JPH1192917A - Metal polyimide film laminated body - Google Patents

Metal polyimide film laminated body

Info

Publication number
JPH1192917A
JPH1192917A JP26781697A JP26781697A JPH1192917A JP H1192917 A JPH1192917 A JP H1192917A JP 26781697 A JP26781697 A JP 26781697A JP 26781697 A JP26781697 A JP 26781697A JP H1192917 A JPH1192917 A JP H1192917A
Authority
JP
Japan
Prior art keywords
film
thin film
metal
polyimide
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26781697A
Other languages
Japanese (ja)
Inventor
Tadahiro Inamori
忠広 稲守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oike and Co Ltd
Original Assignee
Oike and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oike and Co Ltd filed Critical Oike and Co Ltd
Priority to JP26781697A priority Critical patent/JPH1192917A/en
Publication of JPH1192917A publication Critical patent/JPH1192917A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/388Improvement of the adhesion between the insulating substrate and the metal by the use of a metallic or inorganic thin film adhesion layer

Landscapes

  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a metal-coated polyimlde substrate having high reliability with a specified pinhole number and specified peeling strength by subjecting the surface of a polyimide resin film to plasma reforming treatment and depositing a metal thin film of Cr, Ni or Ti and a Cu thin film. SOLUTION: One or both surfaces of a polyimide resin film having about 10 to 250 μm film thickness are subjected to plasma reforming to obtain 0.27 to 0.45 peak area intensity ratio of O/C on the surface measured by X-ray photoelectron spectroscopy. Then a metal thin film of one or more metals of Cr, Ni, Ti is formed in 5 to 200 nm thickness on the treated surface by dry plating such as vapor deposition, sputtering and ion plating. Then a Cu thin film is formed to 20 to 500 nm thickness on the metal thin film by dry plating, and further the Cu thin film is formed in specified thickness by electrolytic plating. Thus, a metal polyimide film laminated body is obtd., and the plating thin film has <=50/m<2> distribution of pinholes having 5 to 30 μm diameter and >=700 g/cm peeling strength.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プリント配線板、
フレキシブルプリント回路基板等に使用される、金属と
ポリイミドフイルムとの積層体に関するものであり、ピ
ンホールの少ない、ピール強度に優れた金属ポリイミド
フイルム積層体に関する。
The present invention relates to a printed wiring board,
The present invention relates to a laminate of a metal and a polyimide film used for a flexible printed circuit board and the like, and relates to a metal polyimide film laminate having few pinholes and excellent peel strength.

【0002】[0002]

【従来の技術】ポリイミド樹脂は優れた耐熱性を有し、
また機械的、電気的及び化学的特性において他のプラス
チック材料に比べ遜色のないことから、例えばプリント
配線板(PWB)、フレキシブルプリント基板(FP
C)、テープ自動ボンディング(TAB)実装用基板等
の電子機器部品用の絶縁基板材料として多用されてお
り、このようなPWB、FPC、またはTAB実装用基
板は、ポリイミド樹脂フィルム表面に導電性被膜として
主に銅を形成した銅ポリイミド基板を加工することによ
って得られる。
2. Description of the Related Art Polyimide resins have excellent heat resistance.
Further, since it is comparable to other plastic materials in mechanical, electrical and chemical properties, for example, a printed wiring board (PWB), a flexible printed board (FP)
C), and is often used as an insulating substrate material for electronic device parts such as a substrate for automatic tape bonding (TAB) mounting. Such a substrate for PWB, FPC, or TAB mounting has a conductive coating on the polyimide resin film surface. It is mainly obtained by processing a copper polyimide substrate on which copper is formed.

【0003】この様な金属被覆ポリイミド基板(金属ポ
リイミドフイルム積層体)には、ポリイミド樹脂フィル
ムと金属被膜を接着剤を介し接合した3層基板と、ポリ
イミド樹脂フィルムに直接金属被膜を形成した2層基板
とがあり、現在では接合界面の信頼性が高く且つポリイ
ミド樹脂フィルム並びに金属被膜の厚みを自由に選択で
きる2層基板の利用が大きな期待が寄せられている。
[0003] Such a metal-coated polyimide substrate (metal-polyimide film laminate) includes a three-layer substrate in which a polyimide resin film and a metal film are bonded via an adhesive, and a two-layer substrate in which a metal film is formed directly on the polyimide resin film. Currently, there is a great expectation for the use of a two-layer substrate which has high reliability of the bonding interface and can freely select the thickness of the polyimide resin film and the metal film.

【0004】これら2層基板においてポリイミド樹脂フ
ィルム上に直接金属被膜を形成する方法には、乾式メッ
キ法である蒸着・スパッタリング・イオンプレーティン
グ法、湿式法である無電解めっき法等があり、特に乾式
法は工程が単純な事から高い生産性が見込まれている。
As a method of forming a metal film directly on a polyimide resin film on these two-layer substrates, there are a vapor deposition / sputtering / ion plating method as a dry plating method, an electroless plating method as a wet method, and the like. The dry process is expected to have high productivity due to its simple process.

【0005】[0005]

【発明が解決しようとする課題】しかし、この乾式法に
おける蒸着・スパッタリング法によるときは金属被膜形
成の前にポリイミド樹脂フィルム表面を予め何れかの処
理で改質しなければ、基板の信頼性に係る密着強度を得
る事ができない。ここで言う密着強度とは、ポリイミド
と被覆金属間のミクロな結合強度のみを意味するのでは
なく、それも含めJISやJPCA等において規格化さ
れる、引き剥し強さに相当するものであり、UL規格等
も考慮すると、各種環境下において最低500g/cm
以上は必要である。
However, in the case of the vapor deposition / sputtering method in this dry method, the reliability of the substrate will be reduced unless the surface of the polyimide resin film is modified by any treatment before forming the metal film. Such adhesion strength cannot be obtained. The adhesion strength referred to here does not mean only the microscopic bonding strength between the polyimide and the coated metal, but also includes the peeling strength standardized by JIS, JPCA, etc., including that. Considering UL standards etc., at least 500g / cm under various environments
The above is necessary.

【0006】したがって、この表面改質を如何に行うか
が該乾式法における重要課題の一つであり、基板の信頼
性に係る密着強度を得る為には、適する表面改質量を定
量的に把握する必要がある。
[0006] Therefore, how to perform this surface modification is one of the important issues in the dry method, and in order to obtain the adhesion strength related to the reliability of the substrate, an appropriate amount of the surface modification is quantitatively grasped. There is a need to.

【0007】従来の技術では、基板の信頼性に係る密着
強度を得る為に例えばプラズマ改質法を用いてその操作
因子(プラズマ出力、ガス種・流量、圧力、時間等)の
量で限定した例もあるが、これらは装置のプラズマ発生
機構・規模・形状により異なる為、一般的に利用できな
い。また、基板の信頼性に係る密着強度を得る為に必要
なプラズマ改質を、改質されたポリイミド樹脂フィルム
表面の表面張力で限定した例もある。
In the prior art, in order to obtain an adhesion strength related to the reliability of the substrate, for example, a plasma reforming method is used to limit the operation factors (plasma output, gas type / flow rate, pressure, time, etc.). Although there are examples, they generally differ depending on the plasma generation mechanism, scale, and shape of the apparatus, and thus cannot be generally used. There is also an example in which the plasma modification necessary for obtaining the adhesion strength related to the reliability of the substrate is limited by the surface tension of the modified polyimide resin film surface.

【0008】本発明は、上記の問題点に鑑みてなされた
ものであって、いかなる種類のポリイミド樹脂フィルム
やプラズマ改質装置を使用しても、高信頼性を有するP
WB、FPC、TAB実装用基板を作成することができ
る金属被覆ポリイミド基板の製造方法を提供することを
目的とするものである。
The present invention has been made in view of the above problems, and has high reliability even if any kind of polyimide resin film or plasma reformer is used.
It is an object of the present invention to provide a method for manufacturing a metal-coated polyimide substrate on which a WB, FPC, or TAB mounting substrate can be formed.

【0009】[0009]

【課題を解決するための手段】本発明は、上記課題を解
決するため研究を行った結果、ポリイミド樹脂フィルム
表面の片面もしくは両面を、プラズマ改質したこと、該
プラズマ改質において、X線光電子分光装置(XPS)
でポリイミド樹脂フイルムの表面の分析からO/C(酸
素/炭素の比率)が0.26から0.45になるよに制
御すること、それに続く以下の金属の積層を実施するこ
とで達成できた。すなわち本発明は、ポリイミド樹脂フ
ィルム表面の片面もしくは両面に、クロム,ニッケル,
チタンから選ばれた一種以上の金属薄膜、銅薄膜を設け
た金属ポリイミドフイルム積層体であって、該積層体に
おける5μm (ミクロンメータ)から30μm (ミク
ロンメータ)の径のピンホール(以下5.30PHと略
記する)が1平方メータあたり50個以下であり、かつポ
リイミド樹脂フィルムと金属薄膜とのピール強度が70
0g/cm以上(室温測定)であることを特徴とする金
属ポリイミドフイルム積層体であり、また前記の金属薄
膜が、乾式メッキによって形成され、厚さが5〜200
nm である前記載の金属ポリイミドフイルム積層体で
あり、また前記の銅薄膜が、乾式メッキによって形成さ
れ、厚さが20〜500nmである銅薄膜と、電解メッ
キによって形成された銅薄膜とを有する前記載の金属ポ
リイミドフイルム積層体である。
According to the present invention, as a result of research for solving the above-mentioned problems, one or both surfaces of a polyimide resin film have been plasma-modified. Spectrometer (XPS)
From the analysis of the surface of the polyimide resin film, it was achieved by controlling the O / C (oxygen / carbon ratio) to be from 0.26 to 0.45 and then performing the following metal lamination. . That is, the present invention provides chromium, nickel,
A metal polyimide film laminate provided with at least one metal thin film selected from titanium and a copper thin film, wherein a pinhole (hereinafter referred to as 5.30 PH) having a diameter of 5 μm (micrometer) to 30 μm (micrometer) is provided in the laminate. Is not more than 50 per square meter, and the peel strength between the polyimide resin film and the metal thin film is 70.
0 g / cm or more (measured at room temperature) is a metal polyimide film laminate, wherein the metal thin film is formed by dry plating and has a thickness of 5 to 200
wherein the copper thin film is formed by dry plating, the copper thin film having a thickness of 20 to 500 nm, and a copper thin film formed by electrolytic plating. It is a metal polyimide film laminate described above.

【0010】基板の信頼性に係る密着強度を得る為に
は、プラズマによりポリイミド樹脂フィルム表面を適度
に改質する必要がある。このプラズマ改質による密着強
度発現のメカニズムは未だ明らかにされてないが、本発
明の検討から、改質後フィルム表面のXPSによるO/
Cピーク面積強度比が0.27から0.45の割合なる
ように制御してプラズマ改質することで優れた密着強度
と5.30PHの少ない積層体が得られることが判っ
た。
In order to obtain the adhesion strength related to the reliability of the substrate, it is necessary to appropriately modify the surface of the polyimide resin film by plasma. Although the mechanism of the adhesion strength development by this plasma modification has not been elucidated yet, from the examination of the present invention, the O / O ratio of the surface of the modified film by XPS was determined.
It was found that by performing the plasma reforming while controlling the C peak area intensity ratio to be a ratio of 0.27 to 0.45, a laminate having excellent adhesion strength and a low 5.30 PH was obtained.

【0011】したがって、挙動、作用効果は明かでない
が、この変化量に着目すれば、信頼性を確保しうる高い
密着強度の発現に必要なプラズマ改質の度合いを決定す
る事が可能である。
Therefore, although the behavior and the function and effect are not clear, it is possible to determine the degree of plasma modification necessary for developing a high adhesion strength that can ensure reliability by focusing on the amount of change.

【0012】また、ここで用いたXPSとは、試料表面
にX線を照射し、そこから放出される光電子の運動エネ
ルギーを計測した後、得られた種々の元素に固有の電子
の束縛エネルギーを分析する事によって、試料表層数十
オングストロームにおける組成や結合状態を調べる分析
方法である。
The XPS used here means that the surface of a sample is irradiated with X-rays, the kinetic energy of photoelectrons emitted from the sample is measured, and the binding energy of electrons specific to the obtained various elements is determined. This is an analysis method for examining the composition and bonding state at several tens of angstroms of the sample surface layer by analyzing.

【0013】[0013]

【発明の実施形態】本発明におけるポリイミドフイルム
は、特に限定されるものではないが、具体的にはカプト
ン、ユーピレックス、アピカル等が挙げられる。該フイ
ルムの膜厚は、好ましくは10μmから250μmであ
る。本発明の積層体は、前記のフイルムを、プラズマ処
理して後の金属積層にたいして密着性を向上せしめる。
このプラズマ処理においては公知のプラズマ処理を用い
ることができるが、漫然とプラズマ処理を施しても本発
明の優れた密着強度と5.30PHの少ない積層体は得
られず、プラズマ処理において、プラズマ処理後のフイ
ルム表面のXPSによるO/Cピーク面積強度比が0.
27から0.45の割合なるよに制御してプラズマ処理
する必要がある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The polyimide film in the present invention is not particularly limited, but specific examples include Kapton, Upilex, Apical and the like. The film thickness of the film is preferably from 10 μm to 250 μm. In the laminate of the present invention, the film is subjected to a plasma treatment to improve the adhesion to the metal laminate afterwards.
In this plasma treatment, a known plasma treatment can be used. However, even if the plasma treatment is inadvertently performed, the laminate having excellent adhesion strength and a low 5.30 PH of the present invention cannot be obtained. The O / C peak area intensity ratio by XPS of the film surface of No. 1 was 0.
It is necessary to control the plasma processing so that the ratio becomes 27 to 0.45.

【0014】制御されたプラズマ処理によるプラズマ処
理されたフイルムに、クロム,ニッケル,チタンから選
ばれた一種以上の金属薄膜を形成する。この金属薄膜の
形成は乾式メッキによって形成されるものである、乾式
メッキとしては特に限定されず蒸着・スパッタリング・
イオンプレーティングなどから適宜選択して用いればよ
く、その膜厚さは5〜200nmであることが好まし
い。ついで、前記金属薄膜上に乾式メッキによって、厚
さが20〜500nmである銅薄膜を形成する。さら
に、得られた前記2層の金属薄膜が形成された積層体
に、公知の電解メッキによって銅の厚膜を形成してプリ
ント回路基板等に使用する。
At least one metal thin film selected from chromium, nickel, and titanium is formed on the film subjected to the plasma treatment by the controlled plasma treatment. The formation of the metal thin film is formed by dry plating. The dry plating is not particularly limited, and may be formed by evaporation, sputtering, or the like.
What is necessary is just to select and use suitably from ion plating etc., and it is preferable that the film thickness is 5-200 nm. Next, a copper thin film having a thickness of 20 to 500 nm is formed on the metal thin film by dry plating. Further, a thick copper film is formed on the obtained laminate on which the two-layered metal thin film is formed by known electrolytic plating, and is used for a printed circuit board or the like.

【0015】{5.30PHの評価}得られた積層体
を、15cm角に裁断しライトテーブルに乗せて、透過
光のある位置を特定し、該特定個所のピンホール(P
H)の全てを光学顕微鏡で大きさを測定しその数を測定
し、5ミクロンメータ(5μm )から30ミクロンメ
ータ(30μm)の径のピンホールが1平方メータあた
り何個あるかを評価した。 {ピール強度(密着強度)の評価}得られた積層体を線巾
90μmのパターンになるように金属薄膜層を加工し、
90度方向引っ張り試験により測定し、評価した。
{Evaluation of 5.30 PH} The obtained laminate was cut into 15 cm squares and placed on a light table to specify the position of transmitted light, and the pinhole (P
All of H) were measured for the size by an optical microscope and the number thereof was measured, and the number of pinholes having a diameter of 5 μm (5 μm) to 30 μm (30 μm) per square meter was evaluated. } Evaluation of peel strength (adhesion strength)} The obtained laminate was processed into a metal thin film layer so as to form a pattern having a line width of 90 μm.
It was measured and evaluated by a 90-degree direction tensile test.

【0016】以下に実施例をあげて本発明をさらに具体
的に説明するが、本発明はこれらの実施例のみに限定す
るものではない。
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to only these examples.

【実施例】【Example】

*実施例1 鐘淵化学工業株式会社製ポリイミドフィルム(厚さ50
μm )NPI−50の片面(ブライト面)をプラズマ
処理し(この処理を、該面のXPSによるO/Cピーク
面積強度比が0.31の割合なるように制御して実施
し)た。プラズマ処理して改質した後、厚さ30nmの
蒸着ニッケル被膜を形成し、その上に更に、厚さ100
nmの蒸着Cu被膜を形成し、更に35μmの電気銅め
っきを施した。この基板の銅表面に所定の形状のマスク
を使用し、レジストを塗布・乾燥後得られたパターンに
従いエッチング処理を行い、線巾90μmのパターンに
なるように加工した。
* Example 1 Kanefuchi Chemical Co., Ltd. polyimide film (thickness 50
μm 2) One surface (bright surface) of NPI-50 was subjected to plasma treatment (this treatment was performed while controlling the O / C peak area intensity ratio of the surface by XPS to be 0.31). After modification by plasma treatment, a 30-nm-thick deposited nickel film is formed, and a 100-nm-thick
An nm vapor-deposited Cu film was formed, and 35 μm electrolytic copper plating was further performed. Using a mask having a predetermined shape on the copper surface of the substrate, an etching process was performed according to the pattern obtained after applying and drying a resist, and processed so as to obtain a pattern having a line width of 90 μm.

【0017】上記で得られた金属ポリイミド積層体の
「5.30PH」は0個であり、またパターン加工した
ものの、室温での「ピール強度」は1300g/cmで
あった。また180℃で60分処理後の「ピール強度」
は1250g/cmであった。
The number of “5.30 PH” of the metal polyimide laminate obtained as described above was 0, and the “peel strength” at room temperature was 1300 g / cm after pattern processing. "Peel strength" after treatment at 180 ° C for 60 minutes
Was 1250 g / cm.

【0018】*実施例2 実施例1と同様の積層体作製方法であるが、ニッケルを
クロムに変更し実施した。得られた金属ポリイミド積層
体の「5.30PH」は0個であり、また室温での「ピ
ール強度」は1400g/cmであった。また180℃
で60分処理後の「ピール強度」は1400g/cmで
あった。
Example 2 A method of manufacturing a laminate similar to that of Example 1 was performed, except that nickel was changed to chromium. The number of “5.30 PH” of the obtained metal polyimide laminate was 0, and the “peel strength” at room temperature was 1400 g / cm. 180 ° C
The "peel strength" after the treatment for 60 minutes was 1,400 g / cm.

【0019】*実施例3 実施例1と同様の積層体作製方法であるが、ニッケル蒸
着被膜の代わりにチタン蒸着被膜にし実施した。得られ
た金属ポリイミド積層体の「5.30PH」は2個であ
り、また室温での「ピール強度」は1200g/cmで
あった。また180℃で60分処理後の「ピール強度」
は1150g/cmであった。
Example 3 The same method as in Example 1 was used, except that a titanium vapor-deposited film was used instead of the nickel vapor-deposited film. The number of “5.30 PH” of the obtained metal polyimide laminate was 2, and the “peel strength” at room temperature was 1200 g / cm. "Peel strength" after treatment at 180 ° C for 60 minutes
Was 1150 g / cm.

【0020】*実施例4 実施例1と同様の積層体作製方法であるが、 XPSに
よるO/Cピーク面積強度比が0.40のに割合なるよ
うに制御して実施し 、ニッケル蒸着被膜の代わりにク
ロム蒸着被膜にし実施した。得られた金属ポリイミド積
層体の「5.30PH」は0個であり、また室温での
「ピール強度」は1600g/cmであった。また18
0℃で60分処理後の「ピール強度」は1550g/c
mであった。
Example 4 The same method as that of Example 1 was used to produce a laminate, except that the O / C peak area intensity ratio by XPS was controlled to be 0.40, and a nickel vapor deposition film was formed. Instead, a chromium deposited film was used. “5.30PH” of the obtained metal polyimide laminate was 0 pieces, and “peel strength” at room temperature was 1600 g / cm. Also 18
"Peel strength" after treatment at 0 ° C for 60 minutes is 1550 g / c
m.

【0021】*実施例5 実施例4と同様の積層体作製方法であるが、プラズマ改
質を、プラズマ処理によるフイルム表面のXPSによる
O/Cピーク面積強度比が0.45の割合になるように
制御して実施した。得られた金属ポリイミド積層体の
「5.30PH」は0個であり、また室温での「ピール
強度」は1000g/cmであった。また180℃で6
0分処理後の「ピール強度」は1000g/cmであっ
た。
Example 5 The same method as that of Example 4 was used to produce a laminate, except that the plasma modification was performed so that the O / C peak area intensity ratio of the film surface by XPS was 0.45. The control was carried out. “5.30PH” of the obtained metal polyimide laminate was 0 pieces, and “peel strength” at room temperature was 1000 g / cm. Also at 180 ° C 6
The "peel strength" after the 0-minute treatment was 1000 g / cm.

【0022】*実施例6 実施例4と同様の積層体作製方法であるが、プラズマ改
質を、プラズマ処理によるフイルム表面のXPSによる
O/Cピーク面積強度比が0.26の割合になるように
制御して実施した。得られた金属ポリイミド積層体の
「5.30PH」は0個であり、また室温での「ピール
強度」は800g/cmであった。また180℃で60
分処理後の「ピール強度」は800g/cmであった。
なお、カプトンフイルム(東レ.デユポン社製25μm
厚さ)と、ユービレックスフイルム(宇部興産社製75
μm厚さ)とをそれぞれ使用する以外は実施例1から実
施例6までの方法で同じように実施したが、それぞれの
結果は「5.30PH」は0個から5個であり、また室
温での「ピール強度」は800g/cmから1500g
/cmであり、使用するポリイミドフイルムによる差は
ほとんどなかった。
Example 6 The same method as that of Example 4 was used to produce a laminate, but the plasma modification was carried out by plasma treatment so that the O / C peak area intensity ratio of the film surface by XPS was 0.26. The control was carried out. “5.30PH” of the obtained metal polyimide laminate was 0 pieces, and “peel strength” at room temperature was 800 g / cm. Also at 180 ° C 60
The “peel strength” after the minute treatment was 800 g / cm.
In addition, Kapton film (25 μm manufactured by Toray DuPont)
Thickness) and Ubilex film (75 made by Ube Industries)
(thickness) was carried out in the same manner as in Example 1 to Example 6 except that each was used. "Peel strength" is from 800 g / cm to 1500 g
/ Cm, and there was almost no difference depending on the polyimide film used.

【0023】*比較例1 実施例1と同様の積層体作製方法であるが、プラズマ処
理によるフイルム表面のXPSによるO/Cピーク面積
強度比は0.48の割合であった。得られた金属ポリイ
ミド積層体の「5.30PH」は10個であり、また室
温での「ピール強度」は400g/cmであった。また
180℃で60分処理後の「ピール強度」は300g/
cmであった。
* Comparative Example 1 A laminated body was manufactured in the same manner as in Example 1, except that the O / C peak area intensity ratio by XPS of the film surface by the plasma treatment was 0.48. The number of “5.30 PH” of the obtained metal polyimide laminate was 10, and the “peel strength” at room temperature was 400 g / cm. The “peel strength” after treatment at 180 ° C. for 60 minutes is 300 g /
cm.

【0024】*比較例2 実施例1と同様の積層体作製方法であるが、プラズマ処
理によるフイルム表面のXPSによるO/Cピーク面積
強度比は0.25の割合であった。得られた金属ポリイ
ミド積層体の「5.30PH」は25個であり、また室
温での「ピール強度」は350g/cmであった。また
180℃で60分処理後の「ピール強度」は200g/
cmであった。
* Comparative Example 2 A laminated body was manufactured in the same manner as in Example 1, except that the O / C peak area intensity ratio of the film surface by XPS by plasma treatment was 0.25. "5.30PH" of the obtained metal polyimide laminate was 25 pieces, and "peel strength" at room temperature was 350 g / cm. The “peel strength” after treatment at 180 ° C. for 60 minutes is 200 g /
cm.

【0025】*比較例3 鐘淵化学工業株式会社製ポリイミドフィルム(厚さ50
μm)NPI−50の片面(ブライト面)をプラズマ処
理し(この処理を、該面のXPSによるO/Cピーク面
積強度比が0.30の割合なるように制御して実施し)
た。プラズマ処理して改質した後、厚さ30nmの蒸着
銅被膜を形成し、その上に更に、35μmまで電気銅め
っきを施した。この基板の銅表面に所定の形状のマスク
を使用し、レジストを塗布・乾燥後得られたパターンに
従いエッチング処理を行い、線巾90μmのパターンに
なるように加工した。実施例1と同様に得られた金属ポ
リイミド積層体の評価を行った。「5.30PH」は3
00個以上であり、また室温での「ピール強度」は40
0g/cmであった。また180℃で60分処理後の
「ピール強度」は250g/cmであった。
* Comparative Example 3 Polyimide film manufactured by Kanegafuchi Chemical Co., Ltd. (thickness: 50)
μm) One side (bright side) of NPI-50 is plasma-treated (this processing is performed by controlling the O / C peak area intensity ratio by XPS of the surface to be 0.30).
Was. After modification by plasma treatment, a 30-nm-thick vapor-deposited copper film was formed, and further electroplated with copper to 35 μm. Using a mask having a predetermined shape on the copper surface of the substrate, an etching process was performed according to the pattern obtained after applying and drying a resist, and processed so as to obtain a pattern having a line width of 90 μm. The metal polyimide laminate obtained in the same manner as in Example 1 was evaluated. "5.30PH" is 3
And the "peel strength" at room temperature is 40 or more.
It was 0 g / cm. The “peel strength” after the treatment at 180 ° C. for 60 minutes was 250 g / cm.

【0026】[0026]

【発明の効果】以上述べたように、本発明によれば、い
かなる種類のポリイミド樹脂フィルムやプラズマ改質装
置を使用しても、高い信頼性を得るに十分な密着強度と
ピンホールのほとんどない金属ポリイミド積層体を得る
ことができる。本発明によって得られた金属ポリイミド
積層体を用いる事により、信頼性の高いPWB、FP
C、TAB実装用等の基板を作製する事ができる。
As described above, according to the present invention, no matter what kind of polyimide resin film or plasma reformer is used, there is little adhesion strength and almost no pinholes to obtain high reliability. A metal polyimide laminate can be obtained. By using the metal polyimide laminate obtained by the present invention, highly reliable PWB, FP
A substrate for mounting C and TAB can be manufactured.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ポリイミド樹脂フィルム表面の片面もしく
は両面に、クロム,ニッケル,チタンから選ばれた一種
以上の金属薄膜と、銅薄膜とを設けた金属ポリイミドフ
イルム積層体であって、該積層体における5μm(ミク
ロンメータ) から30μm (ミクロンメータ)の径の
ピンホール(以下5.30PHと略記する)が1平方メー
タ(m2)あたり50個以下であり、かつポリイミド樹
脂フィルムと薄膜とのピール強度が700g/cm以上
であることを特徴とする金属ポリイミドフイルム積層
体。
1. A metal polyimide film laminate comprising one or more metal thin films selected from chromium, nickel and titanium and a copper thin film provided on one or both surfaces of a polyimide resin film surface. No more than 50 pinholes (hereinafter abbreviated as 5.30PH) having a diameter of 5 μm (micron meter) to 30 μm (micron meter) per square meter (m 2 ), and the peel strength between the polyimide resin film and the thin film Is 700 g / cm or more.
【請求項2】金属薄膜が、乾式メッキによって形成さ
れ、厚さが5〜200nmである請求項1記載の金属ポ
リイミドフイルム積層体。
2. The metal polyimide film laminate according to claim 1, wherein the metal thin film is formed by dry plating and has a thickness of 5 to 200 nm.
【請求項3】銅薄膜が、乾式メッキによって形成された
厚さが20〜500nmである銅薄膜と、電解メッキに
よって形成された銅薄膜とを有する請求項1記載の金属
ポリイミドフイルム積層体。
3. The metal polyimide film laminate according to claim 1, wherein the copper thin film has a copper thin film having a thickness of 20 to 500 nm formed by dry plating and a copper thin film formed by electrolytic plating.
JP26781697A 1997-09-12 1997-09-12 Metal polyimide film laminated body Pending JPH1192917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26781697A JPH1192917A (en) 1997-09-12 1997-09-12 Metal polyimide film laminated body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26781697A JPH1192917A (en) 1997-09-12 1997-09-12 Metal polyimide film laminated body

Publications (1)

Publication Number Publication Date
JPH1192917A true JPH1192917A (en) 1999-04-06

Family

ID=17450017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26781697A Pending JPH1192917A (en) 1997-09-12 1997-09-12 Metal polyimide film laminated body

Country Status (1)

Country Link
JP (1) JPH1192917A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1137331A2 (en) * 2000-03-21 2001-09-26 GA-TEK, Inc. (doing business as Gould Electronics Inc.) Copper on polymer component having improved adhesion
JP2007245646A (en) * 2006-03-17 2007-09-27 Kakogawa Plastic Kk Two-layered film, its manufacturing method and manufacturing method of printed circuit board
WO2009075396A1 (en) * 2007-12-12 2009-06-18 Lg Electronics Inc. Flexible film
WO2009075397A1 (en) * 2007-12-12 2009-06-18 Lg Electronics Inc. Method of fabricating flexible film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1137331A2 (en) * 2000-03-21 2001-09-26 GA-TEK, Inc. (doing business as Gould Electronics Inc.) Copper on polymer component having improved adhesion
JP2001270040A (en) * 2000-03-21 2001-10-02 Ga-Tek Inc Dba Gould Electronics Inc Copper-on-polymer constituting element having improved adhesive properties
EP1137331A3 (en) * 2000-03-21 2002-10-23 GA-TEK, Inc. (doing business as Gould Electronics Inc.) Copper on polymer component having improved adhesion
JP2007245646A (en) * 2006-03-17 2007-09-27 Kakogawa Plastic Kk Two-layered film, its manufacturing method and manufacturing method of printed circuit board
WO2009075396A1 (en) * 2007-12-12 2009-06-18 Lg Electronics Inc. Flexible film
WO2009075397A1 (en) * 2007-12-12 2009-06-18 Lg Electronics Inc. Method of fabricating flexible film

Similar Documents

Publication Publication Date Title
JP5178064B2 (en) Metal layer laminate having metal surface roughened layer and method for producing the same
US4917963A (en) Graded composition primer layer
US6042929A (en) Multilayer metalized composite on polymer film product and process
WO2006025240A1 (en) Double layer flexible board and method for manufacturing the same
TW200838390A (en) Two-layer flexible substrate, method for manufacturing the two-layer flexible substrate, and flexible printed wiring board manufactured thereof
JPH09136378A (en) Copper thin film board and printed wiring board
TW202035131A (en) Composite copper foil and method of fabricating the same
TW465267B (en) Copper foil for printed wiring board
JP2008162245A (en) Plating-method two-layer copper polyimide laminated film, and method for manufacturing the same
JP2003334890A (en) Two-layer copper polyimide base
KR100859614B1 (en) Composite copper foil and method for production thereof
JP2007318177A (en) Double layer copper polyimide substrate
US7364666B2 (en) Flexible circuits and method of making same
JPH1192917A (en) Metal polyimide film laminated body
US20040075528A1 (en) Printed circuit heaters with ultrathin low resistivity materials
JP2003188495A (en) Method of manufacturing printed wiring board
JPH05259596A (en) Board for flexible printed wiring
US7507434B2 (en) Method and apparatus for laminating a flexible printed circuit board
JP3888587B2 (en) Etching method of flexible substrate
JPS5816592A (en) Printed circuit board and metal-lined laminated board preformed product and method of producing same
JPH11117060A (en) Metal clad polyimide substrate
CN100542374C (en) 2 layers of flexible substrate and manufacture method thereof
CN116419476A (en) Composite metal foil
KR100811620B1 (en) Manufacturing method of printed circuit board
JPH03203394A (en) Manufacture of insulating substrate with thin metallic layer and manufacture of wiring board using insulating substrate manufactured thereby

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040113