polyimide, polyamide and the like. The Bi-Sn alloy is dispersed as uniform as possible. Grain size of the Bi-Sn alloy is preferably about 0.1 to 100 μm. Component ratio of Sn to Bi, Sn/Bi in the Bi-Sn alloy is ranged to be 0.3 to 0.8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、正の抵抗温度特性
を有する半導体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor having a positive resistance temperature characteristic.

【0002】[0002]

【従来の技術】従来より、定温発熱ヒータや、カラーテ
レビの消磁用部品、あるいは過電流保護などに使用され
る素子には、正の抵抗温度特性(以下、PTC特性とす
る)を有する半導体が用いられており、特に、抵抗変化
温度(以下、キュリー点とする)以上になると急激に高
抵抗化するというPTC特性を有するBaTiO3系の
半導体セラミックが広く用いられている。
2. Description of the Related Art Conventionally, semiconductors having positive resistance temperature characteristics (hereinafter, referred to as PTC characteristics) have been used for devices used for constant temperature heating heaters, degaussing parts for color televisions, or overcurrent protection. In particular, BaTiO 3 -based semiconductor ceramics having PTC characteristics in which the resistance rapidly increases when the temperature exceeds a resistance change temperature (hereinafter referred to as the Curie point) are widely used.

【0003】このような用途に使用されるPTC特性を
有する半導体セラミックには、特に、その抵抗値がある
特定温度でなるべく急激に上昇することが望まれてお
り、この課題に対応するものとしてBaTiO3中にM
nを添加して抵抗値の上昇率を高めた半導体セラミック
などが実施されていた。
[0003] It is desired that the semiconductor ceramic having PTC characteristics used for such an application has a resistance value which rises as rapidly as possible at a specific temperature as much as possible. M in 3
Semiconductor ceramics and the like in which the rate of increase in the resistance value is increased by adding n have been implemented.

【0004】一方、従来のBaTiO3中にMnを添加
した半導体セラミックとは別に、「日本セラミックス協
会1992年会(題目:Bi4Ti312系セラミックス
の半導体化及び比抵抗温度特性)」(鄒・岡田・本間、
日本セラミックス協会、1992)にあるように、抵抗
変化比が高いBi−Ti−O系の半導体セラミックが提
案されている。
On the other hand, apart from the semiconductor ceramic obtained by adding Mn in the conventional BaTiO 3, "Ceramic Society of Japan 1992 Annual (Title: semiconductive and specific resistance-temperature characteristic of a Bi 4 Ti 3 O 12 ceramics)" ( Zou, Okada, Honma,
As described in the Ceramic Society of Japan, 1992), a Bi-Ti-O-based semiconductor ceramic having a high resistance change ratio has been proposed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、近年、
進歩を続ける電子機器に十分に満足するように、PTC
特性を有する半導体に対してPTC特性のさらなる改善
が求められている。
However, in recent years,
To fully satisfy the evolving electronic equipment, PTC
Further improvement of PTC characteristics is required for semiconductors having characteristics.

【0006】このような状況において、従来のBi−T
i−O系の半導体セラミックは、抵抗変化比が高いもの
の、キュリー点が270℃付近と高いため、半導体セラ
ミック素子の電極やケースなどを高い温度にまで耐えら
れるようにしておく必要があるという問題があった。
In such a situation, the conventional Bi-T
Although the i-O-based semiconductor ceramic has a high resistance change ratio, its Curie point is as high as about 270 ° C., so that it is necessary to make the electrodes and the case of the semiconductor ceramic element withstand high temperatures. was there.

【0007】本発明は、キュリー点前後の抵抗変化比が
従来のBi−Ti−O系の半導体セラミックの水準を維
持しており、かつ、キュリー点がBi−Ti−O系の半
導体セラミックのもの(約270℃)より低いPTC特
性を有する半導体を提供することにある。
According to the present invention, the resistance change ratio before and after the Curie point is maintained at the level of a conventional Bi-Ti-O based semiconductor ceramic, and the Curie point is a Bi-Ti-O based semiconductor ceramic. It is to provide a semiconductor having a lower PTC characteristic (about 270 ° C.).

【0008】[0008]

【課題を解決するための手段】第1の発明のPTC特性
を有する半導体は、比抵抗1kΩ・cm以上の材料を主成
分とし、前記材料中に、副成分としてBi−Sn合金を
分散させてなることを特徴とする。
According to the first aspect of the present invention, there is provided a semiconductor having PTC characteristics comprising a material having a specific resistance of 1 kΩ · cm or more as a main component, and a Bi—Sn alloy dispersed as a subcomponent in the material. It is characterized by becoming.

【0009】このような組成にすることによって、キュ
リー点前後の抵抗変化比をBi−Ti−O系の半導体の
もの程度とするとともに、キュリー点を270℃以下と
することができる。
By adopting such a composition, the resistance change ratio before and after the Curie point can be set to about that of a Bi-Ti-O-based semiconductor, and the Curie point can be set to 270 ° C. or lower.

【0010】また、第2の発明の半導体材料において
は、BiとSnとの組成比Sn/Bi(原子比)が0.
3〜0.8の範囲であることが好ましい。
Further, in the semiconductor material of the second invention, the composition ratio of Bi to Sn, Sn / Bi (atomic ratio) is 0.1.
It is preferably in the range of 3 to 0.8.

【0011】BiとSnとをこのような組成比にするこ
とによって、キュリー点を200℃以下とより低くし、
半導体素子の信頼性を高めることができる。また、キュ
リー点前後の抵抗変化比を2000以上とより高くする
ことができる。
By setting Bi and Sn in such a composition ratio, the Curie point is lowered to 200 ° C. or less,
The reliability of the semiconductor element can be improved. Further, the resistance change ratio before and after the Curie point can be increased to 2000 or more.

【0012】[0012]

【発明の実施の形態】本発明のPTC特性を有する半導
体の主成分として用いられる材料は、好ましいものとし
て、Ti−Nb−O系、Ba−Ti−Nb−O系、Bi
−Ti−Nb−O系等が挙げられるが、特にこれらに限
定するものではなく、比抵抗が1kΩ・cm以上であれ
ば、アルミナやジルコニアなどのセラミックでもよい
し、この他ガラスなどの無機材料でもよい。また、エポ
キシ樹脂やフェノール樹脂等の熱硬化性樹脂、ポリイミ
ドやポリアミド等の熱可塑性樹脂等の有機材料も用いる
ことができる。
BEST MODE FOR CARRYING OUT THE INVENTION The material used as the main component of the semiconductor having PTC characteristics of the present invention is preferably a Ti-Nb-O-based material, a Ba-Ti-Nb-O-based material, or a Bi-based material.
-Ti-Nb-O type, etc., but not particularly limited thereto. Ceramics such as alumina and zirconia may be used as long as the specific resistance is 1 kΩ · cm or more, and other inorganic materials such as glass. May be. Further, an organic material such as a thermosetting resin such as an epoxy resin or a phenol resin, or a thermoplastic resin such as polyimide or polyamide can also be used.

【0013】また、上記材料中に分散しているBi−S
n合金の分散状態は、特に数値的に限定するものではな
いが、できるだけ一様に分散している状態であることが
好ましい。また、上記Bi−Sn合金の平均粒径は、大
きすぎるとPTC特性が低下し、小さすぎると酸化され
て高抵抗化するという理由から、0.1μm〜100μ
mであることが好ましい。また、上記Bi−Sn合金の
添加量は、多すぎるとPTC特性が低下し、少なすぎる
と高抵抗化するという理由から、上記材料100重量部
に対して、50重量部〜150重量部であることが好ま
しい。
Further, Bi-S dispersed in the above material
The dispersion state of the n-alloy is not particularly limited numerically, but it is preferable that the dispersion state is as uniform as possible. Further, the average particle size of the Bi—Sn alloy is 0.1 μm to 100 μm because the PTC characteristics are deteriorated if too large, and if the average particle size is too small, it is oxidized to increase the resistance.
m is preferable. Further, the addition amount of the Bi-Sn alloy is 50 parts by weight to 150 parts by weight with respect to 100 parts by weight of the material, because if the amount is too large, the PTC property is reduced, and if the amount is too small, the resistance increases. Is preferred.

【0014】次に、本発明を実施例に基づき、さらに詳
しく説明するが、本発明はかかる実施例のみに限定され
るものではない。
Next, the present invention will be described in more detail based on examples, but the present invention is not limited to only these examples.

【0015】[0015]

【実施例】本発明の半導体材料を以下のように作製し
た。まず、主成分となる材料として、(Ti1-xNbx
2(0≦x≦0.001)を用意した。なお、材料
(Ti1-xNbx)O2は、xの値を変動させることによ
って、比抵抗を変動させることができる。この材料に、
副成分として、平均粒径を20μmとしたSn−Bi合
金粉末を重量比で1:1の割合となるように調合した
後、PSZボールとともに5時間水中で粉砕混合し、混
合粉を得た。
EXAMPLE A semiconductor material of the present invention was produced as follows. First, (Ti 1-x Nb x )
O 2 (0 ≦ x ≦ 0.001) was prepared. The specific resistance of the material (Ti 1-x Nb x ) O 2 can be changed by changing the value of x. In this material,
As an auxiliary component, a Sn-Bi alloy powder having an average particle diameter of 20 µm was prepared so as to have a weight ratio of 1: 1 and then pulverized and mixed with water with PSZ balls for 5 hours to obtain a mixed powder.

【0016】得られた混合粉にバインダーを混合し、1
2mmφ×1mmtに乾式プレス成形して成形体とし、
この成形体をH2/N2雰囲気中において1300℃で還
元焼成し、焼結体を得た。
[0016] A binder is mixed with the obtained mixed powder,
Dry press molding to 2mmφ x 1mmt to form a molded body,
This compact was reduced and fired at 1300 ° C. in an H 2 / N 2 atmosphere to obtain a sintered body.

【0017】このとき、Bi−Sn比の原子比と、(T
1-xNbx)O2の単独の比抵抗とを変動させて各試料
とし、キュリー点と、キュリー点の前後50℃での抵抗
比である抵抗変化比とを測定し、その結果を表1に示し
た。なお、表中の※印は本発明の範囲外であることを示
す。また、表中の評価欄の○印は良好、△印は実用上差
し支えなし、×印は実用上問題有りであることをそれぞ
れ示す。
At this time, the atomic ratio of the Bi—Sn ratio and (T
The specific resistance of i 1-x Nb x ) O 2 was varied to make each sample, and the Curie point and the resistance change ratio, which is the resistance ratio at 50 ° C. before and after the Curie point, were measured. The results are shown in Table 1. Note that the asterisks in the table indicate that they are outside the scope of the present invention. Further, in the evaluation column in the table, a circle indicates good, a triangle indicates no problem in practical use, and a cross indicates that there is a problem in practical use.

【0018】[0018]

【表1】 [Table 1]

【0019】表1に示すように、比抵抗1kΩ・cm以上
の材料中にBi−Sn合金を添加した半導体は、キュリ
ー点が低く、かつ、抵抗変化比が高いことが確認でき
る。
As shown in Table 1, it can be confirmed that a semiconductor obtained by adding a Bi—Sn alloy to a material having a specific resistance of 1 kΩ · cm or more has a low Curie point and a high resistance change ratio.

【0020】ここで、本発明のPTC特性を有する半導
体において、主成分となる材料の比抵抗を1kΩ・cm以
上としたのは、試料番号9のように、材料の比抵抗が1
kΩ・cmより小さい場合には、材料の抵抗変化比R高温
/R低温が1000より小さくなり、好ましくないから
である。
Here, in the semiconductor having the PTC characteristic of the present invention, the specific resistance of the material as a main component was set to 1 kΩ · cm or more, as shown in Sample No. 9, when the specific resistance of the material was 1 kΩ · cm.
If it is smaller than kΩ · cm, the resistance change ratio R high / low temperature of the material becomes smaller than 1000, which is not preferable.

【0021】また、Sn−Bi合金のSn、Biの組成
比Sn/Biを0.3〜0.8の範囲に限定したのは、
試料番号1のように、Sn/Biが0.1より小さい場
合には、抵抗上昇温度が200℃を越えてしまい、好ま
しくないからである。
The reason why the Sn / Bi composition ratio Sn / Bi of the Sn—Bi alloy is limited to the range of 0.3 to 0.8 is as follows.
This is because when Sn / Bi is smaller than 0.1 as in Sample No. 1, the resistance rise temperature exceeds 200 ° C., which is not preferable.

【0022】また、試料番号6のように、Sn/Biが
0.8より大きい場合には、抵抗変化比R高温/R低温
が2000より小さくなり、好ましくないからである。
Further, when Sn / Bi is larger than 0.8 as in sample No. 6, the resistance change ratio R high / low temperature becomes smaller than 2000, which is not preferable.

【0023】(実施例2)主成分となる材料としてAl
23粉末を用意し、実施例1と同様にして成形体を得
た。そして、得られた成形体をH2/N2雰囲気中におい
て1400℃で還元焼成し、焼結体を得た。
(Example 2) Al as a main component material
2 O 3 powder was prepared, and a molded body was obtained in the same manner as in Example 1. Then, the obtained molded body was reduced and fired at 1400 ° C. in an H 2 / N 2 atmosphere to obtain a sintered body.

【0024】このとき、Al23単独の比抵抗を1.2
×1011Ω・cm、Bi/Sn=0.5に固定して実施例
1と同じく特性評価を行った。それぞれの値は、キュリ
ー点が150℃、抵抗変化比が3200となり、本発明
の課題を解決するにあたり、十分な特性値であることを
確認した。
At this time, the specific resistance of Al 2 O 3 alone is set to 1.2
The characteristics were evaluated in the same manner as in Example 1 while fixing at × 10 11 Ω · cm and Bi / Sn = 0.5. Each value was found to have a Curie point of 150 ° C. and a resistance change ratio of 3200, which were sufficient characteristic values to solve the problem of the present invention.

【0025】[0025]

【発明の効果】本発明の正の抵抗温度特性を有する半導
体は、比抵抗1kΩ・cm以上の材料を主成分とし、その
材料中に、副成分としてBi−Sn合金を分散させてい
るので、キュリー点前後の抵抗変化比が従来のBi−T
i−O系の半導体セラミックの水準を維持しており、か
つ、キュリー点がBi−Ti−O系の半導体セラミック
のもの(約270℃)より低いPTC特性を有する半導
体とすることができる。
The semiconductor having a positive temperature coefficient of resistance according to the present invention comprises a material having a specific resistance of 1 kΩ · cm or more as a main component and a Bi—Sn alloy as a subcomponent dispersed in the material. The resistance change ratio before and after the Curie point is
A semiconductor which maintains the level of an i-O-based semiconductor ceramic and has a PTC characteristic whose Curie point is lower than that of a Bi-Ti-O-based semiconductor ceramic (about 270 ° C) can be obtained.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 比抵抗1kΩ・cm以上の材料を主成分と
し、前記材料中に、副成分としてBi−Sn合金を分散
させてなることを特徴とする正の抵抗温度特性を有する
半導体。
1. A semiconductor having a positive resistance-temperature characteristic, comprising a material having a specific resistance of 1 kΩ · cm or more as a main component, and a Bi—Sn alloy dispersed as a subcomponent in the material.
【請求項2】 前記Bi−Sn合金中に含まれるBiと
Snとの組成比Sn/Bi(原子比)が0.3〜0.8
の範囲であることを特徴とする請求項1に記載の正の抵
抗温度特性を有する半導体。
2. The composition ratio of Bi to Sn contained in the Bi—Sn alloy, Sn / Bi (atomic ratio), is 0.3 to 0.8.
2. The semiconductor having a positive resistance-temperature characteristic according to claim 1, wherein:
JP25530197A 1997-09-19 1997-09-19 Semiconductor ceramic with positive resistance temperature characteristics Expired - Fee Related JP3829431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25530197A JP3829431B2 (en) 1997-09-19 1997-09-19 Semiconductor ceramic with positive resistance temperature characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25530197A JP3829431B2 (en) 1997-09-19 1997-09-19 Semiconductor ceramic with positive resistance temperature characteristics

Publications (2)

Publication Number Publication Date
JPH1197210A true JPH1197210A (en) 1999-04-09
JP3829431B2 JP3829431B2 (en) 2006-10-04

Family

ID=17276883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25530197A Expired - Fee Related JP3829431B2 (en) 1997-09-19 1997-09-19 Semiconductor ceramic with positive resistance temperature characteristics

Country Status (1)

Country Link
JP (1) JP3829431B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136321A1 (en) * 2015-02-25 2016-09-01 株式会社村田製作所 Composite material and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136321A1 (en) * 2015-02-25 2016-09-01 株式会社村田製作所 Composite material and manufacturing method thereof

Also Published As

Publication number Publication date
JP3829431B2 (en) 2006-10-04

Similar Documents

Publication Publication Date Title
JP3319314B2 (en) Barium titanate-based semiconductor porcelain composition
KR101178971B1 (en) Semiconductor ceramic and positive temperature coefficient thermistor
JP5327554B2 (en) Semiconductor ceramic and positive temperature coefficient thermistor
Saburi et al. Processing techniques and applications of positive temperature coefficient thermistors
JP3245984B2 (en) Barium titanate-based semiconductor porcelain having a negative resistance temperature characteristic and method of manufacturing the same
US4642136A (en) PTC ceramic composition
US4581159A (en) Voltage-dependent resistor and method of manufacturing same
JPH1197210A (en) Semiconductor with positive resistance temperature coefficient
EP1227507B1 (en) Semiconductive ceramic composition and semiconductive ceramic element using the same
US6432558B1 (en) Semiconductor ceramic and semiconductor ceramic device
JP3166787B2 (en) Barium titanate-based semiconductor porcelain composition
JP4269485B2 (en) Lead barium titanate semiconductor ceramic composition
JP3598177B2 (en) Voltage non-linear resistor porcelain
WO2004110952A1 (en) Barium titanate based semiconductor porcelain composition
KR100358301B1 (en) Semiconducting ceramic, semiconducting ceramic element and method for producing the semiconducting ceramic
JP3178083B2 (en) Barium titanate-based ceramic semiconductor and method for producing the same
JPH05275203A (en) Semiconductor ceramic composite
JP4800956B2 (en) Barium titanate semiconductor porcelain composition
JPH02192456A (en) Semiconductor ceramic
JPH0248465A (en) Barium titanate-based semiconductor porcelain
JP3208857B2 (en) Barium titanate-based semiconductor porcelain with negative resistance temperature characteristics
JP2967439B2 (en) Grain boundary oxidation type voltage non-linear resistance composition
KR100246298B1 (en) Semiconductive Ceramic
JP3245953B2 (en) Semiconductor porcelain having negative resistance temperature characteristics and method of manufacturing the same
JPS6136901A (en) Method of producing ptc element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060703

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees