JP2009068083A - Heat exchanger member made of aluminum having excellent corrosion resistance, and method for manufacturing heat exchanger made of aluminum having excellent corrosion resistance - Google Patents

Heat exchanger member made of aluminum having excellent corrosion resistance, and method for manufacturing heat exchanger made of aluminum having excellent corrosion resistance Download PDF

Info

Publication number
JP2009068083A
JP2009068083A JP2007238923A JP2007238923A JP2009068083A JP 2009068083 A JP2009068083 A JP 2009068083A JP 2007238923 A JP2007238923 A JP 2007238923A JP 2007238923 A JP2007238923 A JP 2007238923A JP 2009068083 A JP2009068083 A JP 2009068083A
Authority
JP
Japan
Prior art keywords
tube
heat exchanger
corrosion resistance
brazing
fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007238923A
Other languages
Japanese (ja)
Other versions
JP5115963B2 (en
Inventor
Yasunori Hiyougo
靖憲 兵庫
Masazo Asano
雅三 麻野
Ken Toma
建 当摩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2007238923A priority Critical patent/JP5115963B2/en
Publication of JP2009068083A publication Critical patent/JP2009068083A/en
Application granted granted Critical
Publication of JP5115963B2 publication Critical patent/JP5115963B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger member used for the manufacture of a heat exchanger and having superior brazeability and excellent long-term corrosion resistance. <P>SOLUTION: The member comprises a tube to which an Si powder of ≤30 μm maximum particle size is applied together with a Zn-containing fluoride-based flux and a fin. The tube is composed of a material which has a composition consisting of 0.001 to 0.10 mass% Cu and the balance aluminum with inevitable impurities and is ≥30 mV nobler in electric potential after brazing than the fin. By carrying out brazing using the fine Si powder, the occurrence of local melting of the tube at brazing can be prevented and excellent brazing can be done. Because the tube is ≥30 mV nobler than the fin and further a moderately base layer is formed in the surface layer of the tube, the corrosion of the tube can be satisfactorily prevented. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、自動車のエアコンコンデンサなどに好適なアルミニウム製熱交換器の製造に供される、耐食性に優れたアルミニウム製熱交換器用部材および耐食性に優れたアルミニウム製熱交換器の製造方法に関するものである。   The present invention relates to a member for an aluminum heat exchanger excellent in corrosion resistance and a method for manufacturing an aluminum heat exchanger excellent in corrosion resistance, which are used in the manufacture of an aluminum heat exchanger suitable for an air conditioner capacitor of an automobile. is there.

ろう付によって製造されるアルミニウム製熱交換器では、これまでAl製の芯材にAl−Si合金ろう材をクラッドしたブレージングシートが広く使用されてきているが、これを用いなくともSi粉末をフラックスとバインダとの混合物の形でチューブ(押出管など)の表面に塗布したものを使用することによって安価に製品が製造できるようになっている。   In aluminum heat exchangers manufactured by brazing, brazing sheets in which an Al-Si alloy brazing material is clad on an Al core material have been widely used so far. A product can be manufactured at a low cost by using a tube (extruded tube or the like) coated in the form of a mixture of a binder and a binder.

しかし、Si粉末を用いたろう付けでは、ろう付時の加熱でチューブ表面から内部にSiが拡散するため、Si濃度が表面で高く内部で低くくなり、チューブには表面で電位が高く内部で低い電位勾配が形成される。このため、チューブに腐食が生じると孔食となり、冷媒漏れや強度低下の原因となっていた。   However, in brazing using Si powder, Si diffuses from the tube surface to the inside due to heating during brazing, so the Si concentration is high on the surface and low inside, and the tube has a high potential on the surface and low inside. A potential gradient is formed. For this reason, when corrosion occurs in the tube, it becomes pitting corrosion, causing refrigerant leakage and strength reduction.

そこで、亜鉛含有フラックスを用いることで、ろう付時の亜鉛拡散による犠牲層をチューブ表面に形成させ、チューブに腐食が生じた場合でも全面腐食となって貫通孔の発生が抑制される方法が提案されている(例えば特許文献1参照)
特開2004−330233号公報
Therefore, by using zinc-containing flux, a method was proposed in which a sacrificial layer formed by zinc diffusion during brazing was formed on the tube surface, and even when the tube was corroded, the entire surface was corroded and the generation of through holes was suppressed. (See, for example, Patent Document 1)
JP 2004-330233 A

しかし、上記Si粉末と亜鉛含有フラックスを用いてろう付けする方法では、ろう付時にSi粉末が周囲のアルミニウムと合金化してAl−Si合金ろうを形成する際に、チューブの局部溶融による凹みが生じ、この凹みにフラックスの亜鉛成分も濃縮されてしまうため、製品の使用時にこの凹みを起点に腐食が生じやすくなるという問題がある。また、チューブ平坦部以外はZn含有フラックスの塗布がないため、この部分はフィンより十分貴でないと孔食が発生し易いという問題が生じる。   However, in the method of brazing using the above-mentioned Si powder and zinc-containing flux, when the Si powder is alloyed with the surrounding aluminum during brazing to form an Al-Si alloy brazing, a dent due to local melting of the tube occurs. Since the zinc component of the flux is also concentrated in this recess, there is a problem that corrosion tends to occur starting from this recess when the product is used. Moreover, since there is no application | coating of Zn containing flux except a tube flat part, if this part is not more noble than a fin, the problem that a pitting corrosion will generate | occur | produce will arise.

本発明は、上記事情を背景としてなされたものであり、Zn含有フラックスを用いてチューブのろう付けを行うことを可能にすることで、効果的にチューブの耐食性を向上させることができる耐食性に優れたアルミニウム製熱交換器用部材およびアルミニウム製熱交換器の製造方法を提供することを目的とする。   The present invention has been made against the background of the above circumstances, and is excellent in corrosion resistance, which can effectively improve the corrosion resistance of the tube by enabling the brazing of the tube using a Zn-containing flux. Another object is to provide a member for aluminum heat exchanger and a method for producing the aluminum heat exchanger.

すなわち、本発明のアルミニウム製熱交換器用部材のうち、第1の本発明は、最大粒径30μm以下のSi粉末をZnを含有するフッ化物系フラックスとともに塗布したチューブとフィンとを備え、前記チューブは、質量%で、Cu:0.001〜0.10%を含有し、残部アルミニウムと不可避不純物からなる組成を有するとともに、ろう付け後電位においてフィンよりも30mV以上貴である材質からなることを特徴とする。   That is, among the aluminum heat exchanger members of the present invention, the first present invention includes a tube and a fin coated with Si powder having a maximum particle size of 30 μm or less together with a fluoride-based flux containing Zn, and the tube Is composed of a material containing Cu: 0.001% to 0.10% by mass%, the balance being aluminum and unavoidable impurities, and being noble more than 30 mV than the fin at the potential after brazing. Features.

第2の本発明のアルミニウム製熱交換器用部材は、前記第1の本発明において、前記チューブの組成に、さらに質量%で、Mn:0.05〜0.50%、Si:0.10%超〜0.50%未満を含有することを特徴とする。   The member for an aluminum heat exchanger according to the second aspect of the present invention is the composition of the tube according to the first aspect of the present invention, further in mass%, Mn: 0.05 to 0.50%, Si: 0.10%. It contains more than 0.5% and less than 0.50%.

第3の本発明のアルミニウム製熱交換器用部材は、前記第1または第2の本発明において、前記チューブの組成に、さらに質量%で、Fe:0.10〜0.50%、Ti:0.01〜0.20%のうち1種または2種以上を含有することを特徴とする。   The member for aluminum heat exchanger according to the third aspect of the present invention is the composition of the tube according to the first or second aspect of the present invention, further in mass%, Fe: 0.10 to 0.50%, Ti: 0. It contains 1 type or 2 types or more among 0.01 to 0.20%.

第4の本発明のアルミニウム製熱交換器用部材は、前記第1〜第3の本発明のいずれかにおいて、前記Si粉末の平均粒径が1〜5μm未満であることを特徴とする。   The aluminum heat exchanger member according to the fourth aspect of the present invention is characterized in that, in any of the first to third aspects of the present invention, the average particle size of the Si powder is less than 1 to 5 μm.

第5の本発明のアルミニウム製熱交換器用部材は、前記第1〜第4の本発明のいずれかにおいて、前記Znを含有するフッ化物系フラックスが、亜鉛フッ化カリウム(KZnF3)を含むものであることを特徴とする。   In the aluminum heat exchanger member according to the fifth aspect of the present invention, in any one of the first to fourth aspects of the present invention, the fluoride-based flux containing Zn contains zinc potassium fluoride (KZnF3). It is characterized by.

第6の本発明のアルミニウム製熱交換器用部材は、前記第1〜第5の本発明のいずれかにおいて、前記フィンは、質量%で、Zn:0.3〜5.0%を含有し、残部がAlと不可避不純物からなる組成を有することを特徴とする。   The aluminum heat exchanger member according to a sixth aspect of the present invention is the member according to any one of the first to fifth aspects, wherein the fin is in mass% and contains Zn: 0.3 to 5.0%. The remainder has a composition comprising Al and inevitable impurities.

第7の本発明のアルミニウム製熱交換器用部材は、前記第1〜第6の本発明のいずれかにおいて、前記フィンの組成に、さらに質量%で、Mn:0.8〜1.50%、Zr:0.01〜0.20%、Ti:0.01〜0.20%、Cr:0.01〜0.20%、Fe:0.20〜0.50%、Si:0.10〜1.0%のうち1種または2種以上を含有することを特徴とする。   The member for aluminum heat exchanger according to the seventh aspect of the present invention is the composition of the fin according to any one of the first to sixth aspects of the present invention, further in mass%, Mn: 0.8 to 1.50%, Zr: 0.01 to 0.20%, Ti: 0.01 to 0.20%, Cr: 0.01 to 0.20%, Fe: 0.20 to 0.50%, Si: 0.10 It contains 1 type or 2 types or more among 1.0%.

第8の本発明の耐食性に優れたアルミニウム製熱交換器の製造方法は、前記第1〜3の本発明のいずれかに記載の組成および材質を有するチューブの表面に、最大粒径30μm以下のSi粉末とZnを含有するフッ化物系フラックスとを含む塗布物を塗布し、該チューブとフィンとを、ろう付け加熱によって前記塗布物と前記チューブのAl成分との反応により生成されるろうにより、ろう付けすることを特徴とする。   The manufacturing method of the aluminum heat exchanger excellent in corrosion resistance according to the eighth aspect of the present invention has a maximum particle size of 30 μm or less on the surface of the tube having the composition and material according to any one of the first to third aspects of the present invention. Applying a coating containing Si powder and a fluoride-based flux containing Zn, and brazing the tube and the fin by brazing and heating to produce the reaction between the coating and the Al component of the tube. It is characterized by attaching.

本発明においてSi粉末はより微細なものを用い、これを均一に塗布することによって、ろう付時の加熱によってチューブ表面全体に薄いAl−Si合金溶融ろうが形成され、チューブの局部溶融がほとんど生じることがないため、チューブ表面上に凹みが生じることがなく、チューブの強度が十分保たれ、凹み発生による製品の耐食性劣化も抑えることができる。粒径が30μmを超えると上記局部溶融による貫通孔が生じるようになる。好適には、Si粉末の平均粒径は1〜5μm未満とする。これは平均粒径が1μm未満であると、Al−Si合金溶融ろうの形成が十分でなく、ろう付け性が著しく低下するためであり、5μm以上では局部溶融による凹みが生じるようになるためである。   In the present invention, a finer Si powder is used, and when this is uniformly applied, a thin Al-Si alloy melting braze is formed on the entire tube surface by heating during brazing, and almost local melting of the tube occurs. Therefore, no dent is generated on the tube surface, the strength of the tube is sufficiently maintained, and deterioration of the corrosion resistance of the product due to the generation of the dent can be suppressed. When the particle diameter exceeds 30 μm, a through-hole due to the local melting is generated. Suitably, the average particle diameter of Si powder shall be less than 1-5 micrometers. This is because when the average particle size is less than 1 μm, the formation of the Al—Si alloy melt brazing is not sufficient, and the brazing property is remarkably lowered, and when it is 5 μm or more, a dent due to local melting occurs. is there.

また、フラックス中に亜鉛が含有されるので、ろう付時に亜鉛がチューブへ拡散し、表面の亜鉛濃度が高く内部が低くなり、チューブ表面の電位が卑で内部が貴となる電位勾配の犠牲層が形成される。このため、チューブで腐食が生じても孔食形態とならず冷媒漏れや強度低下を抑制できる。フラックスとしては、亜鉛フッ化カリウム(KZnF)の単体またはこれを含む混合物を好適に用いることができる。亜鉛を含むフラックスとしては、さらに、ZnFなどを例示することができる。亜鉛フッ化カリウム(KZnF)などの亜鉛を含むフラックスに混合して用いることができるフラックスとしては、KAlF、KAlFなどを例示することができる。 In addition, since zinc is contained in the flux, zinc diffuses into the tube during brazing, the surface zinc concentration is high and the inside is low, the potential on the surface of the tube is base, and the sacrificial layer with a potential gradient where the inside is noble Is formed. For this reason, even if corrosion occurs in the tube, it does not become a pitting corrosion form, and refrigerant leakage and strength reduction can be suppressed. As the flux, zinc potassium fluoride (KZnF 3 ) alone or a mixture containing the same can be suitably used. The flux containing zinc, furthermore, can be exemplified such as ZnF 2. Examples of the flux that can be used by mixing with a flux containing zinc such as zinc potassium fluoride (KZnF 3 ) include KAlF 4 and K 3 AlF 6 .

さらに本発明では、Cu含有量を適度に調整したチューブ合金を用いているため、犠牲層の効果が充分発揮されるとともに、チューブの電位が卑になりすぎないように調整できるので、長期間の腐食環境でも良好な耐孔食性を得ることができる。また、適量のCu含有はチューブの強度を向上させる作用もある。これらの効果はCu含有量が0.001質量%以上で0.10質量%以下の合金で充分発揮される。0.001質量%未満のCu含有では、強度向上および電位調整効果が十分に得られない。一方、0.10質量%超のCu含有では、ろう付中に溶融ろうの中にCuが多量に吸収されることによってチューブ内に、表面が高くて内部で低い電位分布が形成され、チューブの耐食性が劣化する。   Furthermore, in this invention, since the tube alloy which adjusted Cu content moderately is used, while being able to adjust so that the effect of a sacrificial layer may fully be demonstrated and the potential of a tube may not become too low, long-term Good pitting corrosion resistance can be obtained even in a corrosive environment. Moreover, containing an appropriate amount of Cu also has the effect of improving the strength of the tube. These effects are sufficiently exhibited by an alloy having a Cu content of 0.001% by mass or more and 0.10% by mass or less. When Cu content is less than 0.001% by mass, sufficient strength improvement and potential adjustment effects cannot be obtained. On the other hand, when Cu content exceeds 0.10% by mass, a large amount of Cu is absorbed in the molten brazing during brazing, so that a high potential distribution is formed inside the tube with a high surface and low inside. Corrosion resistance deteriorates.

加えて、チューブとフィンとの間に30mV以上の電位差を確保することによってフィンの犠牲陽極効果も作用する。このため結果的に二重の防食効果が発揮されることになり、より強くチューブでの腐食が抑えられることになる。   In addition, the sacrificial anode effect of the fin also acts by ensuring a potential difference of 30 mV or more between the tube and the fin. As a result, the double anticorrosive effect is exhibited, and the corrosion in the tube is more strongly suppressed.

上記観点から、本熱交換器のチューブは耐食性に優れると共に、できるだけ電気化学的に貴な合金であることが望ましい。Mnは、チューブの電位を卑にすることなく強度を向上させることができ、好適には、0.05〜0.50%のMnを含有しても良い。0.05%未満の含有では、効果が少なく、一方、0.50%を超えて含有すると、材料の押出し加工性を低下させる。   From the above viewpoint, it is desirable that the tube of the present heat exchanger is excellent in corrosion resistance and is an electrochemically noble alloy as much as possible. Mn can improve strength without lowering the potential of the tube, and may preferably contain 0.05 to 0.50% of Mn. When the content is less than 0.05%, the effect is small. On the other hand, when the content exceeds 0.50%, the extrudability of the material is lowered.

また、Siは、Mnとともに含有させることで、微細なAl−Mn−Si系化合物を形成し、強度が有効に向上するので、所望によりMnとともにチューブに含有させることができる。ただし、0.10%以下の含有では、上記効果が十分でなく、一方、0.50%以上含有すると、合金の融点が低下して押出加工中に材料の部分溶融による表面欠陥を生じるようになるので、Si含有量は0.10%超0.5%未満とする。   In addition, when Si is contained together with Mn, a fine Al—Mn—Si-based compound is formed and the strength is effectively improved, so that it can be contained together with Mn in a tube as desired. However, if the content is 0.10% or less, the above effect is not sufficient. On the other hand, if the content is 0.50% or more, the melting point of the alloy is lowered, and surface defects are caused by partial melting of the material during the extrusion process. Therefore, the Si content is more than 0.10% and less than 0.5%.

この他にTi、Feの1種または2種を加えても良い。これら元素も材料強度を向上させる効果も有する。Ti、Feを含有させる場合、Fe:0.10〜0.50%、Ti:0.01〜0.20%の含有量とする。これら成分は、上限を超える量の含有ではさらに優れた特性を付与できないばかりでなく、材料の加工性を劣化させる。一方、下限未満では狙いの特性を付与できない。   In addition, one or two of Ti and Fe may be added. These elements also have the effect of improving the material strength. When Ti and Fe are contained, the content is Fe: 0.10 to 0.50% and Ti: 0.01 to 0.20%. When these components are contained in an amount exceeding the upper limit, not only excellent properties can be imparted but also the workability of the material is deteriorated. On the other hand, if it is less than the lower limit, the desired characteristics cannot be imparted.

同様に、本熱交換器用部材に含まれるフィンの材質は、耐食性に優れると共に、できるだけ電気化学的に卑な合金であり、ろう付時の加熱で容易に変形しない高温強度に優れ、かつ、製品として室温強度にも優れた合金であることが望ましい。   Similarly, the material of the fin included in the heat exchanger member is excellent in corrosion resistance, is an electrochemically base alloy as much as possible, has excellent high temperature strength that does not easily deform by heating during brazing, and is a product. It is desirable that the alloy has excellent room temperature strength.

Znは耐食性の低下を最少に抑え、電位を有効に卑にすることができるために含有させることができる。一方、Mn、Zr、Ti、Cr、Fe、Siの合金元素はいずれも高温と室温強度向上のために含有させることができる。好適な含有量は、Mn:0.8〜1.50%、Zn:0.3〜5.0%、Zr:0.01〜0.20%、Ti:0.01〜0.20%、Cr:0.01〜0.20%、Fe:0.20〜0.50%、Si:0.10〜1.0%である。それぞれ上限を超える量の含有ではさらに優れた特性を付与できないばかりでなく、材料の加工性などを劣化させる。一方、下限未満では狙いの特性を付与できない。   Zn can be contained because the decrease in corrosion resistance is minimized and the potential can be effectively reduced. On the other hand, any of the alloy elements of Mn, Zr, Ti, Cr, Fe, and Si can be contained for improving the high temperature and room temperature strength. Suitable contents are: Mn: 0.8 to 1.50%, Zn: 0.3 to 5.0%, Zr: 0.01 to 0.20%, Ti: 0.01 to 0.20%, Cr: 0.01-0.20%, Fe: 0.20-0.50%, Si: 0.10-1.0%. When the content exceeds the upper limit, not only excellent properties can be imparted but also the workability of the material is deteriorated. On the other hand, if it is less than the lower limit, the desired characteristics cannot be imparted.

すなわち、本発明の耐食性に優れたアルミニウム製熱交換器用部材によれば、最大粒径30μm以下のSi粉末をZnを含有するフッ化物系フラックスとともに塗布したチューブとフィンとを備え、前記チューブは、質量%で、Cu:0.001〜0.10%を含有し、残部アルミニウムと不可避不純物からなる組成を有するとともに、ろう付け後電位においてフィンよりも30mV以上貴である材質からなるので、ろう付けに際し、良好なろう付け性が得られ、ろう付け後においては長期に亘って優れた耐食性を発揮し、腐食に伴う経時的な熱交換性能の劣化も回避することができる。   That is, according to the aluminum heat exchanger member excellent in corrosion resistance of the present invention, the tube comprises a tube and a fin coated with a Si-based powder having a maximum particle size of 30 μm or less together with a fluoride-based flux containing Zn, Since it contains Cu: 0.001% to 0.10% by mass and has a composition composed of the balance aluminum and inevitable impurities, and is made of a material that is 30 mV or more noble than the fin at the potential after brazing. In this case, good brazing properties can be obtained, excellent corrosion resistance can be exhibited for a long time after brazing, and deterioration of heat exchange performance with time due to corrosion can be avoided.

また、本発明の耐食性に優れたアルミニウム製熱交換器の製造方法によれば、前記第1〜3の本発明のいずれかに記載の組成および材質を有するチューブの表面に、最大粒径30μm以下のSi粉末とZnを含有するフッ化物系フラックスとを含む塗布物を塗布し、該チューブとフィンとを、ろう付け加熱によって前記塗布物と前記チューブのAl成分との反応により生成されるろうにより、ろう付けするので、ろう付け時の局部溶解がなく、良好なろう付け性が得られる。また、製造された熱交換器は、優れた耐食性を有し、フィレット腐食に伴う経時的な熱交換性能の劣化も防止される。   Moreover, according to the manufacturing method of the aluminum heat exchanger excellent in corrosion resistance of the present invention, the maximum particle size of 30 μm or less is formed on the surface of the tube having the composition and material according to any one of the first to third aspects of the present invention. A coating material containing Si powder and a fluoride-based flux containing Zn is applied, and the tube and the fin are formed by a brazing heating and generated by a reaction between the coating material and the Al component of the tube. Since it brazes, there is no local melt | dissolution at the time of brazing and favorable brazing property is obtained. Further, the manufactured heat exchanger has excellent corrosion resistance, and the deterioration of the heat exchange performance with time due to fillet corrosion is also prevented.

以下に、本発明の一実施形態を図1、2に基づいて説明する。
熱交換器用チューブには、Cu:0.001〜0.10%を含有し、必要に応じて、Mn:0.05〜0.50%とSi:0.10超〜0.50%未満、さらに必要に応じてFe:0.10〜0.50%、Ti:0.01〜0.20%の1種または2種を含有し、残部がAlと不可避不純物からなる組成を有するAl合金を用いる。該Al合金を常法により溶製し、通常は押出加工を経てチューブ2とされる。この実施形態では、チューブ2は、多穴管構造とされ、内部に、複数の通路2aが形成されている。
Below, one Embodiment of this invention is described based on FIG.
The tube for heat exchanger contains Cu: 0.001-0.10%, and if necessary, Mn: 0.05-0.50% and Si: more than 0.10 to less than 0.50%, Further, if necessary, an Al alloy containing one or two of Fe: 0.10 to 0.50% and Ti: 0.01 to 0.20%, with the balance being composed of Al and inevitable impurities. Use. The Al alloy is melted by a conventional method, and is usually formed into a tube 2 through an extrusion process. In this embodiment, the tube 2 has a multi-hole tube structure, and a plurality of passages 2a are formed therein.

また、熱交換器用フィンには、好適には、Mn:0.8〜1.50%、Zn:0.3〜5.0%、Cu:0.01〜0.50%、Fe:0.20〜0.50%、Si:0.10〜1.0%のうち1種または2種以上を含有し、残部がAlと不可避不純物からなる組成を有するAl合金を用いる。該Al合金を常法により溶製し、圧延工程などを経て波形形状のフィン3とされる。なお、チューブ2およびフィン3の製造方法は、本発明としては特に限定をされるものではなく、既知の製法を適宜採用することができる。
上記チューブ2とフィン3とは、ろう付け後の電位において、チューブ2がフィン3よりも30mV以上貴となる電位を有する材質とする。
In addition, the heat exchanger fins preferably have Mn: 0.8 to 1.50%, Zn: 0.3 to 5.0%, Cu: 0.01 to 0.50%, Fe: 0.00. An Al alloy having a composition containing 20% to 0.50%, Si: 0.10% to 1.0% or more, and the balance of Al and inevitable impurities is used. The Al alloy is melted by a conventional method, and the corrugated fins 3 are formed through a rolling process or the like. In addition, the manufacturing method of the tube 2 and the fin 3 is not specifically limited as this invention, A well-known manufacturing method can be employ | adopted suitably.
The tube 2 and the fin 3 are made of a material having a potential at which the tube 2 is no less than 30 mV nobler than the fin 3 in the potential after brazing.

上記チューブ2には、Si粉末ろう材とZnを含有するフッ化物系フラックスと、必要に応じてバインダ、溶剤を加えた塗布物が塗布される。上記Si粉末は、最大粒径が30μm以下であり、好適には平均粒径が1〜5μm未満のものが用いられる。フッ化物フラックスには、KZnFなどの亜鉛を含むフッ化物系フラックスが用いられ、所望によりこれに加えて、KAlF、KAlFの1種または2種以上などを混合して用いることができる。なお、フッ化物系フラックスのサイズは、本発明としては特に限定をされないが、平均粒径10μm以下が望ましい。これは、10μmを超えると塗膜の厚みが増大するため、ろう付け中に製品中央部の縮みが発生し、ろう付け後にフィンの剥がれが生じることの理由による。また、バインダには、既知のものを用いることができ、好適にはアクリル系樹脂が用いられる。これら材料と水、アルコールなどの適宜材料の溶剤を混合して塗布物とする。これら材料の混合比も本発明としては特に限定をされるものではないが、好適にはSi粉末:フラックス:バインダ:アルコール=2〜4:7〜15:1〜3:13〜25の混合比とする。 The tube 2 is coated with an Si powder brazing material, a fluoride-based flux containing Zn, and a coating material to which a binder and a solvent are added as necessary. The Si powder has a maximum particle size of 30 μm or less, and preferably has an average particle size of less than 1 to 5 μm. As the fluoride flux, a fluoride-based flux containing zinc such as KZnF 3 is used. If desired, one or more of KAlF 4 and K 3 AlF 6 may be used in combination. it can. The size of the fluoride-based flux is not particularly limited as the present invention, but an average particle size of 10 μm or less is desirable. This is because if the thickness exceeds 10 μm, the thickness of the coating film increases, so that the center of the product shrinks during brazing, and the fins peel off after brazing. Moreover, a known thing can be used for a binder and an acrylic resin is used suitably. These materials are mixed with an appropriate solvent such as water or alcohol to obtain a coated product. The mixing ratio of these materials is not particularly limited in the present invention, but preferably the mixing ratio of Si powder: flux: binder: alcohol = 2-4: 7-15: 1-3: 13: 25 And

上記塗布物は、適宜の方法によりチューブ表面に塗布される。塗布物の塗布方法は特に限定をされるものではなく、スプレー法、シャワー法、フローコーター法、ロールコータ法、刷毛塗り法、浸漬法などを適宜採用することができる。
なお、塗布物の塗布量は、Si粉末相当で1〜5g/mの範囲が望ましい。これは、下限未満では、形成される溶融ろうの量が不足して、接合強度が十分でなく、上限を超えると、チューブの溶融量が増加してチューブの肉厚が減少して、好ましくない。
The coated material is applied to the tube surface by an appropriate method. The method for applying the coated material is not particularly limited, and a spray method, a shower method, a flow coater method, a roll coater method, a brush coating method, a dipping method, and the like can be appropriately employed.
In addition, as for the application quantity of a coated material, the range of 1-5 g / m < 2 > is desirable for Si powder. If the amount is less than the lower limit, the amount of the molten solder formed is insufficient and the bonding strength is not sufficient, and if the upper limit is exceeded, the amount of melting of the tube increases and the wall thickness of the tube decreases, which is not preferable. .

上記チューブ2とフィン3とは、必要に応じてヘッダープレート4などとともに互いに組み付けられて熱交換器用部材1が構成されて、ろう付けに供される。ろう付けに際しては、不活性雰囲気などの適当な雰囲気で適温に加熱して、ろう材を溶解させる。この際の加熱温度としては580〜620℃が例示される。また、加熱保持時間としては1〜10分が挙げられる。ただし、これら温度および加熱時間は例示であり、本発明としては特定の条件に限定されるものではない。
ろう付に際しては、チューブのマトリックスの一部が塗布物と反応してろうとなって、部材同士が良好にろう付される。チューブ表面ではろう付けによってフラックス中のZnが拡散してチューブ内側よりも卑になる。
The tube 2 and the fins 3 are assembled together with the header plate 4 and the like as necessary to constitute the heat exchanger member 1 and used for brazing. At the time of brazing, the brazing material is dissolved by heating to an appropriate temperature in an appropriate atmosphere such as an inert atmosphere. Examples of the heating temperature at this time include 580 to 620 ° C. Moreover, 1 to 10 minutes are mentioned as a heating holding time. However, these temperatures and heating times are exemplary, and the present invention is not limited to specific conditions.
At the time of brazing, a part of the matrix of the tube reacts with the coated material, and the members are brazed well. On the tube surface, Zn in the flux is diffused by brazing and becomes lower than the inside of the tube.

上記ろう付けに際し、フラックスは、被ろう付け材の表面酸化皮膜を除去し、ろう付け加熱中の酸化を防止し、さらにろうの広がり、ぬれを促進してろう付け性を向上させる。
上記ろう付けに際しては、Si粉末によるチューブの局部溶解もなく、良好なろう付けがなされ、チューブとフィンとの間に適度なフィレットが形成される。さらにろう付けされた熱交換器は、チューブの電位がフィンよりも30mV以上貴になっており、チューブの腐食が効果的に防止される。さらにチューブ表面層は、内部よりも卑となっており、チューブが腐食する際には面腐食状態になって孔食を防止し、長期に亘る耐食性を向上させる。
In the brazing, the flux removes the surface oxide film of the brazing material, prevents oxidation during brazing heating, and further promotes the spreading and wetting of the brazing to improve the brazing property.
At the time of brazing, there is no local dissolution of the tube with Si powder, and good brazing is performed, and an appropriate fillet is formed between the tube and the fin. Further, in the brazed heat exchanger, the tube potential is no less than 30 mV higher than the fin, and the tube corrosion is effectively prevented. Furthermore, the tube surface layer is more base than the inside, and when the tube is corroded, it becomes a surface corrosion state to prevent pitting corrosion and improve corrosion resistance over a long period of time.

表1に化学組成(残部Al及び不可避不純物)を示すチューブ用合金1〜8と比較合金1、2、フィン用合金1〜3と比較合金1をそれぞれ溶製した。チューブ用合金は均質化熱処理後、熱間押出で図1に示すような肉厚0.25mmの扁平多穴管とした。一方、フィン用合金は均質化処理後、熱間圧延と冷間圧延にて0.07mm厚さの板とした。次に、チューブ材には平均粒径2.3μm、最大粒径30μmのSi粉末とフッ化物系フラックスをアクリル系樹脂とイソプロピルアルコールとの混合物としてロール塗布し、乾燥させた。Si粉末塗布量は3g/mとした。図2に示すようにチューブ材とコルゲート加工したフィン材を組合せてミニコアを組立て、種々の酸素濃度の窒素ガス雰囲気の炉中で600℃、3分保持のろう付を行った。いずれのコアも接合は良好であった。 The alloys 1-8 for tubes and comparative alloys 1 and 2, the alloys 1-3 for fins, and the comparative alloy 1 which show a chemical composition (balance Al and an unavoidable impurity) in Table 1 were respectively melted. The tube alloy was formed into a flat multi-hole tube having a thickness of 0.25 mm as shown in FIG. 1 by hot extrusion after homogenization heat treatment. On the other hand, the fin alloy was formed into a 0.07 mm thick plate by hot rolling and cold rolling after homogenization. Next, the tube material was roll-coated with Si powder having an average particle size of 2.3 μm and a maximum particle size of 30 μm and a fluoride flux as a mixture of an acrylic resin and isopropyl alcohol and dried. The amount of Si powder applied was 3 g / m 2 . As shown in FIG. 2, a mini-core was assembled by combining a tube material and a corrugated fin material, and brazed at 600 ° C. for 3 minutes in a furnace with various oxygen concentrations of nitrogen gas. All cores were well bonded.

これら種々の材料組合せから成るコアをSWAAT32日間の腐食試験に供した。試験後にチューブ材に生じた腐食の深さを測定した。結果を表3にまとめて示した。表3より、本発明の材料の組合せからなるコアでは、いずれもチューブ表面の犠牲層の効果とフィンの犠牲防食効果によりチューブの腐食の程度はわずかであるのに対し、比較コアではチューブの犠牲層やフィンの犠牲防食の効果が不充分なため、腐食が激しいことが明らかである。   Cores composed of these various material combinations were subjected to a SWAAT 32 day corrosion test. The depth of corrosion that occurred in the tube material after the test was measured. The results are summarized in Table 3. From Table 3, the core made of the combination of the materials of the present invention has a slight degree of corrosion of the tube due to the sacrificial layer effect on the tube surface and the sacrificial anticorrosive effect of the fin, whereas the comparative core has a sacrificial tube sacrifice. It is clear that the corrosion is severe due to the insufficient sacrificial protection effect of the layers and fins.

以上のように、本発明を満たす熱交換器ではチューブの耐食性が極めて良好で、長期間の使用後にもガス漏れなどの問題を生じることがないばかりでなく、製品の耐圧強度や熱交換性能も維持できるなど、実用上、有益である。   As described above, in the heat exchanger satisfying the present invention, the corrosion resistance of the tube is very good, not only causing problems such as gas leakage even after long-term use, but also the pressure resistance strength and heat exchange performance of the product. It is useful for practical use.

Figure 2009068083
Figure 2009068083

Figure 2009068083
Figure 2009068083

Figure 2009068083
Figure 2009068083

本発明の一実施形態の部材に含まれるチューブを示す図である。It is a figure which shows the tube contained in the member of one Embodiment of this invention. 同じく、熱交換器用部材を示す図である。Similarly, it is a figure which shows the member for heat exchangers.

符号の説明Explanation of symbols

1 熱交換器用部材
2 チューブ
3 フィン
1 Heat exchanger component 2 Tube 3 Fin

Claims (8)

最大粒径30μm以下のSi粉末をZnを含有するフッ化物系フラックスとともに塗布したチューブとフィンとを備え、前記チューブは、質量%で、Cu:0.001〜0.10%を含有し、残部アルミニウムと不可避不純物からなる組成を有するとともに、ろう付け後電位において、チューブのフラックス非塗布部がフィンよりも30mV以上貴である材質からなることを特徴とする耐食性に優れたアルミニウム製熱交換器用部材。   It is provided with a tube and a fin coated with Si powder having a maximum particle size of 30 μm or less together with a fluoride-based flux containing Zn, and the tube contains, by mass, Cu: 0.001 to 0.10%, and the balance A heat exchanger member made of aluminum having excellent corrosion resistance, characterized in that it has a composition comprising aluminum and inevitable impurities, and is made of a material in which the non-flux coated portion of the tube is no less than 30 mV of the fin at the potential after brazing . 前記チューブの組成に、さらに質量%で、Mn:0.05〜0.50%、Si:0.10%超〜0.50%未満を含有することを特徴とする請求項1記載の耐食性に優れたアルミニウム製熱交換器用部材。 The composition of the tube further comprises, in mass%, Mn: 0.05 to 0.50%, Si: more than 0.10% to less than 0.50%. Excellent aluminum heat exchanger component. 前記チューブの組成に、さらに質量%で、Fe:0.10〜0.50%、Ti:0.01〜0.20%のうち1種または2種以上を含有することを特徴とする請求項1または2に記載の耐食性に優れたアルミニウム製熱交換器用部材。 The composition of the tube further includes one or more of Fe: 0.10 to 0.50% and Ti: 0.01 to 0.20% in terms of mass%. An aluminum heat exchanger member having excellent corrosion resistance according to 1 or 2. 前記Si粉末の平均粒径が1〜5μm未満であることを特徴とする請求項1〜3のいずれかに記載の耐食性に優れたアルミニウム製熱交換器用部材。   The average particle diameter of the said Si powder is less than 1-5 micrometers, The member for aluminum heat exchangers excellent in corrosion resistance in any one of Claims 1-3 characterized by the above-mentioned. 前記Znを含有するフッ化物系フラックスが、亜鉛フッ化カリウム(KZnF)を含むものであることを特徴とする請求項1〜4のいずれかに記載の耐食性に優れたアルミニウム製熱交換器用部材。 The member for aluminum heat exchangers with excellent corrosion resistance according to any one of claims 1 to 4, wherein the fluoride-based flux containing Zn contains zinc potassium fluoride (KZnF 3 ). 前記フィンは、質量%で、Zn:0.3〜5.0%を含有し、残部がAlと不可避不純物からなる組成を有することを特徴とする請求項1〜5のいずれかに記載の耐食性に優れたアルミニウム製熱交換器部材。   The corrosion resistance according to any one of claims 1 to 5, wherein the fin contains, in mass%, Zn: 0.3 to 5.0%, and the balance is composed of Al and inevitable impurities. Aluminum heat exchanger member with excellent resistance. 前記フィンの組成に、さらに質量%で、Mn:0.8〜1.50%、Zr:0.01〜0.20%、Ti:0.01〜0.20%、Cr:0.01〜0.20%、Fe:0.20〜0.50%、Si:0.10〜1.0%のうち1種または2種以上を含有することを特徴とする請求項1〜6のいずれかに記載の耐食性に優れたアルミニウム製熱交換器部材。   In addition to the composition of the fin, by mass, Mn: 0.8 to 1.50%, Zr: 0.01 to 0.20%, Ti: 0.01 to 0.20%, Cr: 0.01 to One or more of 0.20%, Fe: 0.20 to 0.50%, and Si: 0.10 to 1.0% are contained. An aluminum heat exchanger member having excellent corrosion resistance as described in 1. 請求項1〜3のいずれかに記載の組成および材質を有するチューブの表面に、最大粒径30μm以下のSi粉末とZnを含有するフッ化物系フラックスとを含む塗布物を塗布し、該チューブとフィンとを、ろう付け加熱によって前記塗布物と前記チューブのAl成分との反応により生成されるろうにより、ろう付けすることを特徴とする耐食性に優れたアルミニウム製熱交換器の製造方法。   Applying a coating containing a Si powder having a maximum particle size of 30 μm or less and a fluoride-based flux containing Zn to the surface of the tube having the composition and material according to claim 1, A method for producing an aluminum heat exchanger having excellent corrosion resistance, wherein the fin is brazed by brazing that is generated by a reaction between the coated material and the Al component of the tube by brazing heating.
JP2007238923A 2007-09-14 2007-09-14 Aluminum heat exchanger member with excellent corrosion resistance and method for producing aluminum heat exchanger with excellent corrosion resistance Active JP5115963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007238923A JP5115963B2 (en) 2007-09-14 2007-09-14 Aluminum heat exchanger member with excellent corrosion resistance and method for producing aluminum heat exchanger with excellent corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007238923A JP5115963B2 (en) 2007-09-14 2007-09-14 Aluminum heat exchanger member with excellent corrosion resistance and method for producing aluminum heat exchanger with excellent corrosion resistance

Publications (2)

Publication Number Publication Date
JP2009068083A true JP2009068083A (en) 2009-04-02
JP5115963B2 JP5115963B2 (en) 2013-01-09

Family

ID=40604651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007238923A Active JP5115963B2 (en) 2007-09-14 2007-09-14 Aluminum heat exchanger member with excellent corrosion resistance and method for producing aluminum heat exchanger with excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JP5115963B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150727A1 (en) * 2009-06-24 2010-12-29 住友軽金属工業株式会社 Heat exchanger made from aluminum alloy, and process for production of coolant passage tube for use in the heat exchanger
WO2011148781A1 (en) * 2010-05-25 2011-12-01 住友軽金属工業株式会社 Method for producing aluminum alloy heat exchanger
JP2011247459A (en) * 2010-05-25 2011-12-08 Sumitomo Light Metal Ind Ltd Method of manufacturing aluminum alloy heat exchanger
JP2014238209A (en) * 2013-06-07 2014-12-18 株式会社ケーヒン・サーマル・テクノロジー Anticorrosion treating method of outer surface of heat exchange pipe made of aluminum extrusion material and manufacturing method of heat exchanger
CN104995479A (en) * 2012-12-18 2015-10-21 法雷奥热系统公司 Flat tube for a charge air cooler and corresponding charge air cooler
US10150186B2 (en) 2014-12-11 2018-12-11 Uacj Corporation Brazing method
JP2019045091A (en) * 2017-09-05 2019-03-22 株式会社ケーヒン・サーマル・テクノロジー Heat exchanger
JP2019070499A (en) * 2017-10-11 2019-05-09 株式会社ケーヒン・サーマル・テクノロジー Method of manufacturing heat exchanger
US10640852B2 (en) 2017-03-30 2020-05-05 Uacj Corporation Aluminum-alloy clad material and method of manufacturing the same
US10661395B2 (en) 2014-07-30 2020-05-26 Uacj Corporation Aluminum-alloy brazing sheet
US11007609B2 (en) 2016-11-29 2021-05-18 Uacj Corporation Brazing sheet and manufacturing method thereof
US11298779B2 (en) 2017-11-08 2022-04-12 Uacj Corporation Brazing sheet and manufacturing method thereof
US11320217B2 (en) 2016-01-14 2022-05-03 Uacj Corporation Heat exchanger and method of manufacturing the same
US11571769B2 (en) 2018-09-11 2023-02-07 Uacj Corporation Method of manufacturing a brazing sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192848A (en) * 1997-09-17 1999-04-06 Nippon Light Metal Co Ltd Heat exchanger core made of aluminum and its production
JP2005126761A (en) * 2003-10-23 2005-05-19 Denso Corp Extruded header tank made of aluminum alloy for heat exchanger, and heat exchanger using the header tank
JP2006255755A (en) * 2005-03-17 2006-09-28 Mitsubishi Alum Co Ltd Aluminum alloy material for brazing and method for brazing aluminum alloy material
JP2006334614A (en) * 2005-05-31 2006-12-14 Mitsubishi Alum Co Ltd Method for coating aluminum material
JP2007051787A (en) * 2005-08-15 2007-03-01 Mitsubishi Alum Co Ltd Extruded tube for heat exchanger, and heat exchanger
JP2007051333A (en) * 2005-08-18 2007-03-01 Mitsubishi Alum Co Ltd Aluminum-alloy sheet material for radiator tube

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192848A (en) * 1997-09-17 1999-04-06 Nippon Light Metal Co Ltd Heat exchanger core made of aluminum and its production
JP2005126761A (en) * 2003-10-23 2005-05-19 Denso Corp Extruded header tank made of aluminum alloy for heat exchanger, and heat exchanger using the header tank
JP2006255755A (en) * 2005-03-17 2006-09-28 Mitsubishi Alum Co Ltd Aluminum alloy material for brazing and method for brazing aluminum alloy material
JP2006334614A (en) * 2005-05-31 2006-12-14 Mitsubishi Alum Co Ltd Method for coating aluminum material
JP2007051787A (en) * 2005-08-15 2007-03-01 Mitsubishi Alum Co Ltd Extruded tube for heat exchanger, and heat exchanger
JP2007051333A (en) * 2005-08-18 2007-03-01 Mitsubishi Alum Co Ltd Aluminum-alloy sheet material for radiator tube

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012039683; アルミニウムハンドブック(第5版) , 19940725, 第327-329頁, 社団法人軽金属協会 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10307813B2 (en) 2009-06-24 2019-06-04 Sumitomo Light Metal Industries, Ltd. Aluminum alloy heat exchanger and method of producing refrigerant tube used for the heat exchanger
CN102803891A (en) * 2009-06-24 2012-11-28 住友轻金属工业株式会社 Heat exchanger made from aluminum alloy, and process for production of coolant passage tube for use in the heat exchanger
EP2447662A4 (en) * 2009-06-24 2017-07-05 Sumitomo Light Metal Industries, Ltd. Heat exchanger made from aluminum alloy, and process for production of coolant passage tube for use in the heat exchanger
WO2010150727A1 (en) * 2009-06-24 2010-12-29 住友軽金属工業株式会社 Heat exchanger made from aluminum alloy, and process for production of coolant passage tube for use in the heat exchanger
KR101709808B1 (en) * 2009-06-24 2017-02-23 스미토모 게이 긴조쿠 고교 가부시키가이샤 Heat exchanger made from aluminum alloy, and process for production of coolant passage tube for use in the heat exchanger
KR20120111946A (en) * 2009-06-24 2012-10-11 스미토모 게이 긴조쿠 고교 가부시키가이샤 Heat exchanger made from aluminum alloy, and process for production of coolant passage tube for use in the heat exchanger
JP2011007382A (en) * 2009-06-24 2011-01-13 Sumitomo Light Metal Ind Ltd Aluminum alloy heat exchanger and method for manufacturing refrigerant passage pipe used for the same
JP2011247459A (en) * 2010-05-25 2011-12-08 Sumitomo Light Metal Ind Ltd Method of manufacturing aluminum alloy heat exchanger
US9132518B2 (en) 2010-05-25 2015-09-15 Sumitomo Light Metal Industries, Ltd. Method for producing aluminum alloy heat exchanger
EP2578344A1 (en) 2010-05-25 2013-04-10 Sumitomo Light Metal Industries, Ltd. Method for producing aluminum alloy heat exchanger
CN103038014A (en) * 2010-05-25 2013-04-10 住友轻金属工业株式会社 Method for producing aluminum alloy heat exchanger
KR101851811B1 (en) * 2010-05-25 2018-04-24 스미토모 게이 긴조쿠 고교 가부시키가이샤 Method for producing aluminum alloy heat exchanger
JP2011245499A (en) * 2010-05-25 2011-12-08 Sumitomo Light Metal Ind Ltd Method for manufacturing heat exchanger made of aluminum alloy
WO2011148781A1 (en) * 2010-05-25 2011-12-01 住友軽金属工業株式会社 Method for producing aluminum alloy heat exchanger
JP2016500436A (en) * 2012-12-18 2016-01-12 ヴァレオ システム テルミク Flat tube for charge air cooler and corresponding charge air cooler
KR101679344B1 (en) * 2012-12-18 2016-11-24 발레오 시스템므 떼르미끄 Flat tube for a charge air cooler and corresponding charge air cooler
CN104995479A (en) * 2012-12-18 2015-10-21 法雷奥热系统公司 Flat tube for a charge air cooler and corresponding charge air cooler
JP2014238209A (en) * 2013-06-07 2014-12-18 株式会社ケーヒン・サーマル・テクノロジー Anticorrosion treating method of outer surface of heat exchange pipe made of aluminum extrusion material and manufacturing method of heat exchanger
US10661395B2 (en) 2014-07-30 2020-05-26 Uacj Corporation Aluminum-alloy brazing sheet
US10150186B2 (en) 2014-12-11 2018-12-11 Uacj Corporation Brazing method
US11320217B2 (en) 2016-01-14 2022-05-03 Uacj Corporation Heat exchanger and method of manufacturing the same
US11007609B2 (en) 2016-11-29 2021-05-18 Uacj Corporation Brazing sheet and manufacturing method thereof
US10640852B2 (en) 2017-03-30 2020-05-05 Uacj Corporation Aluminum-alloy clad material and method of manufacturing the same
JP2019045091A (en) * 2017-09-05 2019-03-22 株式会社ケーヒン・サーマル・テクノロジー Heat exchanger
JP2019070499A (en) * 2017-10-11 2019-05-09 株式会社ケーヒン・サーマル・テクノロジー Method of manufacturing heat exchanger
US11298779B2 (en) 2017-11-08 2022-04-12 Uacj Corporation Brazing sheet and manufacturing method thereof
US11571769B2 (en) 2018-09-11 2023-02-07 Uacj Corporation Method of manufacturing a brazing sheet

Also Published As

Publication number Publication date
JP5115963B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
JP5115963B2 (en) Aluminum heat exchanger member with excellent corrosion resistance and method for producing aluminum heat exchanger with excellent corrosion resistance
JP6253212B2 (en) Tube for heat exchanger assembly configuration
JP2009058139A (en) Member for aluminum-made heat exchanger having superior corrosion resistance
JP4547032B1 (en) Fluxless brazing method of aluminum material and aluminum clad material for fluxless brazing
JP2009058167A (en) Aluminum heat exchanger using tube having superior corrosion resistance and its manufacturing method
JP6438019B2 (en) Heat exchanger tubes and heat exchangers and brazing pastes
JP5334086B2 (en) Aluminum heat exchanger having excellent corrosion resistance and method for producing the same
JP5906113B2 (en) Extruded heat transfer tube for heat exchanger, heat exchanger, and method for producing extruded heat transfer tube for heat exchanger
WO2015056669A1 (en) Aluminum alloy heat exchanger
EP3563968A1 (en) Brazing sheet for fluxless brazing, fluxless brazing method, and heat exchanger manufacturing method
JP2009106947A (en) Aluminum alloy tube
WO2011148781A1 (en) Method for producing aluminum alloy heat exchanger
JP4577634B2 (en) Aluminum alloy extruded tube with brazing filler metal for heat exchanger
JP2011247459A (en) Method of manufacturing aluminum alloy heat exchanger
JP2006348358A (en) Aluminum-alloy extruded material for heat-exchanger, and flat tube with multi-holes for heat-exchanger and header for heat-exchanger using the same
JP2012057183A (en) Aluminum alloy clad material and heat exchanging device using the same
JP6968598B2 (en) Manufacturing method of aluminum alloy heat exchanger with excellent corrosion resistance and aluminum alloy heat exchanger
JP6226642B2 (en) Brazing method of aluminum alloy material and manufacturing method of brazing structure
JP6738667B2 (en) Aluminum alloy heat exchanger excellent in corrosion resistance in atmospheric environment and method of manufacturing aluminum alloy heat exchanger
JP4573150B2 (en) Aluminum alloy extruded header tank for heat exchanger and heat exchanger using this header tank
JP5159709B2 (en) Aluminum alloy clad material for heat exchanger tube and heat exchanger core using the same
JP2009058140A (en) Member for aluminum heat exchanger having superior corrosion resistance, and manufacturing method of aluminum heat exchanger having superior corrosion resistance
JP3859781B2 (en) Aluminum alloy clad fin material and aluminum alloy heat exchanger using the clad fin material
JP2002294378A (en) Aluminum alloy extrusion tube for producing header tank
JP2005207728A (en) Heat exchanger and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121010

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121010

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5115963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250