JPH1192848A - Heat exchanger core made of aluminum and its production - Google Patents

Heat exchanger core made of aluminum and its production

Info

Publication number
JPH1192848A
JPH1192848A JP26921297A JP26921297A JPH1192848A JP H1192848 A JPH1192848 A JP H1192848A JP 26921297 A JP26921297 A JP 26921297A JP 26921297 A JP26921297 A JP 26921297A JP H1192848 A JPH1192848 A JP H1192848A
Authority
JP
Japan
Prior art keywords
aluminum
fin
brazing
heat exchanger
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26921297A
Other languages
Japanese (ja)
Inventor
Yoshito Oki
義人 沖
Akihiro Wakatsuki
章弘 若月
Toshihiro Suzuki
敏弘 鈴木
Yasuhiko Tanaka
庸彦 田中
Akinori Ogasawara
明徳 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP26921297A priority Critical patent/JPH1192848A/en
Publication of JPH1192848A publication Critical patent/JPH1192848A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger core having corrosion-resistance and brazing properties equal to or above those of the conventional one by using a heat exchanger free from the need of the coating of Zn in advance and a fin clad with no composition for brazing. SOLUTION: An extruded flat tube 4 as a heat exchanger tube is formed of a member contg. 0.01 to 0.6% copper element, and the balance substantial aluminum, the surface of this extruded flat tube 4 is coated with a composition for brazing composed of silicon and fluorine base flux, a member made of aluminum contg. zinc is used for a fin 5, and the extruded flat tube 4 and the fin 5 are heated, by which the extruded flat tube 4 and the fin 5 are brazed, and furthermore, a mixed diffusion layer 8 of silicon and zinc is formed on the surface of the extruded flat tube 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、アルミニウム製
熱交換器コア及びその製造方法に関するもので、更に詳
細には、例えば偏平状のアルミニウム製熱交換管とアル
ミニウム製フィンとをろう付用組成物を介してろう付し
てなるアルミニウム製熱交換器コア及びその製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum heat exchanger core and a method for producing the same, and more particularly, to a brazing composition comprising, for example, a flat aluminum heat exchange tube and aluminum fins. And a method for manufacturing the same.

【0002】[0002]

【従来の技術】一般に、アルミニウム製あるいはアルミ
ニウム合金製(以下にアルミニウム製という)の熱交換
管と、アルミニウム製のフィンとをろう付したアルミニ
ウム製熱交換器が広く使用されており、また、熱交換効
率の向上を図るために、熱交換管をアルミニウム製押出
形材にて形成される押出偏平管が採用されている。
2. Description of the Related Art In general, an aluminum heat exchanger in which an aluminum or aluminum alloy (hereinafter referred to as aluminum) heat exchange tube and an aluminum fin are brazed is widely used. In order to improve the exchange efficiency, an extruded flat tube in which a heat exchange tube is formed of an extruded aluminum member is used.

【0003】このように構成される熱交換器に防食(耐
腐食)性をもたせるために、一般に、偏平状熱交換管の
表面に亜鉛(Zn)を付着させ、ろう付加熱により偏平
状熱交換管の表面にZnを拡散させてZn拡散層を設け
ている。また、フィンには、亜鉛含有のろう材すなわち
ろう付用組成物のクラッド材等のブレージングシートを
用いている。
[0003] In order to impart corrosion resistance (corrosion resistance) to a heat exchanger constructed as described above, generally, zinc (Zn) is adhered to the surface of a flat heat exchange tube, and the flat heat exchange tube is heated by additional heat of brazing. A Zn diffusion layer is provided by diffusing Zn on the surface of the tube. Further, a brazing sheet such as a brazing material containing zinc, that is, a clad material of a brazing composition is used for the fins.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、フィン
材に上記ブレージングシートを用いるので、ろう材がク
ラッドされていない生地フィン材に比べてコストが嵩む
ばかりか、ろう材が表面にクラッドされているため、フ
ィン成形ロールの摩耗が激しく、そのためフィン成形ロ
ールの研磨を頻繁に行う必要があり、また、ルーバー等
の成形加工時にバリ等が発生し易いため、品質の低下を
きたすという問題もあった。
However, since the brazing sheet is used as the fin material, the cost is increased as compared with the cloth fin material in which the brazing material is not clad, and the brazing material is clad on the surface. In addition, the fin forming rolls are severely worn, so that the fin forming rolls need to be polished frequently, and burrs and the like are liable to be generated during the forming process of the louver or the like, so that there is a problem that the quality is deteriorated.

【0005】また、偏平状熱交換管の耐食性を向上させ
るために、予めジンケート法あるいは亜鉛(Zn)溶射
法等で偏平管表面にZnを付着させ、ろう付時にZn拡
散層を形成し犠牲電極による防食方法を採用している
が、この方法ではZnの付着に多くの手間と時間がかか
るという問題がある。
In order to improve the corrosion resistance of the flat heat exchange tube, Zn is previously deposited on the flat tube surface by a zincate method or a zinc (Zn) spraying method, and a Zn diffusion layer is formed during brazing to form a sacrificial electrode. However, this method has a problem that much time and effort are required for Zn deposition.

【0006】一方、ろう材がクラッドされていない生地
フィン材を用いる方法として、アルミニウム(Al)と
ケイ素(Si)とを用いたAl−Si合金粉末を偏平管
に塗布しろう付する方法も知られているが、この方法で
はAl−Si合金粉末の塗布量が非常に多く、コスト面
及び組立面において問題がある。また、偏平管にろう材
をクラッドした電縫管を用いる方法も知られているが、
この方法においては多孔管にするためには内部にインサ
ートを入れる必要があるため、多くの工程が必要で製造
コスト及び材料コストが嵩むという問題がある。
On the other hand, as a method of using a cloth fin material on which a brazing material is not clad, there is also known a method of applying an Al-Si alloy powder using aluminum (Al) and silicon (Si) to a flat tube and brazing the flat tube. However, in this method, the applied amount of the Al-Si alloy powder is extremely large, and there is a problem in terms of cost and assembly. A method using an electric resistance welded pipe clad with a brazing material in a flat pipe is also known,
In this method, since it is necessary to insert an insert into the inside in order to form a perforated tube, there is a problem that many steps are required and the production cost and the material cost increase.

【0007】この発明は上記事情に鑑みなされたもの
で、予めZnの付着が不要な熱交換管と、ろう付用組成
物をクラッドしない生地フィン材を用いて、従来と同等
若しくはそれ以上の耐食性及びろう付性を有する熱交換
器コア及びその製造方法を提供することを目的とするも
のである。
The present invention has been made in view of the above circumstances, and uses a heat exchange tube to which Zn is not required to be attached in advance and a fin material which is not clad with a brazing composition, and has a corrosion resistance equal to or higher than that of the conventional one. It is another object of the present invention to provide a heat exchanger core having brazing properties and a method for manufacturing the same.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、請求項1記載の発明は、銅元素を0.01%以上,
0.6%以下を含み残量が実質的にアルミニウムからな
るアルミニウム製熱交換管と、アルミニウム製フィンと
をろう付用組成物を介してろう付してなるアルミニウム
製熱交換器コアであって、 上記熱交換管の表面にケイ
素と亜鉛の混合拡散層が形成され、上記フィンは上記亜
鉛拡散層を形成するための亜鉛を含有するアルミニウム
製部材にて形成されることを特徴とする。
In order to achieve the above object, according to the first aspect of the present invention, a copper element is contained in an amount of 0.01% or more.
An aluminum heat exchanger core obtained by brazing an aluminum heat exchange tube containing 0.6% or less and substantially consisting of aluminum and aluminum fins via a brazing composition. A mixed diffusion layer of silicon and zinc is formed on the surface of the heat exchange tube, and the fin is formed of a zinc-containing aluminum member for forming the zinc diffusion layer.

【0009】また、請求項3記載の発明は、銅元素を
0.01%以上,0.6%以下を含み残量が実質的にア
ルミニウムからなるアルミニウム製熱交換管とアルミニ
ウム製フィンとをろう付用組成物を介してろう付してな
るアルミニウム製熱交換器コアの製造方法であって、
上記熱交換管の表面にケイ素とフッ素系フラックスとか
らなるろう付用組成物を塗布し、上記フィンに亜鉛を含
有するアルミニウム製部材を用い、上記熱交換管とフィ
ンとを所定温度に加熱して、上記熱交換管とフィンとを
ろう付すると共に、上記熱交換管の表面にケイ素と亜鉛
の混合拡散層を形成することを特徴とする。この場合、
熱交換器表面に形成するケイ素と亜鉛の混合拡散層濃度
は、ケイ素で最大濃度0.5〜1.5%、亜鉛で最大濃
度0.4〜3.0%となる。
According to a third aspect of the present invention, there is provided an aluminum heat exchange tube and an aluminum fin containing 0.01% to 0.6% of copper element and substantially consisting of aluminum. A method for producing an aluminum heat exchanger core obtained by brazing through a coating composition,
A brazing composition comprising silicon and a fluorine-based flux is applied to the surface of the heat exchange tube, and the heat exchange tube and the fin are heated to a predetermined temperature using an aluminum member containing zinc for the fin. Then, the heat exchange tube and the fins are brazed, and a mixed diffusion layer of silicon and zinc is formed on the surface of the heat exchange tube. in this case,
The concentration of the mixed diffusion layer of silicon and zinc formed on the heat exchanger surface is 0.5 to 1.5% for silicon and 0.4 to 3.0% for zinc.

【0010】この発明において、上記熱交換管は、銅元
素を0.01%以上,0.6%以下を含み残量が実質的
にアルミニウムからなるアルミニウム製管であれば形状
は任意のものでよいが、好ましくは複数の熱媒体用の通
路を有するアルミニウム製押出偏平管である方がよい。
また、上記フィン中の亜鉛濃度が1〜5%である方が好
ましい(請求項2)。
In the present invention, the shape of the heat exchange tube is arbitrary as long as it is an aluminum tube containing 0.01% or more and 0.6% or less of copper element and substantially consisting of aluminum. Preferably, it is preferably an extruded flat aluminum tube having a plurality of heat medium passages.
Further, it is preferable that the zinc concentration in the fin is 1 to 5% (claim 2).

【0011】この発明によれば、ろう付用組成物にケイ
素とフッ素系フラックスを用いることで、熱交換管に予
めZnを付着する必要がなく、またフィンにはろう付用
組成物のクラッドされていないZn含有の生地フィン材
を用いることができ、ろう付時にろう付用組成物により
フィンの一部が溶融しフィン中の亜鉛が表面に拡散さ
れ、熱交換管の表面にケイ素と亜鉛の混合拡散層が形成
される。
According to the present invention, by using silicon and a fluorine-based flux for the brazing composition, it is not necessary to previously attach Zn to the heat exchange tube, and the fin is coated with the brazing composition. Not containing Zn-containing material fin material can be used, and at the time of brazing, a part of the fin is melted by the brazing composition and zinc in the fin is diffused to the surface, and the surface of the heat exchange tube contains silicon and zinc. A mixed diffusion layer is formed.

【0012】したがって、予め熱交換管の表面に亜鉛を
付着することなく、熱交換管の表面に亜鉛拡散層を形成
することができ、しかも、熱交換管には銅が上記範囲内
すなわち0.01%以上,0.6%以下の範囲内で添加
されることにより、フィンとの間の孔食電位を適正な範
囲内に取ることができ、容易に耐食性及びろう付性の良
好な熱交換器コアを提供することができる。また、フィ
ンにはろう付用組成物をクラッドする必要がないので、
フィンの加工等が容易となり、しかもバリ等の発生を防
止することができるので、品質の良好な熱交換器コアを
提供することができる。更には、生産性の向上が図れる
と共に、コストの低廉が図れる。
Therefore, a zinc diffusion layer can be formed on the surface of the heat exchange tube without depositing zinc on the surface of the heat exchange tube in advance. By being added within the range of 01% or more and 0.6% or less, the pitting potential between the fin and the fin can be set within an appropriate range, and heat exchange with good corrosion resistance and brazing property can be easily performed. A vessel core can be provided. Also, since there is no need to clad the brazing composition on the fins,
Since the processing of the fins becomes easy and the occurrence of burrs and the like can be prevented, a high-quality heat exchanger core can be provided. Further, the productivity can be improved and the cost can be reduced.

【0013】[0013]

【発明の実施の形態】以下、この発明の実施の形態を添
付図面に基づいて詳述する。図1はこの発明に係るアル
ミニウム製熱交換器コアを用いたアルミニウム製熱交換
器の要部を示す斜視図である。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a perspective view showing a main part of an aluminum heat exchanger using an aluminum heat exchanger core according to the present invention.

【0014】上記熱交換器は、熱媒体の流入口1又は流
出口2を有する一対の対峙するヘッダ管3と、互いに平
行に配列されてヘッダ管3に連通する熱交換管としての
複数の押出偏平管4と、押出偏平管4の間に配設される
フィン例えばコルゲートフィン5とで構成されている。
このように構成される熱交換器において、ヘッダ管3と
押出偏平管4はアルミニウム製押出形材にて形成され、
コルゲートフィン5はアルミニウム製板材を蛇行状に屈
曲形成してなり、そして、これらヘッダ管3、押出偏平
管4及びコルゲートフィン5をろう付用組成物(ろう
材)を介して一体ろう付して熱交換器が構成されてい
る。
The heat exchanger comprises a pair of opposed header tubes 3 having an inlet 1 or an outlet 2 for a heat medium and a plurality of extrusion tubes as heat exchange tubes arranged in parallel with each other and communicating with the header tubes 3. It is composed of a flat tube 4 and fins, for example, corrugated fins 5 disposed between the extruded flat tubes 4.
In the heat exchanger configured as described above, the header tube 3 and the extruded flat tube 4 are formed from an extruded aluminum member,
The corrugated fin 5 is formed by bending an aluminum plate material in a meandering shape, and the header tube 3, the extruded flat tube 4, and the corrugated fin 5 are integrally brazed via a brazing composition (brazing material). A heat exchanger is configured.

【0015】この場合、上記押出偏平管4とコルゲート
フィン5とからなる熱交換器コア6は、予め亜鉛(Z
n)を付着しないアルミニウム製押出偏平管(例えばJ
ISA1050)、具体的には銅(Cu)元素を0.0
1%以上,0.6%以下を含み残量が実質的にアルミニ
ウムからなる押出偏平管にて形成され、コルゲートフィ
ン5は、ろう材をクラッドしないZn含有のアルミニウ
ム製板材にて形成されている。また、ろう付用組成物と
して、ケイ素(Si)粉末とフッ素系フラックス粉末の
混合物、あるいはSi粉末及びZn粉末とフッ素系フラ
ックス粉末の混合物が使用されている。なお、フッ素系
フラックスとしては、例えばKAlF4,K2AlF5・
H2OあるいはK3AlF6等の組成物が使用される。こ
のようなフッ素系フラックスはアルミニウムに対して塩
化物のように腐食性を持たないので、好適である。ま
た、Siとフラックスの割合(重量%)は、Si:フラ
ックス=1:2となっている。
In this case, the heat exchanger core 6 composed of the extruded flat tubes 4 and the corrugated fins 5 is made of zinc (Z
n) Extruded flat aluminum tube without adhesion (for example, J
ISA1050), specifically, copper (Cu) element of 0.0
The corrugated fins 5 are formed of extruded flat tubes containing 1% or more and 0.6% or less and substantially made of aluminum, and the corrugated fins 5 are formed of a Zn-containing aluminum plate material that does not clad the brazing material. . Further, as the brazing composition, a mixture of silicon (Si) powder and fluorine-based flux powder, or a mixture of Si powder and Zn powder and fluorine-based flux powder is used. As the fluorine-based flux, for example, KAlF4, K2AlF5
A composition such as H2O or K3AlF6 is used. Such a fluorine-based flux is suitable because it does not corrode aluminum like a chloride. Further, the ratio (% by weight) of Si and the flux is Si: flux = 1: 2.

【0016】上記熱交換器コア6を製造するには、ま
ず、図2に示すような、複数の熱媒体用の通路4aを有
するアルミニウム製押出偏平管4と、蛇行状に屈曲され
たZn含有のコルゲートフィン5を用意する。この際、
コルゲートフィン5は、Zn含有のアルミニウム製板材
(例えばJIS A3N03,A3N23)を成形ロー
ルを用いて蛇行状に屈曲するので、ろう材がクラッドさ
れたブレージングシートに比べて成形ロールの摩耗が少
ない。また、フィンにルーバー等を成形する場合にもバ
リ等の発生がないので、フィンの品質の向上を図ること
ができる。
In order to manufacture the heat exchanger core 6, first, as shown in FIG. 2, an extruded flat aluminum tube 4 having a plurality of heat medium passages 4a and a Zn-containing bent bent meandering. Is prepared. On this occasion,
The corrugated fins 5 are formed by bending a Zn-containing aluminum plate material (for example, JIS A3N03, A3N23) in a meandering shape using a forming roll, so that abrasion of the forming roll is less than that of a brazing sheet clad with a brazing material. Further, even when a louver or the like is formed on the fin, no burrs or the like are generated, so that the quality of the fin can be improved.

【0017】次に、図3に示すようにバインダー例えば
熱可塑性アクリル樹脂等を用いてろう付用組成物7を押
出偏平管4の表面に塗布する。このろう付用組成物を押
出偏平管4に塗布するには、例えばバインダーとろう付
用組成物との混合スラリー液をスプレー塗布するか、あ
るいは、バインダーとろう付用組成物との混合スラリー
液中に押出偏平管4を浸漬して垂直に引き上げて余剰に
付着するスラリー液を除去するなどして行う。
Next, as shown in FIG. 3, a brazing composition 7 is applied to the surface of the extruded flat tube 4 using a binder such as a thermoplastic acrylic resin. In order to apply the brazing composition to the extruded flat tube 4, for example, a mixed slurry liquid of a binder and a brazing composition is applied by spraying, or a mixed slurry liquid of a binder and a brazing composition is applied. The extruded flat tube 4 is immersed therein and vertically lifted to remove excessively attached slurry liquid.

【0018】次に、このようにしてろう付用組成物が付
着された押出偏平管4と、Zn含有のコルゲートフィン
5を組み付けて図示しない治具にて固定するかヘッダ管
3に組み付けて固定し、そして、加熱炉等で所定温度例
えば590℃以上に加熱して、ろう付用組成物を溶融さ
せて押出偏平管4とコルゲートフィン5とを一体ろう付
する。このとき、ろう付組成物によりコルゲートフィン
5の一部が溶融し、コルゲートフィン5中のZnが押出
偏平管4の表面に拡散して、ろう付用組成物中のSiと
共に押出偏平管4の表面にSiとZnの拡散層8が形成
される。また、押出偏平管4とコルゲートフィン5はA
l−Si−Zn合金のフィレット9によって一体接合さ
れる。したがって、押出偏平管4の表面にSiとZnの
拡散層8が形成されるので、熱交換器コア6は耐食性を
有する。
Next, the extruded flat tube 4 to which the brazing composition is attached and the Zn-containing corrugated fin 5 are assembled and fixed with a jig (not shown) or fixed to the header tube 3. Then, the extruded flat tube 4 and the corrugated fin 5 are integrally brazed by heating to a predetermined temperature, for example, 590 ° C. or higher in a heating furnace or the like to melt the brazing composition. At this time, a part of the corrugated fin 5 is melted by the brazing composition, Zn in the corrugated fin 5 diffuses to the surface of the extruded flat tube 4, and Si of the extruded flat tube 4 is formed together with Si in the brazing composition. A diffusion layer 8 of Si and Zn is formed on the surface. The extruded flat tube 4 and the corrugated fin 5 are A
They are integrally joined by a fillet 9 of an l-Si-Zn alloy. Therefore, since the diffusion layer 8 of Si and Zn is formed on the surface of the extruded flat tube 4, the heat exchanger core 6 has corrosion resistance.

【0019】[0019]

【実施例】次に、この発明に係る熱交換器コアと従来の
アルミニウム製熱交換器コアとのろう付性と耐食性の評
価実験について説明する。
Next, an experiment for evaluating the brazeability and corrosion resistance of the heat exchanger core according to the present invention and a conventional aluminum heat exchanger core will be described.

【0020】 実験−1 ◎使用素材 ★押出偏平管 材質:JIS A1050(Cu含有量0.02%) :JIS A1050+Zn溶射(Zn目付量8g/m2) :NE合金(耐食合金) (組成:0.05%Si,0.18%Fe,0.4%Cu, 0.02%Zn,0.04%Zr) 形状:外寸法(幅×肉厚)=19.2mm×1.93mm (片側肉厚:0.4mm) ★フィン: 材質:生地材(JIS A3N03+Zn含有量0%〜4.0%) :ブレージングシート(A4343+1.0%Zn/3N03+ 1.5%Zn/A4343+1.0%Zn) :形状(幅×肉厚)=21.1mm×0.1mm ★ろう付組成物 Si粉末+フッ素系フラックス粉末+バインダー 全付着量:16g/m2 ◎ろう付条件 現行操業条件:窒素雰囲気中(窒素量:40m3/H) :昇温速度:30℃/MExperiment-1 ◎ Materials used ★ Extruded flat tube Material: JIS A1050 (Cu content 0.02%): JIS A1050 + Zn spraying (Zn basis weight 8 g / m 2 ): NE alloy (corrosion resistant alloy) (Composition: 0) (0.05% Si, 0.18% Fe, 0.4% Cu, 0.02% Zn, 0.04% Zr) Shape: External dimensions (width x thickness) = 19.2mm x 1.93mm (one side thickness) Thickness: 0.4 mm) ★ Fin: Material: Fabric material (JIS A3N03 + Zn content: 0% to 4.0%): Brazing sheet (A4343 + 1.0% Zn / 3N03 + 1.5% Zn / A4343 + 1.0% Zn): Shape (width × thickness) = 21.1 mm × 0.1 mm ★ Brazing composition Si powder + fluorine flux powder + binder Total adhesion amount: 16 g / m 2 ◎ Brazing condition Current operating condition: Nitrogen atmosphere (Nitrogen Elementary amount: 40 m 3 / H): Temperature rise rate: 30 ° C./M

【0021】表1に示すように、上記押出偏平管4と生
地フィン材(Zn含有量0%〜4.0%)を上記ろう付
組成物でろう付接合した比較例1,2及び実施例1〜
4、また、ブレージングシートフィンを用いたろう付接
合した比較ろう付法1,2(現行ろう付)の押出偏平管
とフィンの接合部を切断し確認したところ、表2に示す
ろう付結果が得られた。
As shown in Table 1, the extruded flat tube 4 and the dough fin material (Zn content: 0% to 4.0%) were joined by brazing with the brazing composition. 1 to
4. In addition, when the joint between the extruded flat tube and the fin was cut and confirmed by the comparative brazing methods 1 and 2 (current brazing) in which the brazing was performed using brazing sheet fins, the brazing results shown in Table 2 were obtained. Was done.

【0022】また、ろう付製品をCASS試験(JIS
H8681)により耐食性評価を行ったところ、表2
に示すような結果が得られた。
In addition, brazing products are subjected to CASS test (JIS
H8681), the corrosion resistance was evaluated.
The result as shown in FIG.

【0023】また、押出偏平管4の断面をX線マイクロ
アナライザー(XMA)でZn及びSiの拡散状況を調
査したところ、表2に示すような結果が得られた。
When the cross section of the extruded flat tube 4 was examined for the diffusion of Zn and Si with an X-ray microanalyzer (XMA), the results shown in Table 2 were obtained.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】上記実験の結果、実施例1〜4の接合状態
はいずれも現行ブレージングシートを用いた熱交換器コ
アと遜色はなく、ろう付率は99.5%以上であった。
As a result of the above experiment, the joining state of Examples 1 to 4 was not inferior to the heat exchanger core using the current brazing sheet, and the brazing rate was 99.5% or more.

【0027】また、ろう付製品をCASS試験により耐
食性を調べたところ、試験時間1500時間で、比較例
1,2及び現行ろう付法1,2は貫通孔が発生したのに
対し、実施例1〜4の製品は貫通孔は生じなかった。
When the corrosion resistance of the brazed product was examined by the CASS test, in Comparative Examples 1 and 2 and the current brazing methods 1 and 2, a through-hole was generated in a test time of 1500 hours. No. 4 products did not have through holes.

【0028】また、押出偏平管4の表面のZn及びSi
の拡散状況(表面濃度,拡散深さ)を調べた結果、実施
例1〜4のZn拡散状況は、0.6%〜2.2%、72
μm〜80μm、Siの拡散状況は0.8%〜1.0
%、67μm〜78μmであった。
Further, Zn and Si on the surface of the extruded flat tube 4 are
As a result of examining the diffusion state (surface concentration, diffusion depth) of Zn, the Zn diffusion states of Examples 1 to 4 were 0.6% to 2.2%,
μm to 80 μm, Si diffusion state is 0.8% to 1.0
%, 67 μm to 78 μm.

【0029】上記より、Si粉末とフッ素系フラックス
の混合物からなるろう付用組成物を用い、Zn含有量
1.2%〜4.0%のアルミニウム製フィンと、予めZ
nを付着しないアルミニウム製押出偏平管とをろう付し
てなる熱交換器コアは、現行の熱交換器コアと同等若し
くは同等以上のろう付性及び耐食性が得られることが判
った。なお、上記実験結果には表記していないが、フィ
ン材のZn含有量が1%未満だと表面のZn拡散濃度が
0.4%以下となり、Zn拡散層の犠牲陽極作用が不十
分となる。また、Zn含有量が5%を越えると、フィン
材自身の腐食が著しくなり、熱交換器としての寿命が短
くなると共に、高温での材料強度が低下しろう付中フィ
ンが座屈し易い。したがって、フィン材のZn含有量が
1.0%〜5.0%の範囲が現行の熱交換器コアと同等
若しくは同等以上のろう付性及び耐食性が得られる。
As described above, using a brazing composition comprising a mixture of Si powder and a fluorine-based flux, an aluminum fin having a Zn content of 1.2% to 4.0%,
It has been found that a heat exchanger core obtained by brazing an aluminum extruded flat tube to which n does not adhere has brazing properties and corrosion resistance equivalent to or higher than those of a current heat exchanger core. Although not described in the above experimental results, when the Zn content of the fin material is less than 1%, the Zn diffusion concentration on the surface becomes 0.4% or less, and the sacrificial anode function of the Zn diffusion layer becomes insufficient. . On the other hand, if the Zn content exceeds 5%, the corrosion of the fin material itself becomes remarkable, shortening the life as a heat exchanger, lowering the material strength at high temperatures, and easily buckling the fin during brazing. Therefore, when the Zn content of the fin material is in the range of 1.0% to 5.0%, brazing properties and corrosion resistance equal to or higher than the current heat exchanger core can be obtained.

【0030】また、上記実験結果には表記していない
が、これら一連の実験結果からZnの添加量が多い程、
高濃度のZn拡散層が形成でき、耐食性の向上が期待で
きるし、また、Siの拡散層は押出偏平管側の孔食電位
を貴にするので、Si拡散層がない押出偏平管に比べ耐
食性向上が図れることが知見された。
Although not shown in the above experimental results, the series of experimental results show that the larger the amount of Zn added,
A high-concentration Zn diffusion layer can be formed, and the corrosion resistance can be improved. In addition, since the Si diffusion layer makes the pitting potential on the extruded flat tube side noble, the corrosion resistance is higher than that of the extruded flat tube without the Si diffusion layer. It was found that improvement could be achieved.

【0031】実験−2 ◎使用素材 ★押出偏平管 材質:表3に示したCu含有量の異なる1000系ア
ルミニウム合金 形状:外寸法(幅×肉厚)=19.2mm×1.93
mm(片側肉厚:0.4mm)
Experiment-2 ◎ Material used Extruded flat tube Material: 1000 series aluminum alloy with different Cu content shown in Table 3 Shape: External dimensions (width x wall thickness) = 19.2 mm x 1.93
mm (one side thickness: 0.4mm)

【0032】[0032]

【表3】 ★フィン 材質:JIS A3N23(Zn含有量2.0%) 形状:(幅×肉厚)=21.1mm×0.1mm ★ろう付用組成物 Si粉末+フッ素系フラックス粉末+バインダー 全付着量:16g/m2 ◎ろう付条件 現行操業条件:窒素雰囲気中(窒素量:40m3/H) :昇温速度:30℃/M[Table 3] ★ Fin material: JIS A3N23 (Zn content 2.0%) Shape: (width × thickness) = 21.1 mm × 0.1 mm ★ Brazing composition Si powder + fluorine flux powder + binder Total adhesion amount: 16 g / m 2 ◎ Brazing conditions Current operating conditions: In a nitrogen atmosphere (nitrogen amount: 40 m 3 / H): Heating rate: 30 ° C./M

【0033】上記ろう付組成物でろう付接合した押出偏
平管とフィンの接合部を切断し接合状態を確認したとこ
ろ、いずれもろう付率99.5%以上と良好であった。
また、フィン間の押出偏平管のZn及びSiの拡散状況
(表面濃度,拡散深さ)をX線マイクロアナライザーで
調べた結果、いずれもZnの表面濃度は0.9〜1.1
%,拡散深さは71〜78μm,Siの表面濃度は0.
9〜1.2%,拡散深さは66〜77μmの範囲にあっ
た。
When the joint between the extruded flat tube and the fin brazed with the above brazing composition was cut and the joining state was confirmed, the brazing ratio was 99.5% or more in all cases.
In addition, as a result of examining the diffusion state (surface concentration, diffusion depth) of Zn and Si in the extruded flat tube between the fins by an X-ray microanalyzer, the surface concentration of Zn was 0.9 to 1.1 in all cases.
%, The diffusion depth is 71 to 78 μm, and the surface concentration of Si is 0.1%.
9 to 1.2%, the diffusion depth was in the range of 66 to 77 μm.

【0034】次に、耐食性を評価するため、押出偏平管
内部(表面から約150μm内側)とフィンとの電位差
の測定(4.82%AlCl3・6H2O液中でアノード
分極した孔食電位から求めた)、及びろう付製品のCA
SS試験を行ったところ、表4に示すような結果が得ら
れた。
Next, in order to evaluate the corrosion resistance, the potential difference between the inside of the extruded flat tube (about 150 μm inside from the surface) and the fin was measured (the pitting potential anodically polarized in a 4.82% AlCl 3 .6H 2 O solution). And CA for brazing products
When the SS test was performed, the results shown in Table 4 were obtained.

【0035】[0035]

【表4】 [Table 4]

【0036】上記実験の結果、押出偏平管のCu含有量
が0.005%の比較例1は、フィンとの電位差が38
mVと小さく、CASS試験1500時間でフィン間に
貫通孔が発生した。また、Cu含有量が0.071%の
比較例2は、フィンとの電位差は十分あるため、フィン
間の腐食は軽微であったが、CASS試験1500時間
でフィンの犠牲腐食作用の及ばないヘッダ管近傍に貫通
孔が生じていた。これに対し、この発明の実施例2,3
はフィンとの電位差が85mV以上あることと、押出偏
平管のCu含有量が0.18%以下と少ないため、CA
SS試験1500時間でもフィン間とヘッダ管近傍の腐
食はいずれも軽微であった。なお、フィンとの電位差が
63mVの実施例1はフィン間に、Cu含有量が0.5
5%の実施例4はヘッダ管付近に、CASS試験150
0時間で200〜250μmの腐食孔が見られたが、貫
通孔は生じていなかった。なお、明記していないが、C
u含有量0.1%,0.6%の場合も上記実施例1(C
u含有量0.13%),実施例4(Cu含有量0.55
%)と同様の結果が得られるものと推測される。
As a result of the above experiment, in Comparative Example 1 in which the Cu content of the extruded flat tube was 0.005%, the potential difference from the fin was 38
mV, and a through hole was generated between the fins after 1500 hours in the CASS test. In Comparative Example 2 in which the Cu content was 0.071%, since the potential difference from the fin was sufficient, the corrosion between the fins was slight. A through hole was formed near the pipe. In contrast, Embodiments 2 and 3 of the present invention
Since the potential difference from the fin is 85 mV or more and the Cu content of the extruded flat tube is as small as 0.18% or less, CA
Even in the SS test for 1500 hours, the corrosion between the fins and the vicinity of the header tube were all slight. In Example 1 in which the potential difference from the fin was 63 mV, the Cu content was 0.5
5% of Example 4 has a CASS test 150 near the header tube.
At 0 hours, corrosion holes of 200 to 250 μm were found, but no through holes were formed. Although not specified, C
In the case where the u content is 0.1% or 0.6%, Example 1 (C
u content 0.13%), Example 4 (Cu content 0.55
%) Is expected to be obtained.

【0037】[0037]

【発明の効果】以上に説明したように、この発明によれ
ば、ろう付用組成物にケイ素とフッ素系フラックスを用
いることで、熱交換管に予めZnを付着する必要がな
く、またフィンにはろう付用組成物のクラッドされてい
ないZn含有の生地フィン材を用いることができ、ろう
付時にろう付用組成物によりフィンの一部が溶融し、フ
ィン中の亜鉛が熱交換管の表面に拡散され、熱交換管の
表面にケイ素と亜鉛の混合拡散層を形成することができ
る。
As described above, according to the present invention, by using silicon and a fluorine-based flux for the brazing composition, it is not necessary to previously attach Zn to the heat exchange tube, and the fins can be used. A finned material containing Zn, which is not clad with a brazing composition, can be used. At the time of brazing, a part of the fins is melted by the brazing composition, and zinc in the fins is removed from the surface of the heat exchange tube. To form a mixed diffusion layer of silicon and zinc on the surface of the heat exchange tube.

【0038】したがって、予め熱交換管の表面に亜鉛を
付着することなく、熱交換管の表面に亜鉛拡散層を形成
することができ、しかも、熱交換管は銅元素を0.01
%以上,0.6%以下を含み実質的にアルミニウムから
なるので、フィンとの間の孔食電位を適正な範囲内にと
ることができ、容易に耐食性及びろう付性の良好な熱交
換器コアを提供することができる。また、フィンにはろ
う付用組成物をクラッドする必要がないので、フィンの
加工等が容易となり、しかもバリ等の発生を防止するこ
とができるので、品質の良好な熱交換器コアを提供する
ことができる。更には、生産性の向上が図れると共に、
コストの低廉が図れる等の優れた効果が得られる。
Therefore, a zinc diffusion layer can be formed on the surface of the heat exchange tube without previously depositing zinc on the surface of the heat exchange tube.
% And not more than 0.6% and substantially made of aluminum, so that the pitting potential between the fin and the fin can be kept within an appropriate range, and the heat exchanger easily has good corrosion resistance and brazing properties. A core can be provided. In addition, since it is not necessary to clad the brazing composition on the fins, the fins can be easily processed and the occurrence of burrs and the like can be prevented, so that a high-quality heat exchanger core is provided. be able to. Furthermore, while improving productivity,
Excellent effects such as low cost can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係る熱交換器コアを用いた熱交換器
の一例を示す要部斜視図である。
FIG. 1 is a perspective view of a main part showing an example of a heat exchanger using a heat exchanger core according to the present invention.

【図2】この発明における押出偏平管とコルゲートフィ
ンを示す斜視図である。
FIG. 2 is a perspective view showing an extruded flat tube and a corrugated fin according to the present invention.

【図3】この発明における押出偏平管にろう付用組成物
を塗布する状態の一例を示す断面図である。
FIG. 3 is a cross-sectional view showing an example of a state in which a brazing composition is applied to an extruded flat tube according to the present invention.

【図4】この発明における熱交換管とフィンとのろう付
状態を示す拡大断面図である。
FIG. 4 is an enlarged sectional view showing a brazed state of a heat exchange tube and a fin according to the present invention.

【符号の説明】[Explanation of symbols]

4 押出偏平管(熱交換管) 5 コルゲートフィン 6 熱交換器コア 7 ろう付用組成物 8 Si,Zn拡散層 Reference Signs List 4 extruded flat tube (heat exchange tube) 5 corrugated fin 6 heat exchanger core 7 brazing composition 8 Si, Zn diffusion layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 敏弘 静岡県庵原郡蒲原町蒲原161 日本軽金属 株式会社蒲原熱交製品工場内 (72)発明者 田中 庸彦 静岡県庵原郡蒲原町蒲原161 日本軽金属 株式会社蒲原熱交製品工場内 (72)発明者 小笠原 明徳 東京都品川区東品川2丁目2番20号 日本 軽金属株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshihiro Suzuki 161 Kambara, Kambara-cho, Anbara-gun, Shizuoka Nippon Light Metal Co., Ltd. Inside the Kambara Heat Exchange Products Factory (72) Inventor Yoshihiko Tanaka 161 Kambara, Kambara-cho, Anbara-gun, Shizuoka Japan Nippon Light Metal (72) Inventor Akinori Ogasawara 2-2-2-20 Higashishinagawa, Shinagawa-ku, Tokyo Inside Japan Light Metal Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 銅元素を0.01%以上,0.6%以下
を含み残量が実質的にアルミニウムからなるアルミニウ
ム製熱交換管と、アルミニウム製フィンとをろう付用組
成物を介してろう付してなるアルミニウム製熱交換器コ
アであって、 上記熱交換管の表面にケイ素と亜鉛の混合拡散層が形成
され、上記フィンは上記亜鉛拡散層を形成するための亜
鉛を含有するアルミニウム製部材にて形成されることを
特徴とするアルミニウム製熱交換器コア。
An aluminum heat exchange tube containing 0.01% or more and 0.6% or less of copper element and substantially made of aluminum and a fin made of aluminum via a brazing composition. An aluminum heat exchanger core formed by brazing, wherein a mixed diffusion layer of silicon and zinc is formed on the surface of the heat exchange tube, and the fin is aluminum containing zinc for forming the zinc diffusion layer. An aluminum heat exchanger core characterized by being formed by a member made of aluminum.
【請求項2】 上記フィン中の亜鉛濃度が1〜5%であ
ることを特徴とする請求項1記載のアルミニウム製熱交
換器コア。
2. The aluminum heat exchanger core according to claim 1, wherein the zinc concentration in the fin is 1 to 5%.
【請求項3】 銅元素を0.01%以上,0.6%以下
を含み残量が実質的にアルミニウムからなるアルミニウ
ム製熱交換管とアルミニウム製フィンとをろう付用組成
物を介してろう付してなるアルミニウム製熱交換器コア
の製造方法であって、 上記熱交換管の表面にケイ素とフッ素系フラックスとか
らなるろう付用組成物を塗布し、上記フィンに亜鉛を含
有するアルミニウム製部材を用い、上記熱交換管とフィ
ンとを所定温度に加熱して、上記熱交換管とフィンとを
ろう付すると共に、上記熱交換管の表面にケイ素と亜鉛
の混合拡散層を形成することを特徴とするアルミニウム
製熱交換器コアの製造方法。
3. A brazing composition comprising an aluminum heat exchange tube and aluminum fins containing 0.01% or more and 0.6% or less of copper element and substantially consisting of aluminum and having a balance of aluminum. A method for manufacturing an aluminum heat exchanger core, comprising: applying a brazing composition comprising silicon and a fluorine-based flux to the surface of the heat exchange tube; Using a member, heating the heat exchange tube and the fin to a predetermined temperature, brazing the heat exchange tube and the fin, and forming a mixed diffusion layer of silicon and zinc on the surface of the heat exchange tube. A method for producing an aluminum heat exchanger core, comprising:
JP26921297A 1997-09-17 1997-09-17 Heat exchanger core made of aluminum and its production Pending JPH1192848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26921297A JPH1192848A (en) 1997-09-17 1997-09-17 Heat exchanger core made of aluminum and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26921297A JPH1192848A (en) 1997-09-17 1997-09-17 Heat exchanger core made of aluminum and its production

Publications (1)

Publication Number Publication Date
JPH1192848A true JPH1192848A (en) 1999-04-06

Family

ID=17469242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26921297A Pending JPH1192848A (en) 1997-09-17 1997-09-17 Heat exchanger core made of aluminum and its production

Country Status (1)

Country Link
JP (1) JPH1192848A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078372A1 (en) * 2004-02-12 2005-08-25 Showa Denko K.K. Heat exchanger and method for manufacturing the same
JP2009068083A (en) * 2007-09-14 2009-04-02 Mitsubishi Alum Co Ltd Heat exchanger member made of aluminum having excellent corrosion resistance, and method for manufacturing heat exchanger made of aluminum having excellent corrosion resistance
JP2016035368A (en) * 2014-08-04 2016-03-17 株式会社Uacj Aluminum alloy heat exchanger, and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078372A1 (en) * 2004-02-12 2005-08-25 Showa Denko K.K. Heat exchanger and method for manufacturing the same
US7438121B2 (en) 2004-02-12 2008-10-21 Showa Denko K.K. Heat exchanger and method for manufacturing the same
JP2009068083A (en) * 2007-09-14 2009-04-02 Mitsubishi Alum Co Ltd Heat exchanger member made of aluminum having excellent corrosion resistance, and method for manufacturing heat exchanger made of aluminum having excellent corrosion resistance
JP2016035368A (en) * 2014-08-04 2016-03-17 株式会社Uacj Aluminum alloy heat exchanger, and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP3328923B2 (en) Manufacturing method of aluminum heat exchanger core
US5464146A (en) Thin film brazing of aluminum shapes
EP1265725B1 (en) Brazing sheet product and method of manufacturing an assembly using the brazing sheet product
US4732311A (en) Process of producing lightweight and corrosion-resistant heat exchanger
JP5115963B2 (en) Aluminum heat exchanger member with excellent corrosion resistance and method for producing aluminum heat exchanger with excellent corrosion resistance
WO2011108460A1 (en) Heat exchanger constituted of aluminum alloy
JP2009058139A (en) Member for aluminum-made heat exchanger having superior corrosion resistance
CN101146921A (en) Aluminum alloy plate and heat exchanger formed by using same
JP5334086B2 (en) Aluminum heat exchanger having excellent corrosion resistance and method for producing the same
JP5101812B2 (en) High corrosion resistance tube for heat exchanger, heat exchanger and method for producing the same
JPH1192848A (en) Heat exchanger core made of aluminum and its production
JPH09137245A (en) Aluminum tubular body for heat exchanger and aluminum-made heat exchanger using the same body
US4852791A (en) Method for making corrosion resistance heat exchangers
JP2001502757A (en) Advanced electrolytic corrosion protection
JP6968598B2 (en) Manufacturing method of aluminum alloy heat exchanger with excellent corrosion resistance and aluminum alloy heat exchanger
EP1526944A1 (en) Brazing product and method of its manufacture
JP3759215B2 (en) Al brazing sheet for vacuum brazing, tube element for drone cup type heat exchanger and drone cup type heat exchanger
JP2842666B2 (en) High strength and high corrosion resistance clad material for A1 heat exchanger
JP2842667B2 (en) High strength and high corrosion resistance A1 alloy clad material for A1 heat exchanger
JP2004330266A (en) Manufacturing method of lamination type heat exchanger
JPH10263799A (en) Manufacture of heat exchanger excellent in corrosion resistance
JP6518804B2 (en) Method of manufacturing aluminum alloy pipe for heat exchanger
JP3151152B2 (en) Evaporator with excellent corrosion resistance
JP7432305B2 (en) Surface treated base materials for brazing and heat exchangers
JP2017155308A (en) Aluminum alloy-made brazing fin material for heat exchanger and aluminum alloy-made heat exchanger using the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031029