JPH1193953A - Control device of magnetic bearing - Google Patents

Control device of magnetic bearing

Info

Publication number
JPH1193953A
JPH1193953A JP27527297A JP27527297A JPH1193953A JP H1193953 A JPH1193953 A JP H1193953A JP 27527297 A JP27527297 A JP 27527297A JP 27527297 A JP27527297 A JP 27527297A JP H1193953 A JPH1193953 A JP H1193953A
Authority
JP
Japan
Prior art keywords
rotor
control
control constant
signal
magnetic bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27527297A
Other languages
Japanese (ja)
Inventor
Takaharu Hiroe
隆治 広江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP27527297A priority Critical patent/JPH1193953A/en
Publication of JPH1193953A publication Critical patent/JPH1193953A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the gain of a PID regulator by using a proper control constant according to the rotating speed of a rotor even if the natural frequency of bending vibration is changed according to the change of the rotating speed. SOLUTION: The voltage control of an electromagnet 1 is performed on the basis of a power instruction signal 6 obtained by subtracting the displacement signal 7 between an electromagnet 1 and a rotor 2 detected by a displacement sensor 3 from a position instruction value 10 by a subtracter 21, and passing the resulting deviation signal 11 through a notch filter built in a control arithmetic circuit 14, thereby canceling the resonance peak of bending vibration of the rotor 2, and thereafter inputting the signal to a PID regulator to perform a 'proportional, integrating, and differential' control. In a control device for magnetic bearing, the rotating speed of the rotor 2 is detected by a rotating speed detector 12 and inputted to a control constant designating circuit 13, and a proper control constant 15 corresponding to the rotating speed is selected within the control constant designating circuit 13, and outputted to a control arithmetic circuit 14 side. Since the safe tolerance of a magnetic bearing is thus increased, the gain of the PID regulator can be increased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はタービン等の回転機
の磁気軸受に適用される制御装置に係り、特に磁気軸受
用の電磁石とロータ間の変位信号と位置指令値とを減算
器との偏差信号をノッチフィルタを通した後、PID調
節計に入力して「比例・積分・微分」制御を行なって得
られる力指令信号に基づいて前記電磁石の磁力制御を行
なう磁気軸受の制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device applied to a magnetic bearing of a rotating machine such as a turbine, and more particularly to a deviation signal between a displacement signal and a position command value between an electromagnet for a magnetic bearing and a rotor and a subtractor. The present invention relates to a magnetic bearing control device that controls a magnetic force of the electromagnet based on a force command signal obtained by performing a “proportional / integral / differential” control by inputting a signal through a notch filter to a PID controller.

【0002】[0002]

【従来の技術】従来、タービン等の回転機の軸受には油
膜式の接触型の軸受が使用されてきた。接触型の軸受は
安価であるという利点があるが、接触面の摩耗のため耐
久性に問題があった。これに対し、磁気軸受は、磁力を
利用してロータを非接触で保持できるので、接触型の軸
受の本質的な課題であった摩耗が起きず、耐久性を大き
く改善できるという優れた特徴がある。
2. Description of the Related Art Conventionally, oil film type contact type bearings have been used as bearings for rotating machines such as turbines. The contact type bearing has an advantage of being inexpensive, but has a problem in durability due to wear of the contact surface. On the other hand, magnetic bearings can hold the rotor in a non-contact manner by using magnetic force, so they have the outstanding feature that wear, which was an essential problem of contact type bearings, does not occur and durability can be greatly improved. is there.

【0003】磁気軸受は、図2に示す様に、電磁石1の
吸引力を利用して、磁性体のロータ2を非接触で支持す
る。周知のように、磁性体に対し磁力は吸引方向の力し
か発生しないので、ロータ2の反対位置に、もう一つの
電磁石1を設け、互いの吸引力を利用して両方向に力を
発生させる様にしている。ロータ2が電磁石1から受け
る吸引力は、距離の自乗に反比例するため、ロータ2は
電磁石1に近付けば近付く程強く吸引され、最終的にロ
ータ2は電磁石1に張り付いてしまう。この様に、磁気
軸受には自らロータを適正位置に保持するという働きは
ないので、能動的に磁力を加減し、ロータを位置決めし
なくてはならない。
As shown in FIG. 2, the magnetic bearing uses the attraction force of the electromagnet 1 to support the magnetic rotor 2 in a non-contact manner. As is well known, since a magnetic force is generated only in the direction of attraction to the magnetic material, another electromagnet 1 is provided at a position opposite to the rotor 2 so as to generate a force in both directions by using the mutual attraction force. I have to. Since the attraction force received by the rotor 2 from the electromagnet 1 is inversely proportional to the square of the distance, the closer the rotor 2 is to the electromagnet 1, the more the rotor 2 is attracted, and eventually the rotor 2 sticks to the electromagnet 1. As described above, since the magnetic bearing has no function of holding the rotor at an appropriate position, the magnetic force must be actively adjusted to position the rotor.

【0004】図2を用いて、従来の磁気軸受において、
ロータ2の位置決めが如何にしてなされてきたか説明す
る。電磁石1の近傍には変位センサ3が設けられてお
り、ロータ2の変位信号7を発信し、PID調節計8と
ノッチフィルタ9から成る制御器4はロータ2の変位信
号7から電磁石1に対し力指令信号6を発信する。即
ち、変位センサ3で検知した電磁石1とロータ2間の変
位信号7と位置指令値10とを減算器21で減算して、
その偏差信号11をノッチフィルタ9を通すことにより
ロータ2の曲げ振動の共振ピークを相殺した後、PID
調節計8に入力して「比例・積分・微分」制御を行なっ
て得られる力指令信号6を電磁石1側の駆動回路に送出
して電磁石1、1の電圧制御を行なう。図2ではロータ
2の右端の電磁石1についての制御方法のみを図示して
いるが、左端側の他の電磁石1についてもこれと同様の
制御が行われる。
Referring to FIG. 2, in a conventional magnetic bearing,
How the positioning of the rotor 2 has been performed will be described. A displacement sensor 3 is provided in the vicinity of the electromagnet 1 and transmits a displacement signal 7 of the rotor 2. A controller 4 including a PID controller 8 and a notch filter 9 transmits the displacement signal 7 of the rotor 2 to the electromagnet 1 from the displacement signal 7 of the rotor 2. A force command signal 6 is transmitted. That is, the displacement signal 7 between the electromagnet 1 and the rotor 2 detected by the displacement sensor 3 and the position command value 10 are subtracted by the subtractor 21,
After passing the deviation signal 11 through the notch filter 9 to cancel the resonance peak of the bending vibration of the rotor 2, the PID
A force command signal 6 obtained by inputting to the controller 8 and performing “proportional / integral / differential” control is sent to a drive circuit on the electromagnet 1 side to control the voltage of the electromagnets 1 and 1. Although FIG. 2 shows only the control method for the electromagnet 1 on the right end of the rotor 2, the same control is performed on the other electromagnets 1 on the left end.

【0005】磁気軸受の制御の基本部分は、制御器4内
のPID調節計8で行われる。PID調節計8の前段に
あるノッチフィルタ9は、PID調節計8によって行わ
れるロータ2の位置決めによってロータ2の曲げ振動が
励起されるのを防ぐためのものである。即ち、磁気軸受
の発生力uからロータの変位yまでのゲイン特性は図3
の様になっており、ロータの曲げ振動の固有周波数ωb
において共振ピークがある。この共振ピークによりロー
タ2の位置決め制御が不安定になる恐れがある。そこ
で、図4に示すように曲げ振動の発生する周波数付近で
局所的にゲインを下げる働きのあるノッチフィルタ9を
挿入することにより、ロータ2の曲げ振動の共振ピーク
を相殺し安定化を図っている。
The basic part of the control of the magnetic bearing is performed by the PID controller 8 in the controller 4. The notch filter 9 in front of the PID controller 8 prevents the bending vibration of the rotor 2 from being excited by the positioning of the rotor 2 performed by the PID controller 8. That is, the gain characteristic from the generated force u of the magnetic bearing to the displacement y of the rotor is shown in FIG.
And the natural frequency ω b of the bending vibration of the rotor
Has a resonance peak. Due to this resonance peak, the positioning control of the rotor 2 may become unstable. Therefore, as shown in FIG. 4, by inserting a notch filter 9 having a function of locally lowering the gain near the frequency where bending vibration occurs, the resonance peak of the bending vibration of the rotor 2 is canceled to stabilize. I have.

【0006】[0006]

【発明が解決しようとする課題】しかしながら前記ロー
タはジャイロ効果を受けるので、振動の固有周波数ωb
がロータの回転速度に応じて変動するという性質があ
る。一方、ノッチフィルタの固有周波数は固定されてい
るため、ロータの回転速度が変わると、曲げ振動の共振
ピークを意図どおりに相殺できず、曲げ振動の共振が発
生するという問題点があった。従って従来装置において
は、回転速度が変わって曲げ振動の固有周波数が変化し
たとしても、曲げ振動の共振が発生しない程度に迄、P
ID調節計のゲインを下げるという対処がなされてきた
が、PID調節計のゲインが小さいと、タービンを流れ
る流体の影響等で容易にロータが変位し安全性が損われ
るという問題点があった。
However, since the rotor is subject to the gyro effect, the natural frequency of vibration ω b
Vary according to the rotation speed of the rotor. On the other hand, since the natural frequency of the notch filter is fixed, if the rotation speed of the rotor changes, the resonance peak of bending vibration cannot be canceled as intended, and there is a problem that resonance of bending vibration occurs. Therefore, in the conventional device, even if the natural frequency of the bending vibration changes due to a change in the rotational speed, the P P is reduced to such an extent that the resonance of the bending vibration does not occur.
While measures have been taken to reduce the gain of the ID controller, when the gain of the PID controller is small, there has been a problem that the rotor is easily displaced by the influence of the fluid flowing through the turbine and the safety is impaired.

【0007】本発明は、かかる従来技術の欠点に鑑み、
回転速度の変化に起因して曲げ振動の固有周波数が変化
したとしても、ロータの回転数に応じて適切な制御定数
を使用することが出来、これにより、PID調節計のゲ
インを増大することが出来る磁気軸受の制御装置を提供
することを目的とする。
[0007] In view of the drawbacks of the prior art, the present invention provides
Even if the natural frequency of bending vibration changes due to a change in the rotation speed, an appropriate control constant can be used according to the number of rotations of the rotor, thereby increasing the gain of the PID controller. It is an object of the present invention to provide a magnetic bearing control device that can be used.

【0008】[0008]

【課題を解決するための手段】本発明は、上記の課題を
解決するためになされたものであって、磁気軸受により
支持されるロータ2の回転速度に応じて適切な制御定数
を出力する制御定数指定回路13と、制御定数指定回路
13が出力した制御定数ベクトル15にもとづき制御演
算を行う制御演算回路14とからなることを要旨とし、
特に請求項1記載の発明は、磁気軸受用の電磁石とロー
タ間の変位信号と位置指令値とを減算器との偏差信号を
ノッチフィルタを通した後、PID調節計に入力して得
られる力指令信号に基づいて前記電磁石の磁力制御を行
なう磁気軸受の制御装置において、前記ロータの回転速
度に対応した制御定数を出力する制御定数指定回路と、
該制御定数指定回路より出力された制御定数にもとづき
回転速度の変化に対応させた誤差信号が加味されたフィ
ルタ値を得るノッチフィルタと、前記制御定数指定回路
より出力された制御定数と前記フィルタ値に基づき比例
ゲインを増大させて「比例・積分・微分」制御を行なう
PID調節計と、よりなることを特徴とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and is directed to a control for outputting an appropriate control constant according to the rotation speed of a rotor 2 supported by a magnetic bearing. A gist comprising a constant designating circuit 13 and a control operation circuit 14 for performing a control operation based on the control constant vector 15 output from the control constant designating circuit 13,
In particular, the invention according to claim 1 provides a force obtained by inputting a displacement signal between an electromagnet for a magnetic bearing and a rotor and a position command value to a PID controller after passing a deviation signal from a subtractor through a notch filter. A control device for a magnetic bearing that controls the magnetic force of the electromagnet based on a command signal, wherein a control constant designating circuit that outputs a control constant corresponding to the rotation speed of the rotor,
A notch filter for obtaining a filter value to which an error signal corresponding to a change in rotation speed is added based on the control constant output from the control constant specifying circuit; a control constant and the filter value output from the control constant specifying circuit And a PID controller that performs “proportional / integral / differential” control by increasing the proportional gain based on the PID controller.

【0009】かかる発明によれば、ロータの回転数に応
じて適切な制御定数を使用して回転速度の変化に対応さ
せた誤差信号が加味されたノッチフィルタのフィルタ値
を得ることが出来、これによりロータ振動の固有周波数
ωb がロータの回転速度に応じて変動した場合において
も、この変動した曲げ振動の発生する周波数付近で局所
的にゲインを下げることが出来、この結果、回転速度に
よる変化するロータの曲げ振動の共振ピークを有効に相
殺し安定化を図ることが出来る。この結果、PID調節
計の比例ゲインを増大することが可能となり、ロータの
変位を小さく保つことが可能となる。しかも前記比例ゲ
インは、前記制御定数指定回路より出力された制御定数
と前記フィルタ値に基づき比例ゲインを適切に増大させ
ることが出来るために、一層磁気軸受の安全余裕の増大
を図りながらロータの変位を小さく保つことが出来る。
According to the present invention, it is possible to obtain a filter value of a notch filter in which an error signal corresponding to a change in rotation speed is added using an appropriate control constant according to the rotation speed of the rotor. by when natural frequency omega b of the rotor vibration is varied in accordance with the rotational speed of the rotor is also locally can lower the gain in the vicinity of the frequency of occurrence of this variation flexural vibration, as a result, change due to the rotational speed This effectively cancels the resonance peak of the bending vibration of the rotor, thereby stabilizing it. As a result, the proportional gain of the PID controller can be increased, and the displacement of the rotor can be kept small. Moreover, since the proportional gain can be appropriately increased based on the control constant output from the control constant designating circuit and the filter value, the displacement of the rotor can be increased while further increasing the safety margin of the magnetic bearing. Can be kept small.

【0010】[0010]

【発明の実施の形態】以下、図面を参照して本発明の好
適な実施形態を例示的に詳しく説明する。但しこの実施
形態に記載されている構成部品の種類、その相対的配
置、及び数式等は特に特定的な記載がないかぎりは、こ
の発明の範囲をそれに限定する趣旨ではなく、単なる説
明例にすぎない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will now be described in detail with reference to the drawings. However, unless otherwise specified, the types of components, their relative arrangements, and mathematical expressions described in this embodiment are not intended to limit the scope of the present invention, but are merely illustrative examples. Absent.

【0011】図1及び図5は、本発明の一実施形態にか
かる磁気軸受の制御装置を示し、変位センサ3で検知し
た電磁石1とロータ2間の変位信号7と位置指令値10
とを減算器21で減算して、その偏差信号11を制御演
算回路14に内蔵したノッチフィルタ9を通すことによ
り、ロータ2の曲げ振動の共振ピークを相殺した後、P
ID調節計8に入力して「比例・積分・微分」制御を行
なって得られる力指令信号6に基づいて電磁石1の電圧
制御を行なうという基本構成は同様であるが、本発明に
もとづく磁気軸受の制御装置では、ロータ2の回転速度
ωを回転速度検出器12で検出し制御定数指定回路13
に入力し、該制御定数指定回路13内で回転速度ωに対
応した適切な制御定数15を選択し、制御演算回路14
側に出力する。
FIG. 1 and FIG. 5 show a control device for a magnetic bearing according to an embodiment of the present invention, in which a displacement signal 7 between an electromagnet 1 and a rotor 2 detected by a displacement sensor 3 and a position command value 10 are shown.
Is subtracted by a subtractor 21, and the deviation signal 11 is passed through a notch filter 9 built in the control operation circuit 14 to cancel the resonance peak of the bending vibration of the rotor 2.
The basic configuration of controlling the voltage of the electromagnet 1 based on the force command signal 6 obtained by performing the “proportional / integral / differential” control by inputting to the ID controller 8 is the same as that of the magnetic bearing according to the present invention. In the control device, the rotation speed ω of the rotor 2 is detected by the rotation speed detector 12 and the control constant designating circuit 13
And selects an appropriate control constant 15 corresponding to the rotational speed ω in the control constant designating circuit 13 and
Output to the side.

【0012】制御定数指定回路13には予め定めた制御
演算回路14内に組込まれたPID調節計8とノッチフ
ィルタ9等の制御定数、すなわちPID調節計8につい
ては比例ゲインと積分時間、微分時間がそれぞれ回転速
度ωの関数としてKP (ω)とTI (ω)、TD (ω)
のように記憶されている。また、ノッチフィルタ9につ
いてはノッチフィルタ9の固有周波数ωn と減衰率ξ、
ゲインαがそれぞれωn (ω)とξ(ω)、α(ω)の
ように回転速度の関数として記憶されており、不図示の
タイマにより設定された所定時間間隔毎にロータ2の回
転速度ωが入力されると適切な制御定数15を出力す
る。
The control constant designating circuit 13 has control constants such as a PID controller 8 and a notch filter 9 incorporated in a predetermined control operation circuit 14, ie, a proportional gain, an integration time, and a differentiation time for the PID controller 8. Are K P (ω), T I (ω), and T D (ω) as functions of the rotational speed ω, respectively.
Is stored as follows. For the notch filter 9, the natural frequency ω n and the attenuation rate ξ of the notch filter 9,
The gain α is stored as a function of the rotation speed, such as ω n (ω), ξ (ω), α (ω), and the rotation speed of the rotor 2 is set at predetermined time intervals set by a timer (not shown). When ω is input, an appropriate control constant 15 is output.

【0013】制御定数ベクトル15の各要素は回転速度
ωの関数として、例えば次の様に表すことができる。 (PID調節計8の制御定数ベクトル) [kP,TI,TD,]←[KP (ω),TI (ω),TD (ω)] …1A) (ノッチフィルタ9の制御定数ベクトル) [ωn,ξn,α]←[ωn(ω),ξn(ω),α(ω)] …1B)
Each element of the control constant vector 15 can be expressed as a function of the rotational speed ω, for example, as follows. (Control constant vector of PID controller 8) [k P , T I , T D ,] ← [K P (ω), T I (ω), T D (ω)] 1A) (Control of notch filter 9) Constant vector) [ω n , ξ n , α] ← [ω n (ω), ξ n (ω), α (ω)] ... 1B)

【0014】制御演算回路14においては、図5に示す
ように、前記制御定数指定回路13より取り込んだ前記
1B)式から得られる制御定数ベクトル15に基づいて
演算器9aにて下記「数1」に基づく所定の演算を行な
い、ノッチフィルタ9のフィルタ値unを生成する。即
ちノッチフィルタ9の演算器9aにおいては、例えば以
下の微分方程式に基づいて制御定数指定回路13より得
られた制御定数[ωn,ξn,α]に基づいて回転速度ω
に対応したフィルタ値unを生成し、ノッチフィルタ9
では該フィルタ値unに基づいてフィルタ制御を行な
う。
In the control operation circuit 14, as shown in FIG. 5, based on the control constant vector 15 obtained from the control constant designating circuit 13 and obtained from the expression 1B), the operation unit 9a calculates the following "Equation 1". a predetermined calculation based on performed, to generate a filter value u n of the notch filter 9. That is, in the calculator 9a of the notch filter 9, for example, the rotational speed ω is determined based on the control constant [ω n , , n , α] obtained from the control constant designating circuit 13 based on the following differential equation.
Generating a filter value u n corresponding to the notch filter 9
In performing the filter control based on the filter value u n.

【0015】[0015]

【数1】 (Equation 1)

【0016】尚、「数1」において、8は誤差信号1
1、un はノッチフィルタの出力信号である。
In the expression 1, 8 is the error signal 1
1, u n is the output signal of the notch filter.

【0017】又制御演算回路14においては、前記制御
定数指定回路13より取り込んだ前記1A)式から得ら
れる制御定数ベクトル15に基づいてPID調節計8の
演算器8aにて下記「数2」に基づく所定の演算を行な
い、該PID調節計8より力指令信号uを出力する。即
ちPID調節計8の演算器8aにおいては、例えば以下
の微分方程式に基づいて制御定数指定回路13より得ら
れた制御定数[kP,TI,TD,]とノッチフィルタの
フィルタ値unに基づいて回転速度ωに対応した力指令
信号uを生成し、該力指令信号uを電磁石1側の不図示
の駆動回路に送出して電磁石1、1の電圧制御を行な
う。
In the control operation circuit 14, the operation unit 8a of the PID controller 8 calculates the following expression 2 based on the control constant vector 15 obtained from the expression 1A) obtained from the control constant designating circuit 13. The PID controller 8 outputs a force command signal u. That PID controller in eight computing units 8a, for example, the following resulting control constants from the control constant specifying circuit 13 based on the differential equation [k P, T I, T D,] and notch filter filter values u n , A force command signal u corresponding to the rotation speed ω is generated, and the force command signal u is sent to a drive circuit (not shown) on the electromagnet 1 side to control the voltages of the electromagnets 1 and 1.

【0018】[0018]

【数2】 (Equation 2)

【0019】尚、前記「数2」において、xはPID制
御器、ノッチフィルタの内部変数を示し、xn は回転速
度ωに対応してフィルタリングした偏差信号、xI はx
n の積分値、xD はxn の微分値である。
[0019] Incidentally, in the "number 2", x is a PID controller, indicates the internal variable notch filter, x n is the deviation signal obtained by filtering in response to the rotation speed omega, x I is x
integral value of n, x D is the differential value of x n.

【0020】[0020]

【発明の効果】以上説明した様に、本発明によれば、ロ
ータの回転数に応じて適切な制御定数を使用することが
可能となるため、磁気軸受の安全余裕が増大するので、
PID調節計のゲインを増大することが可能となり、ロ
ータの変位を小さく保つことが可能となる。
As described above, according to the present invention, it is possible to use an appropriate control constant according to the number of revolutions of the rotor, so that the safety margin of the magnetic bearing is increased.
The gain of the PID controller can be increased, and the displacement of the rotor can be kept small.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態にかかる磁気軸受の制御装
置の説明図である。
FIG. 1 is an explanatory diagram of a control device for a magnetic bearing according to an embodiment of the present invention.

【図2】従来の磁気軸受制御装置の説明図である。FIG. 2 is an explanatory diagram of a conventional magnetic bearing control device.

【図3】ロータの振動特性のゲイン線図である。FIG. 3 is a gain diagram of a vibration characteristic of a rotor.

【図4】ノッチフィルタのゲイン線図である。FIG. 4 is a gain diagram of a notch filter.

【図5】図1の制御演算回路の内部構成を示す要部ブロ
ック図である。
FIG. 5 is a main part block diagram showing an internal configuration of the control operation circuit of FIG. 1;

【符号の説明】[Explanation of symbols]

1 電磁石 2 ロータ 3 変位センサ 4 制御器 5 磁気軸受の制御装置 6 力指令信号 7 変位信号 8 PID調節計 9 ノッチフィルタ 10 位置指令値 11 誤差信号 12 速度検出器 13 制御定数指定回路 14 制御演算回路 15 制御定数 DESCRIPTION OF SYMBOLS 1 Electromagnet 2 Rotor 3 Displacement sensor 4 Controller 5 Magnetic bearing control device 6 Force command signal 7 Displacement signal 8 PID controller 9 Notch filter 10 Position command value 11 Error signal 12 Speed detector 13 Control constant designating circuit 14 Control arithmetic circuit 15 Control constants

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 磁気軸受用の電磁石とロータ間の変位信
号と位置指令値とを減算器との偏差信号をノッチフィル
タを通した後、PID調節計に入力して得られる力指令
信号に基づいて前記電磁石の磁力制御を行なう磁気軸受
の制御装置において、 前記ロータの回転速度に対応した制御定数を出力する制
御定数指定回路と、 該制御定数指定回路より出力された制御定数にもとづき
回転速度の変化に対応させた誤差信号が加味されたフィ
ルタ値を得るノッチフィルタと、 前記制御定数指定回路より出力された制御定数と前記フ
ィルタ値に基づき比例ゲインを増大させて所定の制御を
行なうPID調節計とよりなることを特徴とする磁気軸
受の制御装置。
1. A displacement signal between an electromagnet for a magnetic bearing and a rotor, and a position command value, based on a force command signal obtained by passing a deviation signal from a subtracter through a notch filter and then inputting the signal to a PID controller. A control device for controlling the magnetic force of the electromagnet, comprising: a control constant designating circuit for outputting a control constant corresponding to the rotational speed of the rotor; and a control constant designating circuit output from the control constant designating circuit. A notch filter for obtaining a filter value to which an error signal corresponding to the change is added, a PID controller for performing a predetermined control by increasing a proportional gain based on the control constant output from the control constant designating circuit and the filter value A control device for a magnetic bearing, comprising:
JP27527297A 1997-09-22 1997-09-22 Control device of magnetic bearing Withdrawn JPH1193953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27527297A JPH1193953A (en) 1997-09-22 1997-09-22 Control device of magnetic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27527297A JPH1193953A (en) 1997-09-22 1997-09-22 Control device of magnetic bearing

Publications (1)

Publication Number Publication Date
JPH1193953A true JPH1193953A (en) 1999-04-06

Family

ID=17553120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27527297A Withdrawn JPH1193953A (en) 1997-09-22 1997-09-22 Control device of magnetic bearing

Country Status (1)

Country Link
JP (1) JPH1193953A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7057319B2 (en) 2002-10-09 2006-06-06 Ntn Corporation Magnetic bearing device stably carrying a rotary shaft, program for executing a computer to control the magnetic bearing stably carrying the rotary shaft and computer-readable record medium storing the program
CN106839968A (en) * 2016-04-15 2017-06-13 南京航空航天大学 Rotor space axis of bending test system and its method of testing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7057319B2 (en) 2002-10-09 2006-06-06 Ntn Corporation Magnetic bearing device stably carrying a rotary shaft, program for executing a computer to control the magnetic bearing stably carrying the rotary shaft and computer-readable record medium storing the program
CN106839968A (en) * 2016-04-15 2017-06-13 南京航空航天大学 Rotor space axis of bending test system and its method of testing
CN106839968B (en) * 2016-04-15 2019-02-05 南京航空航天大学 Rotor space axis of bending test macro and its test method

Similar Documents

Publication Publication Date Title
KR19990035938A (en) A control device having a G disturbance predictor, a system controlled by such a control device, an electric actuator controlled by such a control device, a throttle device provided with such an actuator
JP4476694B2 (en) Magnetic bearing device and fluid machine provided with magnetic bearing device
KR20010042206A (en) Controlled magnetic bearing device
JP4367058B2 (en) Motor control device
US7057319B2 (en) Magnetic bearing device stably carrying a rotary shaft, program for executing a computer to control the magnetic bearing stably carrying the rotary shaft and computer-readable record medium storing the program
FI72016C (en) FOERFARANDE OCH ANORDNING FOER STABILISERING AV EN LIKSTROEMSMOTOR I EN HISS.
JP2014164498A (en) Control system, disturbance estimation system, control method, control program and design method
JPH1193953A (en) Control device of magnetic bearing
JP6801481B2 (en) Magnetic bearing equipment and vacuum pump
JPH09121580A (en) Vibration suppressor of two-inertia resonance system by low inertia control
JP2835943B2 (en) Magnetic bearing control device
Hilton et al. Test controller design, implementation, and performance for a magnetic suspension continuous flow ventricular assist device
JP4293695B2 (en) Magnetic bearing control device
JPH10220475A (en) Magnetic bearing device using lmi-based gain schedule control
JPS6140616A (en) Position control system
JP3169143B2 (en) Positioning device
JP3735736B2 (en) Magnetic bearing control device
JPH0534336Y2 (en)
JP4521846B2 (en) Electromagnetic suction type magnetic bearing and its nonlinear control method
JPH1023777A (en) Controller of actuator having nonlinear element
JP2736056B2 (en) Motor speed control device
JPH1131015A (en) Damping method for servocontrol system with speed reducing mechanism
JP4436555B2 (en) Magnetic bearing device
RU2025890C1 (en) Method of control over synchronous motor under oscillation condition
JPH08200364A (en) Control method for magnetic bearing and device thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041207