JPH1193621A - Hydrogen combustion turbine plant - Google Patents

Hydrogen combustion turbine plant

Info

Publication number
JPH1193621A
JPH1193621A JP25209997A JP25209997A JPH1193621A JP H1193621 A JPH1193621 A JP H1193621A JP 25209997 A JP25209997 A JP 25209997A JP 25209997 A JP25209997 A JP 25209997A JP H1193621 A JPH1193621 A JP H1193621A
Authority
JP
Japan
Prior art keywords
turbine
steam
hydrogen
combustor
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25209997A
Other languages
Japanese (ja)
Inventor
Kazuo Uematsu
一雄 上松
Hidetaka Mori
秀隆 森
Hideaki Sugishita
秀昭 椙下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP25209997A priority Critical patent/JPH1193621A/en
Priority to EP98115532A priority patent/EP0900921A3/en
Priority to CA002245470A priority patent/CA2245470A1/en
Priority to US09/145,018 priority patent/US6282883B1/en
Publication of JPH1193621A publication Critical patent/JPH1193621A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/005Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for the working fluid being steam, created by combustion of hydrogen with oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen combustion turbine plant using a cooling system capable of reducing a decrease rate of power generating end efficiency in the hydrogen combustion turbine plant in which high temperature steam is generated by combustion of hydrogen and oxygen to drive a turbine, and the steam cools a turbine blade. SOLUTION: High temperature steam produced by combustion of hydrogen and oxygen in a combustor 104 is introduced into a first turbine 105, and its exhaust gas flows to heat exchangers 103, 106, 107, 108, to be supplied to a low pressure compressor 100. A part of the exhaust gas of the first turbine 105 through in the third heat exchanger 107 is extracted, to be supplied to the second turbine 109. Steam heated at the heat exchangers 108, 107, 106 is introduced into a third turbine 110. A part of exhaust gas of the third turbine 110 is introduced into the first turbine 105 as first turbine cooling steam 119, and further, a part of the residual exhaust gas of the third turbine 110 is supplied to the first turbine 105 as first turbine recovery type cooling steam 120, followed by heating, to be thus recovered at an inlet of the combustor 104.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、NOx やCO2
発生しない無公害の水素と酸素を燃焼させて高温の燃焼
ガス(高温の水蒸気)を発生し、その高温蒸気をタービ
ンに供給して発電するようにした水素燃焼タービンプラ
ントに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing high-temperature combustion gas (high-temperature steam) by burning non-polluting hydrogen and oxygen that do not generate NO x and CO 2 , and supplying the high-temperature steam to a turbine. The present invention relates to a hydrogen combustion turbine plant configured to generate power.

【0002】[0002]

【従来の技術】現在考えられている水素燃焼タービンプ
ラントとして高効率で実現性の高いサイクルの1つを図
2に示してある。図2において、200は低圧圧縮機、
202は高圧圧縮機である。201は中間冷却器で、両
圧縮機200,202の間に連絡されている。203は
第1熱交換器、204は燃焼器、205は第1タービン
である。
2. Description of the Related Art FIG. 2 shows one of highly efficient and highly feasible cycles as a hydrogen combustion turbine plant currently considered. In FIG. 2, reference numeral 200 denotes a low-pressure compressor,
202 is a high-pressure compressor. An intercooler 201 is connected between the compressors 200 and 202. 203 is a first heat exchanger, 204 is a combustor, and 205 is a first turbine.

【0003】206,207及び208は、図のように
第1タービン205の排気(水蒸気)が導かれてその排
熱を回収する第2熱交換器、第3熱交換器及び第4熱交
換器である。209は第2タービン、211は復水器、
217は第1給水加熱器、218は第2給水加熱器を示
している。212は第1ポンプ、213は第2ポンプで
ある。210は第3タービンを示し、214,215及
び216はそれぞれ発電機を示している。
[0003] Reference numerals 206, 207, and 208 denote a second heat exchanger, a third heat exchanger, and a fourth heat exchanger for guiding the exhaust gas (steam) of the first turbine 205 and recovering the exhaust heat as shown in the figure. It is. 209 is a second turbine, 211 is a condenser,
217 denotes a first feed water heater, and 218 denotes a second feed water heater. 212 is a first pump, and 213 is a second pump. 210 indicates a third turbine, and 214, 215 and 216 each indicate a generator.

【0004】このように構成された図2の水素燃焼ター
ビンプラントにおいて、後記するように第4熱交換器2
08を出た第1タービン205の排気(水蒸気)は低圧
圧縮機200で圧縮され、中間冷却器201で第2ポン
プ213で送られる給水と混合し冷却された後、高圧圧
縮機202で圧縮され、その後、第3タービン210の
出口蒸気の一部と混合された後、第1熱交換器203に
導かれる。
In the hydrogen combustion turbine plant of FIG. 2 configured as described above, the fourth heat exchanger 2
08, the exhaust gas (steam) of the first turbine 205 is compressed by the low-pressure compressor 200, mixed with the feed water sent by the second pump 213 in the intercooler 201, cooled, and then compressed by the high-pressure compressor 202. Then, after being mixed with a part of the outlet steam of the third turbine 210, it is led to the first heat exchanger 203.

【0005】第1熱交換器203で昇温した後の蒸気
は、燃焼器204に供給された水素および酸素と混合さ
れて燃焼され、その燃焼により発生した高温の燃焼ガス
(水蒸気)は第1タービン205に導入されてこれを駆
動する。
[0005] The steam whose temperature has been raised in the first heat exchanger 203 is mixed with hydrogen and oxygen supplied to the combustor 204 and burned, and the high-temperature combustion gas (steam) generated by the combustion is converted into the first gas. It is introduced into the turbine 205 to drive it.

【0006】第1タービン205を出た燃焼ガス(水蒸
気)は、熱交換器203,206に並列に分岐して導か
れて温度を下げた後、熱交換器207および208に導
かれ更に温度を下げた後、前記したように低圧圧縮機2
00へ流れる。
[0006] The combustion gas (steam) leaving the first turbine 205 branches off in parallel to the heat exchangers 203 and 206 and is led to lower the temperature, and is then led to the heat exchangers 207 and 208 to further lower the temperature. After lowering, as described above, the low pressure compressor 2
Flows to 00.

【0007】一方、第3熱交換器207を出て第4熱交
換器208へ流れる第1タービン205の排気(水蒸
気)の一部は分岐されて第2タービン209へ導かれて
これを駆動する。第2タービン209からの蒸気は復水
器211に導かれ、復水器211を出た復水は第1及び
第2給水加熱器217及び218で加熱された後、第1
ポンプ212により第4、第3、第2熱交換器208,
207,206に送られ更に加熱されて、蒸気となって
第3タービン210に供給されてこれを駆動する。
On the other hand, a part of the exhaust gas (water vapor) of the first turbine 205 flowing out of the third heat exchanger 207 and flowing to the fourth heat exchanger 208 is branched and guided to the second turbine 209 to drive it. . The steam from the second turbine 209 is led to the condenser 211, and the condensate exiting the condenser 211 is heated by the first and second feed water heaters 217 and 218,
The fourth, third, and second heat exchangers 208,
The third turbine 210 is sent to the third turbine 210 and is driven there.

【0008】第3タービン210を出た排気の一部は、
第1タービン205の冷却蒸気219として用いられ、
残部の排気は、前記したように高圧圧縮機202の出口
蒸気と混合される。また、復水器211を出た復水の一
部は、前記したように第2ポンプ213によって中間冷
却器201へ送られ低圧圧縮機200の出口蒸気と混合
される。
[0008] Part of the exhaust gas leaving the third turbine 210 is:
Used as cooling steam 219 for the first turbine 205,
The remaining exhaust gas is mixed with the outlet steam of the high-pressure compressor 202 as described above. Part of the condensate that has exited the condenser 211 is sent to the intercooler 201 by the second pump 213 and mixed with the outlet steam of the low-pressure compressor 200 as described above.

【0009】[0009]

【発明が解決しようとする課題】図2に示した水素燃焼
タービンプラントでは、第3タービンを出た排気(水蒸
気)の一部が第1タービン205のタービン翼などの冷
却蒸気として用いられるが、このタービンプラントの更
なる高効率化のためには、第1タービン205の冷却蒸
気をできるだけ減少させるか、もしくは、発電端効率の
低下率の少ない冷却方式を採用することが必要となる。
In the hydrogen combustion turbine plant shown in FIG. 2, a part of the exhaust gas (steam) exiting the third turbine is used as cooling steam for the turbine blades of the first turbine 205. In order to further increase the efficiency of this turbine plant, it is necessary to reduce the cooling steam of the first turbine 205 as much as possible, or to adopt a cooling method in which the rate of decrease in the power generation end efficiency is small.

【0010】本発明は、水素と酸素とを燃焼させて高温
蒸気を発生し、この高温蒸気でタービンを駆動すると共
にタービン翼を蒸気で冷却するように構成した水素燃焼
タービンプラントにおいて、発電端効率の低下率を少く
することのできる冷却系統を採用した水素燃焼タービン
プラントを提供することを課題としている。
[0010] The present invention relates to a hydrogen combustion turbine plant configured to generate high-temperature steam by burning hydrogen and oxygen, drive a turbine with the high-temperature steam, and cool turbine blades with steam. It is an object of the present invention to provide a hydrogen combustion turbine plant that employs a cooling system that can reduce the rate of decrease in fuel consumption.

【0011】[0011]

【課題を解決するための手段】前記課題を解決するた
め、本発明は、水素と酸素とを燃焼器で燃焼させて高温
蒸気を発生し、その高温蒸気を第1タービンに供給して
これを駆動し、同第1タービンからの排気蒸気を熱交換
器に入れて排熱を与え、その熱交換器から流出した蒸気
を圧縮機に送り、同圧縮機からの圧縮蒸気を前記燃焼器
へ戻すサイクルを構成し、前記熱交換器で回収した排熱
を前記サイクルとは別置の第3タービンの入口流路に与
えると共に、前記熱交換器に前記第1タービンから流入
する蒸気の一部を前記圧縮機へ送る流路から抽気して別
置の第2タービンに送り、同第2タービンの戻り蒸気は
復水器に戻るように構成した水素燃焼タービンプラント
において次の構成を採用する。
In order to solve the above-mentioned problems, the present invention generates high-temperature steam by burning hydrogen and oxygen in a combustor and supplies the high-temperature steam to a first turbine. Driven, and the exhaust steam from the first turbine is put into a heat exchanger to give exhaust heat, the steam flowing out of the heat exchanger is sent to a compressor, and the compressed steam from the compressor is returned to the combustor. Constitute a cycle, while providing the exhaust heat recovered by the heat exchanger to an inlet flow path of a third turbine separately provided from the cycle, and a part of steam flowing from the first turbine into the heat exchanger. The following configuration is adopted in a hydrogen combustion turbine plant configured to extract air from a flow passage to the compressor and send the extracted steam to a separately provided second turbine, and return steam of the second turbine is returned to a condenser.

【0012】すなわち、本発明にあっては、前記第3タ
ービンの出口から抽気した蒸気を前記第1タービンに回
収型冷却蒸気として供給してタービン翼を冷却させ昇温
した蒸気を前記燃焼器の入口に回収する回収型冷却系統
を設ける。
That is, according to the present invention, the steam extracted from the outlet of the third turbine is supplied to the first turbine as recovery cooling steam to cool the turbine blades and raise the temperature of the steam to the combustor. A recovery cooling system for recovery is provided at the entrance.

【0013】本発明による水素燃焼タービンプラントで
は、前記したように第3タービンから第1タービンへ回
収型冷却系統によって導かれた冷却蒸気は燃焼器の入口
に回収されるので、その分、第1タービンガスパス内部
へ流れる冷却蒸気量が減少される。
In the hydrogen combustion turbine plant according to the present invention, as described above, the cooling steam guided from the third turbine to the first turbine by the recovery type cooling system is recovered at the inlet of the combustor. The amount of cooling steam flowing into the turbine gas path is reduced.

【0014】従って、本発明の水素燃焼タービンプラン
トではタービンガスパス内部への冷却蒸気の混入量が減
らされ、ガスパス内部流体の温度低下と冷却蒸気がガス
パス内流体と混合するときの圧力損失が減り、また、第
1タービンを冷却して得られた熱を燃焼器に回収し燃料
流量を減少させることができ、これにより発電端効率が
向上される。
Therefore, in the hydrogen combustion turbine plant of the present invention, the amount of cooling steam mixed into the turbine gas path is reduced, and the temperature drop of the gas path internal fluid and the pressure loss when the cooling steam mixes with the gas path fluid are reduced. Further, the heat obtained by cooling the first turbine can be recovered in the combustor to reduce the fuel flow rate, thereby improving the power generation end efficiency.

【0015】[0015]

【発明の実施の形態】以下、本発明による水素燃焼ター
ビンプラントを図1に示した実施の一形態に基づいて具
体的に説明する。なお、図1において、各部の符号に
は、100台の数字を用いているが、10台以下の数字
において、図2に示した200台を除いた各部の符号と
同じ符号は同等の構成部分を示しており、それらについ
ての重複する説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a hydrogen combustion turbine plant according to the present invention will be specifically described based on one embodiment shown in FIG. In FIG. 1, the reference numerals of each unit are 100 units. However, in the numbers of 10 units or less, the same reference numerals as those of the units except 200 units shown in FIG. , And redundant description thereof will be omitted.

【0016】図1に示された水素燃焼タービンプラント
において図2に示したタービンプラントとの違いは、第
1タービン105の冷却において、従来と同様の第1タ
ービン冷却蒸気119に加え、第1タービン回収型冷却
蒸気120を第3タービン110出口より抽気し、第1
タービン105を冷却後、熱交換器103出口蒸気(燃
焼器104入口蒸気)と混合させる回収型冷却系統を追
加した点である。その他の系統は図2と実質同一であ
る。
The difference between the hydrogen combustion turbine plant shown in FIG. 1 and the turbine plant shown in FIG. 2 is that, in cooling the first turbine 105, the first turbine cooling steam 119 similar to the conventional one and the first turbine The recovered cooling steam 120 is extracted from the third turbine 110 outlet,
The point is that a recovery type cooling system for cooling the turbine 105 and mixing it with the steam at the outlet of the heat exchanger 103 (the steam at the inlet of the combustor 104) is added. Other systems are substantially the same as those in FIG.

【0017】図1の水素酸素燃焼タービンプラントで
は、前記したように、第1タービン105の冷却に、通
常の冷却方式に使用する第1タービン冷却蒸気119に
加え、第1タービン回収型冷却蒸気120を追加する。
表1と表2に本発明と従来の水素酸素燃焼タービンプラ
ントのサイクル計算例を示している。なお、表1と表2
は、それぞれ図1と図2に番号を記した位置での流量、
温度、圧力を示している。
In the hydrogen-oxygen combustion turbine plant shown in FIG. 1, as described above, the first turbine 105 is cooled in addition to the first turbine cooling steam 119 used in the ordinary cooling method. Add.
Tables 1 and 2 show cycle calculation examples of the present invention and a conventional hydrogen-oxygen combustion turbine plant. Table 1 and Table 2
Are the flow rates at the positions numbered in FIGS. 1 and 2, respectively.
Shows temperature and pressure.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】表1及び表2に示されているように、本発
明では、従来より第1タービンの冷却媒体割合の総量は
0.15から0.172へ増加するものの、この0.1
72の内、0.109が回収型冷却蒸気へ置きかわり、
第1タービンガスパス内部への冷却蒸気混入量が0.1
5(従来)から0.063(本発明)へと減少する。こ
れによって、発電端効率は60.3%から61.0%へ
相対的に1.2%向上する作用がある。(計算上の仮定
には表3を使用した。) すなわち、第1タービン冷却蒸気119のような通常の
冷却方式と第1タービン回収型冷却蒸気120のような
回収型の冷却方式では、回収型の冷却方式の方がタービ
ンガスパス内部への冷却媒体の混入によるガスパス内部
流体の温度低下、および冷却媒体とガスパス内部流体が
混合する時の圧力損失が無くなるため、冷却によるター
ビン出力の低下が小さくなる作用がある。また、回収型
の冷却によりタービンより得られた熱量を燃焼器の上流
へ回収することにより、燃料流量が減少できることも発
電端効率を向上させる理由である。
As shown in Tables 1 and 2, in the present invention, although the total amount of the cooling medium in the first turbine is increased from 0.15 to 0.172, the amount of the cooling medium in the first turbine is increased by 0.1%.
Of the 72, 0.109 is replaced by recovery type cooling steam,
The amount of cooling steam mixed into the first turbine gas path is 0.1
5 (conventional) to 0.063 (present invention). As a result, there is an effect that the power generation end efficiency is relatively improved by 1.2% from 60.3% to 61.0%. (Table 3 was used for the calculation assumption.) That is, in the normal cooling method such as the first turbine cooling steam 119 and the recovery cooling method such as the first turbine recovery type cooling steam 120, the recovery type cooling method is used. The cooling method reduces the temperature drop of the fluid inside the gas path due to mixing of the cooling medium into the turbine gas path, and reduces the pressure loss when the cooling medium and the gas path internal fluid are mixed. There is a function. In addition, the amount of heat obtained from the turbine by the recovery type cooling is recovered to the upstream of the combustor, so that the fuel flow rate can be reduced, which is another reason for improving the power generation end efficiency.

【0021】[0021]

【表3】 [Table 3]

【0022】[0022]

【発明の効果】以上説明したように、本発明は、水素燃
焼器からの高温蒸気で駆動される第1タービンと、排熱
を一部回収した第1タービンの排気の一部を抽気して導
かれる第2タービンと、第1タービンの排熱を回収した
蒸気により駆動される第3タービンを有する水素燃焼タ
ービンプラントにおいて、第3タービンの出口から抽気
した蒸気を第1タービンに回収型冷却蒸気として供給し
てタービン翼を冷却させ昇温した蒸気を水素燃焼器の入
口に回収する回収型冷却系統を設けたものである。
As described above, according to the present invention, the first turbine driven by the high-temperature steam from the hydrogen combustor and a part of the exhaust gas of the first turbine which partially recovers the exhaust heat are extracted. In a hydrogen combustion turbine plant having a second turbine guided and a third turbine driven by steam recovered from exhaust heat of the first turbine, steam extracted from an outlet of the third turbine is recovered and cooled to the first turbine. And a recovery-type cooling system for recovering steam that has been supplied to cool the turbine blades and raise the temperature at the inlet of the hydrogen combustor.

【0023】この本発明の水素燃焼タービンプラントに
よれば、第3タービンから冷却のため第1タービンへ導
かれた蒸気は燃焼器の入口に回収されるので、その分だ
け、第1タービンガスパス内部へ流れる冷却蒸気量が減
少される。
According to the hydrogen combustion turbine plant of the present invention, since the steam guided from the third turbine to the first turbine for cooling is recovered at the inlet of the combustor, the first turbine gas path is correspondingly recovered. The amount of cooling steam flowing into the inside is reduced.

【0024】このようにタービンガスパス内部への冷却
蒸気の混入量が減らされるので、ガスパス内部流体の温
度低下と冷却蒸気がガスパス内流体と混合するときの圧
力損失が減り、また、第1タービンを冷却して得られた
熱を燃焼器に回収し燃料流量を減少させることができ、
これらの作用により発電端効率が向上される。
As described above, since the amount of cooling steam mixed into the turbine gas path is reduced, the temperature drop of the gas path internal fluid and the pressure loss when the cooling steam mixes with the gas path fluid are reduced. The heat obtained by cooling is recovered in the combustor and the fuel flow rate can be reduced,
By these actions, the power generation end efficiency is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態による水素燃焼タービン
プラントの系統図。
FIG. 1 is a system diagram of a hydrogen combustion turbine plant according to an embodiment of the present invention.

【図2】従来の水素燃焼タービンプラントの系統図。FIG. 2 is a system diagram of a conventional hydrogen combustion turbine plant.

【符号の説明】[Explanation of symbols]

100,200 低圧圧縮機 101,201 中間冷却器 102,202 高圧圧縮機 103,203 第1熱交換器 104,204 燃焼器 105,205 第1タービン 106,206 第2熱交換器 107,207 第3熱交換器 108,208 第4熱交換器 109,209 第2タービン 110,210 第3タービン 111,211 復水器 112,212 第1ポンプ 113,213 第2ポンプ 114,214 第1発電機 115,215 第2発電機 116,216 第3発電機 117,217 第1給水加熱器 118,218 第2給水加熱器 119,219 第1タービン冷却蒸気 120 第1タービン回収型冷却蒸気 100, 200 Low-pressure compressor 101, 201 Intercooler 102, 202 High-pressure compressor 103, 203 First heat exchanger 104, 204 Combustor 105, 205 First turbine 106, 206 Second heat exchanger 107, 207 Third Heat exchangers 108, 208 Fourth heat exchangers 109, 209 Second turbines 110, 210 Third turbines 111, 211 Condensers 112, 212 First pumps 113, 213 Second pumps 114, 214 First generators 115, 215 Second generator 116,216 Third generator 117,217 First feedwater heater 118,218 Second feedwater heater 119,219 First turbine cooling steam 120 First turbine recovery type cooling steam

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水素と酸素とを燃焼器で燃焼させて高温
蒸気を発生し、その高温蒸気を第1タービンに供給して
これを駆動し、同第1タービンからの排気蒸気を熱交換
器に入れて排熱を与え、その熱交換器から流出した蒸気
を圧縮機に送り、同圧縮機からの圧縮蒸気を前記燃焼器
へ戻すサイクルを構成し、前記熱交換器で回収した排熱
を前記サイクルとは別置の第3タービンの入口流路に与
えると共に、前記熱交換器に前記第1タービンから流入
する蒸気の一部を前記圧縮機へ送る流路から抽気して別
置の第2タービンに送り、同第2タービンの戻り蒸気は
復水器に戻るように構成した水素燃焼タービンプラント
において、前記第3タービンの出口から抽気した蒸気を
前記第1タービンに回収型冷却蒸気として供給してター
ビン翼を冷却させ昇温した蒸気を前記燃焼器の入口に回
収する回収型冷却系統を設けたことを特徴とする水素燃
焼タービンプラント。
1. A high-temperature steam is generated by burning hydrogen and oxygen in a combustor, and the high-temperature steam is supplied to and driven by a first turbine, and exhaust steam from the first turbine is converted into a heat exchanger. To give a waste heat, send out the steam flowing out of the heat exchanger to the compressor, constitute a cycle to return the compressed steam from the compressor to the combustor, the waste heat recovered in the heat exchanger The cycle is supplied to an inlet flow path of a third turbine separately provided, and a part of steam flowing into the heat exchanger from the first turbine is extracted from a flow path that is sent to the compressor, and the steam is extracted from a flow path of the separately provided third turbine. In the hydrogen combustion turbine plant configured to send steam to the second turbine and return steam from the second turbine to the condenser, supply steam extracted from the outlet of the third turbine to the first turbine as recovered cooling steam. To cool and raise the turbine blades A hydrogen-fired turbine plant comprising a recovery-type cooling system for recovering heated steam at an inlet of the combustor.
JP25209997A 1997-09-05 1997-09-17 Hydrogen combustion turbine plant Pending JPH1193621A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP25209997A JPH1193621A (en) 1997-09-17 1997-09-17 Hydrogen combustion turbine plant
EP98115532A EP0900921A3 (en) 1997-09-05 1998-08-18 Hydrogen burning turbine plant
CA002245470A CA2245470A1 (en) 1997-09-05 1998-08-25 Hydrogen burning turbine plant
US09/145,018 US6282883B1 (en) 1997-09-05 1998-09-01 Hydrogen burning turbine plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25209997A JPH1193621A (en) 1997-09-17 1997-09-17 Hydrogen combustion turbine plant

Publications (1)

Publication Number Publication Date
JPH1193621A true JPH1193621A (en) 1999-04-06

Family

ID=17232510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25209997A Pending JPH1193621A (en) 1997-09-05 1997-09-17 Hydrogen combustion turbine plant

Country Status (1)

Country Link
JP (1) JPH1193621A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105134318A (en) * 2015-08-07 2015-12-09 上海交通大学 Energy storage device based on hydrogen-steam turbine compound cycle
GB2533547A (en) * 2014-10-30 2016-06-29 Parsons Brinckerhoff Ltd Process and plant for power generation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2533547A (en) * 2014-10-30 2016-06-29 Parsons Brinckerhoff Ltd Process and plant for power generation
GB2533547B (en) * 2014-10-30 2018-10-03 Parsons Brinckerhoff Ltd Process and plant for power generation
CN105134318A (en) * 2015-08-07 2015-12-09 上海交通大学 Energy storage device based on hydrogen-steam turbine compound cycle

Similar Documents

Publication Publication Date Title
JP3681434B2 (en) Cogeneration system and combined cycle power generation system
US8505309B2 (en) Systems and methods for improving the efficiency of a combined cycle power plant
CN104763484B (en) Air cooling turbine high back pressure heat supply power generating simultaneously method
WO2008119784A2 (en) Arrangement with a steam turbine and a condenser
JP5909429B2 (en) Moisture gas turbine system
JPH10131717A (en) Combined cycle power generating plant
JP2003161164A (en) Combined-cycle power generation plant
RU2298681C2 (en) Turbine device and method of its operation
CN102278205A (en) Combined cycle method capable of being used for distributed air and fuel humidified gas turbine
JP2880938B2 (en) Hydrogen combustion gas turbine plant
CN206129338U (en) Gas - steam combined cycle distributing type energy supply system
JP4619563B2 (en) Ultra turbine
JPH1193621A (en) Hydrogen combustion turbine plant
JPH11117712A (en) Gas turbine combined plant
JPH11270347A (en) Gas turbine combined generating set using lng
JP3389019B2 (en) Steam cooled gas turbine
RU58613U1 (en) COMBINED STEAM-GAS UNIT WITH PARALLEL OPERATION DIAGRAM
JP2003021301A (en) Boiler facility, combined cycle gas turbine generating system, combined cycle plant, and water recovering method for facility plant
JP2000133295A (en) Solid electrolyte fuel cell composite power generation plant system
JP3095680B2 (en) Hydrogen-oxygen combustion turbine plant
JP2002089285A (en) Gas turbine blade cooling air generating system
CN202431309U (en) Energy-saving power generation system
CN215808420U (en) Waste heat utilization device for heating condensed water
JP5525233B2 (en) Reduction of diluted nitrogen compressor power using a vapor absorption chiller.
JPH09203327A (en) Gas turbine power generator

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040413

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20040824

Free format text: JAPANESE INTERMEDIATE CODE: A02