JPH119091A - Control of pest in soil - Google Patents

Control of pest in soil

Info

Publication number
JPH119091A
JPH119091A JP17055197A JP17055197A JPH119091A JP H119091 A JPH119091 A JP H119091A JP 17055197 A JP17055197 A JP 17055197A JP 17055197 A JP17055197 A JP 17055197A JP H119091 A JPH119091 A JP H119091A
Authority
JP
Japan
Prior art keywords
soil
temperature
dissolved oxygen
water
crops
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP17055197A
Other languages
Japanese (ja)
Inventor
Jun Yokoyama
順 横山
Hitoshi Imamura
等 今村
Masayuki Taniguchi
谷口  正幸
Arihito Fujiwara
有仁 藤原
Taku Fujii
卓 藤井
Masaaki Masui
正明 増井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp, Dainippon Ink and Chemicals Co Ltd filed Critical Japan Oxygen Co Ltd
Priority to JP17055197A priority Critical patent/JPH119091A/en
Publication of JPH119091A publication Critical patent/JPH119091A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Cultivation Of Plants (AREA)
  • Catching Or Destruction (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

PROBLEM TO BE SOLVED: To safely and simply control pests in soil without damaging crops and without polluting environments by supplying warm water into soil from a watering pipe set in the soil near to the rooting zone depths of the crops to heat the soil at a prescribed temperature of higher, before the crops are sowed, etc. SOLUTION: This method for controlling pests such as soil nematodes parasitizing in plants in soil comprises supplying dissolved oxygen-removed warm water (the temperature is preferably <=40 deg.C, and the concentration of the dissolved oxygen is <=4 ppm) into soil from a watering pipe 3 set in the soil 4 near to the rooting zone depth of crops to raise the temperature of the soil in places ranging from the rooting zone of the crops to a place 5 cm deep from the surface of the ground by 30 deg.C or higher, before the crops or crop seedlings are sowed or transplanted. The warm water free from the dissolved oxygen is preferably supplied into the soil at a flow rate of <=3.0 cm<3> /sec per meter of the watering pipe.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、土壌中の有害生物
の防除方法に関するものであり、特に溶存酸素を除去し
た温水を土壌中に供給することで、安全、且つ省力的に
農作物に有害な土壌中の生物を防除することが出来る有
害生物の防除方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling pests in soil, and more particularly, to a method for safely and labor-saving harmful to agricultural crops by supplying warm water from which dissolved oxygen has been removed. The present invention relates to a pest control method capable of controlling organisms in soil.

【0002】[0002]

【従来の技術】農園芸分野において、土壌線虫、土壌病
害菌、土壌中の昆虫及びその幼虫、または小動物等によ
ってもたらされる作物の被害は甚大であり、しばしば作
物を壊滅させ、その圃場での作物の連作を不可能にす
る。そこで、やむを得ず輪作、転作、休作等の措置が講
じられている。この様な事態を回避するために、従来か
ら土壌殺虫剤、土壌殺菌剤等の土壌病害虫防除剤が用い
られている。更に、施設栽培では、太陽熱や熱水を利用
した土壌消毒も行われている。
2. Description of the Related Art In the field of agriculture and horticulture, damage to crops caused by soil nematodes, soil disease fungi, insects and their larvae in the soil, or small animals is enormous, and often destroys crops. Disable continuous cropping. Therefore, measures such as rotation, rotation, and suspension of work are unavoidably taken. In order to avoid such a situation, soil pest control agents such as soil insecticides and soil fungicides have conventionally been used. Further, in facility cultivation, soil disinfection using solar heat or hot water is also performed.

【0003】土壌病害虫防除剤は、土壌の一定の深さに
わたって、出来るだけ均一に分布させる必要がある。そ
こで、粉体の場合は、鋤込み等により土壌中に分散させ
る必要がある。また、液体の場合は、地表からの施用で
は土壌の十分な深さまで薬液が浸透しないので、圃面に
一定間隔で穴を開け、個々の穴に少量ずつ注入する等の
方法がとられている。
[0003] Soil pest control agents need to be distributed as uniformly as possible over a certain depth of the soil. Therefore, in the case of powder, it is necessary to disperse in the soil by plowing or the like. In addition, in the case of liquid, since the chemical does not penetrate to a sufficient depth of the soil when applied from the ground surface, a method is used in which holes are formed at regular intervals in the field surface, and small amounts are injected into individual holes. .

【0004】特に、土壌病害虫防除剤としては、土壌中
に有効成分を均一に分布させる観点から、土壌中で有効
成分が揮発する燻蒸性の農薬、例えばクロルピクリン、
メチルブロマイド等が多用されている。しかしながら、
土壌病害虫防除剤は、作物や人体にも有害なものが多
く、施用に細心の安全対策と多くの労力を必要とする。
更に作物に有害な薬剤は播種、定植の前に鋤返し等によ
り、薬剤を土壌中から排除する必要がある。
[0004] In particular, as a soil pest control agent, from the viewpoint of uniformly distributing the active ingredient in the soil, fumigation pesticides in which the active ingredient volatilizes in the soil, for example, chlorpicrin,
Methyl bromide is frequently used. However,
Many soil pest control agents are harmful to crops and the human body, and require careful safety measures and much labor for application.
Further, it is necessary to remove the harmful chemicals from the soil by plowing or the like before sowing or planting.

【0005】また、薬剤が地下水を汚染する等環境に悪
影響を与える可能性もある。更に、防除対象生物が既存
の薬剤に対して耐性を獲得しつつあり、薬剤の効果が弱
まってきている。そのため、規定量以上の薬剤散布で対
応しているのが現状であり、もし、新規な薬剤が開発さ
れたとしても、防除対象生物がその薬剤に対して耐性を
獲得するまでの一時凌ぎに過ぎなくなる恐れも否定でき
ない。
[0005] In addition, there is a possibility that the chemicals may adversely affect the environment such as polluting groundwater. Furthermore, the organisms to be controlled are acquiring resistance to existing drugs, and the effects of the drugs are weakening. For this reason, the current situation is to respond by spraying more than the specified amount of the drug, and even if a new drug is developed, it will only temporarily survive until the target organism gains resistance to the drug. There is no denying the fear of disappearing.

【0006】太陽熱による土壌消毒は、圃場に大量の灌
水を行い、マルチング等で地表を被覆した後、施設を密
閉することで行う。天候がよい日は、施設内の気温は6
0℃にもなる。これに伴い、圃場の地温も上昇し、土壌
の消毒を行うことができる。しかし、太陽熱による土壌
消毒は、消毒の実施が天候に左右されるため、播種、定
植が予定通り行えない問題があり、更に太陽熱を利用し
た消毒の効果が現れるのは、地表面及び地表に近いごく
浅い部分に限られるため、圃場の土壌すべてを消毒する
には、他の消毒方法を併用する必要がある。
[0006] Soil disinfection by solar heat is performed by flooding a field with a large amount of water, covering the ground surface with mulching or the like, and then closing the facility. On a sunny day, the temperature inside the facility is 6
It reaches 0 ° C. Along with this, the soil temperature in the field also rises, and soil can be disinfected. However, soil disinfection by solar heat has a problem that seeding and planting cannot be performed as planned because the disinfection depends on the weather, and the effect of disinfection using solar heat appears near the ground surface and the ground surface. Because it is limited to very shallow areas, other disinfection methods must be used in combination to disinfect all soil in the field.

【0007】例えば、熱水による土壌消毒は、高温の熱
水を土壌表面に散布し続け、地中温を上昇せしめる方法
であり、例えば特公平7−63280号公報では80℃
にまで昇温した水が用いられ、地中温を55℃にまで上
昇させる。また特公昭48−34870号公報や特開昭
57−152828号公報には、高温の熱水を土壌中に
注入し、地中温を上昇せしめる方法が開示されている。
しかし、これらの方法では、土壌の目的温度を得るため
に、非常に高温かつ大量の灌水が必要であり、十分な効
果を発揮させるためには機器、及び運転に多大なコスト
がかかる。
[0007] For example, soil disinfection by hot water is a method in which high-temperature hot water is continuously sprayed on the soil surface to increase the underground temperature. For example, in Japanese Patent Publication No. 7-63280, the temperature is 80 ° C.
Is used to raise the underground temperature to 55 ° C. JP-B-48-34870 and JP-A-57-152828 disclose methods of injecting high-temperature hot water into soil to increase the underground temperature.
However, these methods require a very high temperature and a large amount of irrigation in order to obtain the target temperature of the soil, and require a great deal of equipment and operation costs to achieve a sufficient effect.

【0008】[0008]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、作物に障害を与えず、安全で環境に優し
く、且つ簡便、低コストで土壌中の有害生物を効果的に
防除する、土壌中の有害生物の防除方法を提供すること
にある。
The problem to be solved by the present invention is to provide a safe, environmentally friendly, simple and low-cost method for effectively controlling pests in soil without damaging crops. An object of the present invention is to provide a method for controlling pests in soil.

【0009】[0009]

【課題を解決するための手段】本発明者らは、溶存酸素
を除去した温水を地中に灌水し、土壌中の根圏付近の地
温を30℃以上に上昇させることにより、土壌中の有害
生物、特に植物寄生性線虫を効果的に防除し得ることを
見いだし、本発明を完成するに至った。
Means for Solving the Problems The present inventors irrigate the ground with warm water from which dissolved oxygen has been removed, and raise the ground temperature in the vicinity of the rhizosphere in the soil to 30 ° C. or higher, thereby reducing harmful effects in the soil. It has been found that organisms, particularly plant parasitic nematodes, can be effectively controlled, and the present invention has been completed.

【0010】即ち、本発明は、(1)作物を播種または
定植する前に、作物の根圏深さ付近の土壌に設置した灌
水パイプから、溶存酸素を除去した温水を供給すること
により、作物の根圏付近から地表下5cm迄の温度を3
0℃以上に上昇させることを特徴とする土壌中の有害生
物の防除方法、(2)溶存酸素を除去した温水の温度が
40℃以上であることを特徴とする(1)に記載の土壌
中の有害生物の防除方法、
[0010] That is, the present invention provides (1) supplying warm water from which dissolved oxygen has been removed from a watering pipe installed in soil near the depth of the rhizosphere of a crop before sowing or planting the crop; The temperature from around the rhizosphere to 5cm below the surface of the ground
(2) The method for controlling pests in soil characterized by raising the temperature to 0 ° C or higher, (2) the temperature of warm water from which dissolved oxygen has been removed is 40 ° C or higher, Pest control method,

【0011】(3)作物の成育中に作物の根圏深さ付近
の土壌に設置した灌水パイプから、溶存酸素を除去した
温水を供給することにより、作物の根圏付近から地表下
5cm迄の温度を30℃以上に上昇させることを特徴と
する土壌中の有害生物の防除方法、(4)溶存酸素を除
去した温水の温度が、40℃以下であることを特徴とす
る(3)に記載の土壌中の有害生物の防除方法、
(3) By supplying hot water from which the dissolved oxygen has been removed from the irrigation pipe installed in the soil near the depth of the rhizosphere of the crop during the growth of the crop, from the vicinity of the rhizosphere of the crop to 5 cm below the ground surface. A method for controlling pests in soil, which comprises raising the temperature to 30 ° C. or higher, (4) The temperature according to (3), wherein the temperature of hot water from which dissolved oxygen has been removed is 40 ° C. or lower. Pest control method in soil,

【0012】(5)溶存酸素を除去した温水の溶存酸素
濃度が、4ppm以下であることを特徴とする上記の
(1)〜(4)のいずれか一つに記載の土壌中の有害生
物の防除方法、(6)溶存酸素を除去した温水の土壌中
への供給流量を、灌水パイプ1m当たり3.0cm3
秒以下とすることを特徴とする上記の(1)〜(4)の
いずれか一つに記載の土壌中の有害生物の防除方法、及
び、(7)有害生物が植物寄生性土壌線虫であることを
特徴とする上記の(1)〜(4)のいずれか一つに記載
の土壌中の有害生物の防除方法を含むものである。
(5) The pest in the soil according to any one of the above (1) to (4), wherein the dissolved oxygen concentration of the warm water from which the dissolved oxygen has been removed is 4 ppm or less. (6) The supply flow rate of warm water from which dissolved oxygen was removed to soil was 3.0 cm 3 / m per irrigation pipe.
The method for controlling pests in soil according to any one of (1) to (4) above, wherein the pests are plant parasitic soil nematodes. The method for controlling pests in soil according to any one of the above (1) to (4), which is characterized in that there is a certain method.

【0013】[0013]

【発明の実施の形態】以下、本発明の土壌中の有害生物
の防除方法について、詳細に説明する。本発明の土壌中
の有害生物の防除方法は、脱酸素水製造装置に水道、井
戸などの任意の水源からの原水を供給し、原水の溶存酸
素を除去した脱気水を調製し、次いでこの脱気水を加温
装置により加温した脱気温水を灌水パイプを通して土壌
中に灌水する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a method for controlling pests in soil according to the present invention will be described in detail. The method for controlling pests in soil according to the present invention comprises supplying raw water from an arbitrary water source such as a tap or a well to a deoxygenated water producing apparatus, preparing deaerated water from which dissolved oxygen in the raw water has been removed, and then preparing the deaerated water. Deaired temperature water obtained by heating deaerated water with a heating device is irrigated into soil through an irrigation pipe.

【0014】本発明の脱酸素水製造装置に用いられる、
水中からの溶存酸素の除去方法は、公知慣用の方法が用
いられるが、好ましい簡便な例として、例えば、特開昭
63−258605号公報に示された膜式真空脱酸素法
が挙げられる。これは、気体は通過できるが、液体は通
過できない膜の一方に原水を通し、もう一方を減圧する
という方法である。
The deoxidized water producing apparatus of the present invention is used for:
As a method for removing dissolved oxygen from water, a known and commonly used method is used. As a preferable simple example, for example, a membrane-type vacuum deoxygenation method described in JP-A-63-258605 can be mentioned. In this method, raw water is passed through one of the membranes through which gas can pass but liquid cannot pass, and the other is depressurized.

【0015】この他、気体は通過できるが、液体は通過
できない膜を介して原水と酸素吸着剤を接触させる隔膜
酸素吸収法や、充填塔やスプレー塔内を減圧する、いわ
ゆる真空脱酸素法、温度上昇に伴う気体の溶解度の減少
を利用する加熱脱酸素法や、酸素以外のガスをバブリン
グする方法、超音波脱酸素法等、様々な方法が開示され
ている。本発明においては、これら既存の方法を適宜用
いることができる。
In addition, a membrane oxygen absorption method in which raw water and an oxygen adsorbent are brought into contact with each other through a membrane through which a gas can pass but a liquid cannot pass, a so-called vacuum deoxygenation method in which the pressure in a packed tower or a spray tower is reduced, Various methods have been disclosed, such as a thermal deoxidation method utilizing a decrease in the solubility of a gas with a rise in temperature, a method of bubbling a gas other than oxygen, and an ultrasonic deoxygenation method. In the present invention, these existing methods can be appropriately used.

【0016】中でも、装置が簡便で、運転費用も安価で
ある点から、膜式真空脱酸素法、真空脱酸素法が好まし
く、膜式真空脱酸素法がより好ましい。膜式真空脱酸素
法は、装置を比較的小型にすることが可能で、且つ装置
の取扱いが容易で、溶存酸素を高度に除去できる等の利
点を有している。膜式真空脱酸素法において用いられる
膜は、気体は通過できるが、液体は通過できないもので
あれば、どのような膜でも差し支えないが、装置のさら
なる小型化が可能であること等から中空糸膜が好まし
い。
Above all, the membrane vacuum deoxidation method and the vacuum deoxygenation method are preferable, and the membrane vacuum deoxygenation method is more preferable, because the apparatus is simple and the operation cost is low. The membrane-type vacuum deoxygenation method has such advantages that the device can be made relatively small, the device can be easily handled, and the dissolved oxygen can be removed to a high degree. The membrane used in the membrane-type vacuum deoxygenation method can be any membrane as long as it can pass gas but cannot pass liquid.However, hollow fibers can be used because the size of the apparatus can be further reduced. Membranes are preferred.

【0017】中でも、用いる中空糸膜の内径が250μ
m以下であれば、更に好ましい。また、中空糸膜は、そ
の構造が不均質であると、均質膜に比べて気体の通過速
度が高くなるため、脱酸素用膜としてより好適である。
膜の素材の例としては、疎水性で、気体通過速度が高
く、強度もあるポリ−4−メチル−1−ペンテン等が挙
げられる。
Among them, the inner diameter of the hollow fiber membrane used is 250 μm.
m or less is more preferable. Further, a hollow fiber membrane having a heterogeneous structure has a higher gas passage speed than a homogeneous membrane, and is therefore more suitable as a deoxygenation membrane.
Examples of the material of the membrane include poly-4-methyl-1-pentene, which is hydrophobic, has a high gas passage rate, and has high strength.

【0018】真空装置としては、各種真空ポンプやアス
ピレーター等、既存の装置を適宜使用することができる
が、中でも、簡便な水封式真空ポンプ、ダイアフラム式
真空ポンプ、ドライ型真空ポンプ、水流アスピレーター
等が、大量の水蒸気の混入に耐えられるため好ましい。
As the vacuum device, existing devices such as various vacuum pumps and aspirators can be appropriately used. Among them, a simple water ring vacuum pump, a diaphragm vacuum pump, a dry vacuum pump, a water aspirator, etc. Is preferred because it can withstand a large amount of water vapor.

【0019】本発明において用いられる溶存酸素を除去
した温水の溶存酸素量は、飽和溶存酸素濃度の50%以
下が好ましく、30%以下がより好ましく、10%以下
が更に好ましい。具体的には、溶存酸素を除去した温水
の溶存酸素濃度として、4ppm以下、好ましくは3p
pm以下、更に好ましくは1ppm以下である。製造し
た脱酸素水は、酸素の再溶解を防ぐため、大気から遮断
して保存するか、あるいは、製造後速やかに使用、即
ち、加温し土壌に灌注することが望ましい。
The amount of dissolved oxygen in the warm water from which dissolved oxygen has been removed is preferably 50% or less, more preferably 30% or less, even more preferably 10% or less of the saturated dissolved oxygen concentration. Specifically, the dissolved oxygen concentration of warm water from which dissolved oxygen has been removed is 4 ppm or less, preferably 3 ppm or less.
pm or less, more preferably 1 ppm or less. In order to prevent redissolution of oxygen, the produced deoxygenated water is desirably protected from the atmosphere and stored, or is used immediately after production, that is, it is desirable to warm and irrigate the soil.

【0020】温水製造装置としては、特に制限されるも
のではなく、重油、灯油、LPG等を燃料としたボイラ
ー、電気温水器等が好適に使用でき、既存の暖房機を熱
源とした熱交換機や、太陽熱を利用した温水器等でも差
し支えない。但し、該温水製造装置は、防除対象の圃場
の面積や処理を行う時期に応じ、必要となる温度の温水
を製造できる能力を有するものでなければならない。土
壌への温水の供給は、畑、又は温室等の通常の土壌中の
作物の根圏深さ付近に設置した灌水パイプにより行われ
る。
The apparatus for producing hot water is not particularly limited, and boilers and electric water heaters using heavy oil, kerosene, LPG or the like as fuel can be suitably used. However, a water heater using solar heat may be used. However, the hot water production device must be capable of producing hot water at a required temperature in accordance with the area of the field to be controlled and the timing of performing the treatment. The supply of warm water to the soil is performed by an irrigation pipe installed near the rhizosphere depth of the crop in ordinary soil such as a field or a greenhouse.

【0021】通常の土壌中の有害生物の至適生息温度は
20℃から30℃と言われており、例えば、線虫の場合
は45℃以上の温度、好ましくは50℃以上の温度で容
易に死滅することが知られている。しかしながら、作物
植物体への影響を考慮すると、植物体に接触する温水の
温度は40℃以下であることが好ましい。本発明は溶存
酸素を除去した温水を用いて、土壌中の有害生物への障
害性を増強することによって、40℃以下の脱気温水を
土壌に灌水して、土壌の温度を30℃以上に上昇させる
ことで、土壌中の有害生物に十分な障害を与えることが
出来る。
It is said that the optimum inhabiting temperature of normal pests in soil is from 20 ° C. to 30 ° C. For example, in the case of nematodes, the temperature easily exceeds 45 ° C., preferably 50 ° C. or more. It is known to die. However, in consideration of the effect on the crop plant, the temperature of the hot water in contact with the plant is preferably 40 ° C. or lower. The present invention uses hot water from which dissolved oxygen has been removed to enhance the harmfulness to pests in the soil, thereby irrigating the soil with de-aired water at a temperature of 40 ° C. or less, and raising the temperature of the soil to 30 ° C. or more. Raising can provide sufficient damage to pests in the soil.

【0022】その詳細な機構は明らかではないが、溶存
酸素を除去した温水は、温度による有害生物への直接的
な障害効果の他に、土壌温度を上昇させることで土壌中
の有害生物の代謝を高め、有害生物の酸素要求量を増大
させておいて、一気に土壌中の酸素供給量を低下させる
ことにより、より効果的に有害生物に打撃を与えるもの
と考えられる。
Although the detailed mechanism is not clear, hot water from which dissolved oxygen has been removed not only has a direct damaging effect on pests due to temperature, but also has the effect of increasing the soil temperature to increase the metabolism of pests in soil. It is thought that the pests can be hit more effectively by increasing the oxygen demand of the pests and reducing the oxygen supply in the soil at once.

【0023】作物を播種または定植する前に、作物の根
圏深さ付近の土壌に設置した灌水パイプから、溶存酸素
を除去した温水を供給することにより、作物の根圏付近
の深さから地表から深さ5cmまでの温度を30℃以上
に上昇させる際に用いられる温水の温度は、高いほど地
中の温度の上昇が早く、土壌中の有害生物に与える影響
も大きくなる。また温水の温度が低すぎると、土壌の温
度を土壌中の有害生物の駆除至適温度条件以上に上昇さ
せることが難しくなる為、30℃以上が好ましく、40
℃以上がより好ましく、50℃以上が更に好ましい。
Before sowing or planting a crop, hot water from which the dissolved oxygen has been removed is supplied from an irrigation pipe installed in the soil near the depth of the rhizosphere of the crop, so that the ground surface can be measured from the depth near the rhizosphere of the crop. The higher the temperature of warm water used to raise the temperature from water to a depth of 5 cm to 30 ° C. or higher, the faster the temperature in the ground rises, and the greater the effect on pests in the soil. On the other hand, if the temperature of the hot water is too low, it is difficult to raise the temperature of the soil above the optimum temperature condition for controlling pests in the soil.
C. or higher is more preferable, and 50 C or higher is more preferable.

【0024】作物を土壌に播種または定植する前に、該
土壌中の有害生物の駆除を目的に行なう温水の供給で
は、用いる温水の温度の上限は、水の沸点以下であれば
特に特定する必要はないが、極端に温水の温度を上げる
ことは、温水の配管設備に鉄管等の耐熱性の高い部材を
使用しなければならなくなり、費用的、労力的な負担が
大きく好ましくなく、通常80℃以下である。
In supplying hot water for the purpose of controlling pests in the soil before sowing or planting the crops on the soil, it is particularly necessary to specify the upper limit of the temperature of the hot water to be used as long as it is lower than the boiling point of water. However, raising the temperature of hot water extremely requires the use of high heat-resistant members such as iron pipes in the piping of hot water, which is expensive and labor-intensive, and is not preferable. It is as follows.

【0025】一方、作物を土壌に播種または定植した後
の、作物の成育中に、土壌に設置した灌水パイプから溶
存酸素を除去した温水を供給することにより、作物の根
圏付近から地表下5cmまでの土壌の温度を30℃以
上、実際には30℃程度まで上昇させる場合は、作物に
影響を与える高い温度の温水を根の付近に与えることは
避けねばならず、溶存酸素を除去した温水の温度は50
℃以下とする必要があり、好ましくは40℃以下であ
る。
On the other hand, after the crop is sown or planted in the soil, while the crop is growing, hot water from which dissolved oxygen has been removed is supplied from an irrigation pipe installed in the soil, so that the crop is 5 cm below the ground from near the rhizosphere of the crop. When the temperature of the soil up to 30 ° C or more is actually raised to about 30 ° C, it is necessary to avoid supplying high-temperature hot water that affects crops to the vicinity of the roots. The temperature is 50
C. or lower, preferably 40 ° C. or lower.

【0026】設置する灌水パイプの地表からの深さは、
作る作物の根圏の深さによって異なり、一概に規定でき
ないが、一般には、地表から60cm程度迄の深さの間
に灌水パイプを設置すれば良い。例えば、トマト、キュ
ウリ、メロン等の根は、比較的浅く、15〜30cm程
度であるが、根菜類はより深く根をはり、30〜50c
m程度である。
The depth of the installed irrigation pipe from the surface is
It depends on the depth of the rhizosphere of the crop to be made and cannot be specified unconditionally, but in general, it is sufficient to install an irrigation pipe at a depth of about 60 cm from the ground surface. For example, the roots of tomato, cucumber, melon and the like are relatively shallow, about 15 to 30 cm, but the root vegetables are deeper and 30 to 50 c.
m.

【0027】作物の生育期間中の温水供給の際に、作物
の根に直接温水が当たることが避けられる観点から、ト
マト、キュウリ、メロン等であれば、根から更に10c
m程度深い位置、即ち、地表からの深さ20〜30cm
程度に灌水パイプを設置することが好ましく、根菜類で
あれば40〜60cm程度に灌水パイプを設置すること
が好ましい。2種程度の異なる深さにパイプを配置した
作地もしくは温室を選択し、作物種に応じて使い分ける
ことが好ましい。
From the viewpoint of avoiding direct contact of the crop roots with hot water during the supply of warm water during the growing period of the crop, if the tomato, cucumber, melon or the like is used, an additional 10 c.
m depth, that is, 20-30cm depth from the ground
It is preferable to install the irrigation pipe at about 40 to 60 cm for root vegetables. It is preferable to select a cropland or greenhouse in which pipes are arranged at about two different depths, and use them properly according to the crop type.

【0028】作物の根圏付近から地表下5cm迄の温度
を30℃以上に上昇させるとは、作物の根圏付近に設置
した灌水パイプから供給される温水により、作物の根圏
付近の土壌から、地表からの深さ5cm迄の間に存在す
る土壌の温度を30℃以上に上昇させることを意味す
る。
Raising the temperature from the vicinity of the crop rhizosphere to 5 cm below the ground surface to 30 ° C. or higher means that the warm water supplied from the irrigation pipe installed near the crop rhizosphere removes the soil from the vicinity of the crop rhizosphere. Means raising the temperature of the soil existing up to a depth of 5 cm from the ground surface to 30 ° C. or more.

【0029】ここで、地表の温度とせずに地表下5cm
の温度を用いたのは、夏場の直射日光下では地表の温度
が上昇し、正しい地中の温度を反映しない為に、地表の
気象条件の影響が殆ど無い地表下5cmの温度を用いて
表現したに過ぎず、地表下5cm、即ち地表からの深さ
5cmの部位から地表までの間の土壌の温度が30℃以
上になることを本発明から排除するものではなく、該部
分の土壌温度も30℃以上となることが好ましく、地表
からの深さ5cmの部位から地表までの間の土壌の温度
が30℃以上になることも本発明に含まれる。
Here, 5 cm below the ground without setting the temperature of the ground
The temperature of 5cm below the surface, which is hardly affected by the weather conditions of the surface, is used because the temperature of the surface rises under direct sunlight in summer and does not reflect the correct temperature in the ground. This does not exclude from the present invention that the temperature of the soil from the site 5 cm below the ground surface, that is, 5 cm deep from the ground surface to the ground surface, becomes 30 ° C. or more, and the soil temperature of the portion also becomes lower. The temperature is preferably 30 ° C. or higher, and the present invention includes that the temperature of the soil between the site having a depth of 5 cm from the ground surface and the ground surface is 30 ° C. or higher.

【0030】作物を播種または定植する畝の中央部の地
中に設置した灌水パイプを用いて温水を供給すること
は、温水の熱を大気中に逃がすことがない点で効率的で
ある。また、大気中の酸素が温水中に溶解することを防
ぐことができる点で、地中からの灌水が好ましい。図1
は、本発明の土壌中の有害生物の防除方法において、地
中に灌水パイプを設置する場合の一例を示すものであ
る。
Supplying hot water using an irrigation pipe installed in the ground at the center of a ridge for sowing or planting crops is efficient in that heat of the hot water does not escape to the atmosphere. Irrigation from the ground is preferable because oxygen in the atmosphere can be prevented from dissolving in warm water. FIG.
Fig. 1 shows an example in which an irrigation pipe is installed underground in the method for controlling pests in soil according to the present invention.

【0031】まず、灌水パイプ3を、作物を播種または
定植する畝5の中央部に沿って埋設する。この灌水パイ
プ3の一端部3aは封じられている。灌水パイプ3の他
方の端部3bから、この灌水パイプ3を通して、溶存酸
素を除去した温水を周囲の土壌4中に供給する。これに
よって、灌水パイプ3が埋設された畝5の内部の土壌4
が均一に灌水され、土壌の温度が上昇し、土壌中の有害
生物、即ち、モグラ、ネズミ等の小動物や、土壌線虫、
土壌病害菌、昆虫及びその幼虫等を防除することができ
る。
First, the irrigation pipe 3 is buried along the center of the ridge 5 for sowing or planting a crop. One end 3a of the irrigation pipe 3 is sealed. From the other end 3 b of the watering pipe 3, hot water from which dissolved oxygen has been removed is supplied into the surrounding soil 4 through the watering pipe 3. Thereby, the soil 4 inside the ridge 5 in which the irrigation pipe 3 is buried is provided.
Is uniformly irrigated, the temperature of the soil rises, and pests in the soil, that is, small animals such as moles and rats, soil nematodes,
It can control soil disease fungi, insects and their larvae.

【0032】灌水パイプとしては、多孔質管、多数の穴
をあけた塩化ビニル管、一定間隔に穴をあけたビニール
ホース、プラスチックパイプに、一定間隔で定流量機能
を施した穴をあけた、いわゆるドリップ灌漑用パイプ等
を適宜用いることができる。中でも、多孔質管が好適に
用いられる。多孔質管は、プラスチック、セラミック
ス、更には焼結材料等で作られているものも利用し得る
が、作業性、経済性等の点からゴム等の可撓性材料を用
いた多孔質管が好ましい。
As the irrigation pipe, a porous pipe, a vinyl chloride pipe with many holes, a vinyl hose with holes at regular intervals, and a plastic pipe with a constant flow rate at regular intervals were drilled. A so-called drip irrigation pipe or the like can be used as appropriate. Among them, a porous tube is preferably used. As the porous tube, a tube made of plastic, ceramics, or even a sintered material may be used.However, a porous tube using a flexible material such as rubber is preferable in terms of workability and economy. preferable.

【0033】本発明の防除方法に好適に用いられる多孔
質管の例として、本出願人が先に出願した特開平7−1
55060号公報に詳しく記載されている多孔質管を挙
げることができる。この多孔質管は、可撓性の素材、例
えばゴム、ポリ塩化ビニルやポリエチレン等のプラスチ
ック、またはこれらの複合材を用いて成形したものであ
ることが好ましい。特に、ゴム粉末をポリエチレン等の
結合材を用いて成形したものが好ましい。
As an example of a porous tube suitably used in the control method of the present invention, Japanese Patent Application Laid-Open No. 7-1 filed earlier by the present applicant.
A porous tube described in detail in Japanese Patent No. 55060 can be mentioned. This porous tube is preferably formed of a flexible material, for example, a plastic such as rubber, polyvinyl chloride or polyethylene, or a composite material thereof. In particular, a rubber powder molded using a binder such as polyethylene is preferable.

【0034】多孔質管の管壁には、微細連続通孔が形成
されており、その空隙率は30%程度が好ましい。この
多孔質管は、土壌中に埋めて使用され、しかも常に水や
土壌中のイオン成分と接触するものであるので、可撓性
であるとともに不蝕性であることが好ましく、セラミッ
クスや鉄等は破損可能性、腐食可能性、製品重量等の点
で素材としてあまり適当ではない。多孔質管は埋設時や
埋設後に粗略に取り扱われることがあるので、一定の強
度、例えば、約15kg/cm2以上の引っ張り強度
(JIS K6301)を有していることが好ましく、
本発明に好適に用いることができる多孔質管の具体例と
して、例えば、「リーキーパイプ」(登録商標:日本酸
素株式会社製)が挙げられる。
Fine continuous through holes are formed in the tube wall of the porous tube, and the porosity is preferably about 30%. Since this porous tube is used by being buried in the soil and constantly in contact with water and ionic components in the soil, it is preferably flexible and noncorrosive. Is not very suitable as a material in terms of breakage, corrosion, and product weight. Since the porous tube may be roughly handled during or after embedding, it preferably has a certain strength, for example, a tensile strength (JIS K6301) of about 15 kg / cm 2 or more,
As a specific example of the porous tube that can be suitably used in the present invention, for example, “Leaky Pipe” (registered trademark: manufactured by Nippon Sanso Corporation) can be mentioned.

【0035】溶存酸素を除去した温水の灌水は、作物の
植え付けや播種に先立って実施することが好ましい。灌
水量は、灌水する方法、面積、処理時期等により異なる
が、30mm降雨相当量以上を灌水することが好まし
い。地中に熱電対式温度計を挿入しておき、地温をモニ
ターしながら灌水を行うと、より効果的である。地中灌
注と併せて、作物を播種または定植する畝の中央部に沿
った地表に温水を灌水することも土壌中の温度を上げる
上で効果的である。また、いずれの灌水時にも、土壌表
面をビニール等で被覆することで、更に効果を上げるこ
とができる。
Irrigation with warm water from which dissolved oxygen has been removed is preferably carried out prior to planting or sowing of the crop. The amount of irrigation varies depending on the method, area, treatment time, and the like of irrigation, but it is preferable to irrigation at least 30 mm rainfall equivalent. It is more effective to insert a thermocouple-type thermometer in the ground and to perform watering while monitoring the ground temperature. In conjunction with underground irrigation, irrigation of the surface with warm water along the center of the ridges where the crops are sown or planted is also effective in raising the temperature in the soil. Further, at any time of irrigation, the effect can be further enhanced by coating the soil surface with vinyl or the like.

【0036】土壌に灌水パイプで地中灌水された水は、
速やかに土壌に浸透し、重力による下降移動と、毛細管
現象による平行移動により土中を広がり、周辺土壌の温
度を上昇させる。このとき温水の土中移動は、土壌の
質、乾燥状態、温水の灌水強度により影響を受ける。即
ち、温水の流量を多くすれば、短時間で土壌を昇温させ
ることが出来るが、重力による下降現象が顕著となる。
The water underground irrigated with a watering pipe in the soil is
Immediately penetrates into the soil, spreads in the soil by downward movement by gravity and parallel movement by capillary action, and raises the temperature of the surrounding soil. At this time, the movement of the warm water through the soil is affected by the quality of the soil, the dry state, and the intensity of the warm water irrigation. That is, if the flow rate of the hot water is increased, the temperature of the soil can be raised in a short time, but the falling phenomenon due to gravity becomes remarkable.

【0037】一方、低流量で灌水を行うと、土壌の水分
量に依存して、毛細管現象により、温水は灌水パイプを
中心に同心円上に移動できるので好ましい。しかし、流
量が少なすぎると、土壌の温度を有害生物の防除可能な
程度にまで昇温させるのに長時間を要し、経費がかさむ
結果になる。これら条件を種々検討した結果、溶存酸素
を除去した温水の供給流量が灌水パイプ1m当たり約
3.0cm3/秒以下であると好ましい結果が得られる
ことが判った。これは、10時間で100mm降雨相当
量灌水する場合の流量に相当する。
On the other hand, it is preferable to perform the irrigation at a low flow rate because the hot water can move concentrically around the irrigation pipe by capillary action, depending on the water content of the soil. However, if the flow rate is too low, it takes a long time to raise the temperature of the soil to such an extent that pests can be controlled, resulting in high costs. As a result of various examinations of these conditions, it was found that preferable results were obtained when the supply flow rate of hot water from which dissolved oxygen had been removed was not more than about 3.0 cm 3 / sec per 1 m of irrigation pipe. This is equivalent to the flow rate when 100 mm rainfall is irrigated in 10 hours.

【0038】作物の成育中に灌水パイプから、溶存酸素
を除去した温水を供給し、有害生物を防除する場合も、
上述の条件と同様に行う。作中の灌水防除の回数は作物
の種類、時期により異なり、一概に特定できないが、ト
マト、キュウリ、メロン等の特に線虫の害が顕著な作物
の場合は、作付け前の有害生物の防除に加えて、作中に
数回の防除、一般に2〜3回の防除を行うことが好まし
い。
In the case where hot water from which dissolved oxygen has been removed is supplied from an irrigation pipe during crop growth to control pests,
This is performed under the same conditions as described above. The frequency of irrigation control during cropping depends on the type and season of the crop, and cannot be specified unconditionally.However, in the case of crops that are particularly harmful to nematodes, such as tomatoes, cucumbers, and melons, control the pests before cropping. In addition, it is preferable to control several times during cropping, generally two to three times.

【0039】本発明における防除対象の土壌中の有害生
物とは、土壌に生息し、作物や果樹、花卉等に被害を及
ぼす生物のことであり、例えば、作物の生育を阻害する
ネコブセンチュウやネグサレセンチュウ等の土壌線虫、
作物や果実の根を食害する蛾の幼虫、コガネムシの幼
虫、根に寄生するセミの幼虫等の昆虫類、土壌病害を起
こすピシウム菌、フザリウム菌、リゾクトニア菌、パー
ティシリウム菌等の土壌病害菌である。
The pests in the soil to be controlled in the present invention are organisms that inhabit the soil and damage crops, fruit trees, flowers, etc., and include, for example, root-knot nematodes and negsare that inhibit the growth of crops. Soil nematodes such as nematodes,
Insects such as moth larvae, scarab beetle larvae and cicada larvae parasitic on roots, and soil disease fungi such as picium, fusarium, rhizoctonia, and partirium that cause soil disease. It is.

【0040】[0040]

【実施例】以下に、本発明を実施例により具体的に説明
する。 (参考例) 溶存酸素を除去した温水のサツマイモネコ
ブセンチュウ(Meloidogyne incognita)の二期幼虫に
対する効果 溶存酸素を除去した水道水(溶存酸素濃度約0.6pp
m:脱酸素水区)及び通常の水道水(溶存酸素濃度約8
ppm:水道水区)を6mlずつ管瓶(高さ4.3c
m、直径1.3cm)に分注したものをそれぞれ3本ず
つ用意し、サツマイモネコブセンチュウ二期幼虫を各々
に20頭ずつ放ち密栓した。これを20℃に保った恒温
槽中に静置し、2時間後、4時間後、6時間後に水道水
区と脱酸素水区より1本ずつ開栓し、注射器にて内容物
を取り出し、時計皿に移し生存線虫数を調査した。同様
の実験を恒温槽の水温を35℃に保った状態で行った。
それぞれの線虫の生存率を図2に示す。
The present invention will be described below in more detail with reference to examples. (Reference example) Effects of warm water from which dissolved oxygen was removed on sweet potato nematodes ( Meloidogyne incognita ) against second-stage larvae Tap water from which dissolved oxygen was removed (dissolved oxygen concentration about 0.6 pp)
m: deoxygenated water zone) and ordinary tap water (dissolved oxygen concentration about 8)
ppm: tap water section) 6 ml tube bottles (height 4.3c)
m, 1.3 cm in diameter) were prepared, and three of the two stage larvae of the sweet potato root-knot nematode were released and sealed. This was allowed to stand still in a thermostat kept at 20 ° C., and after 2 hours, 4 hours, and 6 hours, the bottles were opened one by one from a tap water section and a deoxygenated water section, and the contents were taken out with a syringe. After transferring to a watch glass, the number of surviving nematodes was examined. A similar experiment was performed with the water temperature of the thermostat kept at 35 ° C.
The survival rate of each nematode is shown in FIG.

【0041】図2の縦軸は線虫の生存率(%)を横軸は
恒温槽での保持時間(時間)を表わす。図2から、明ら
かなように、温度20℃の水道水(水道水20℃)では
線虫は6時間経過後も殆ど生存しているのに対して、温
度を35℃に上げた水道水(水道水35℃)では、生存
率が80%程度に低下し、更に溶存酸素を除去した、温
度20℃の水道水(脱酸素水20℃)では生存率は50
%程度まで低下し、溶存酸素を除去した、温度35℃の
水道水(脱酸素水35℃)では生存率は10%程度にま
で低下しており、温度上昇と脱酸素が線虫の生存率に大
きな影響を与えることが判る。
The vertical axis of FIG. 2 represents the survival rate (%) of the nematodes, and the horizontal axis represents the holding time (hour) in a thermostat. As is clear from FIG. 2, in tap water at a temperature of 20 ° C. (tap water at 20 ° C.), the nematode is almost alive even after 6 hours, whereas tap water at a temperature raised to 35 ° C. In the case of tap water (35 ° C.), the survival rate was reduced to about 80%, and in the case of tap water at a temperature of 20 ° C. (deoxygenated water at 20 ° C.) from which dissolved oxygen was further removed, the survival rate was 50%.
% Of tap water (deoxygenated water 35 ° C) at a temperature of 35 ° C from which dissolved oxygen has been removed, and the survival rate has dropped to about 10%. It has a significant effect on

【0042】(実施例1) サツマイモネコブセンチュ
ウ多発圃場での防除試験 ネコブセンチュウ害の多発したキュウリ栽培後の鉄骨ビ
ニールハウスを用いてネコブセンチュウ防除試験を実施
した。作物はトマト(品種名:ハウス桃太郎)を定法に
従って育苗、供試した。
(Example 1) A control test in a field where sweet potato root-knot nematodes frequently occur A root-knot nematode control test was carried out using a steel frame greenhouse after cultivation of cucumber, which frequently caused root-knot nematodes. For the crop, tomato (cultivar name: House Momotaro) was raised and tested according to a standard method.

【0043】灌水処理試験区として、常温(約15℃)
の井水を用いた第1区(対照区)、溶存酸素を除いた常
温の井水を用いた第2区(比較例)、井水を50℃に昇
温したものを用いた第3区(比較例)、溶存酸素を除い
た井水を50℃に昇温したものを用いた第4区(実施
例)の4区を設定した。
As an irrigation treatment plot, room temperature (about 15 ° C.)
First section using well water (control section), second section using room temperature well water without dissolved oxygen (comparative example), third section using well water heated to 50 ° C (Comparative Example) Four sections of a fourth section (Example) using well water excluding dissolved oxygen heated to 50 ° C. were set.

【0044】各試験区には畝幅120cm、畝長25m
の試験栽培用ベッドを充て、4区の各々の中央に一端部
を封じた多孔質管(リーキーパイプ、透水係数=5.4
×10-6cm/秒、日本酸素株式会社製)を20cmの
深さに埋設した。多孔質管の他端部は各々配管と弁付き
流量計を介して脱酸素水製造装置、温水器及び井水取り
出し口に接続した。畝表面は農業用ビニールでマルチン
グした。各区ともトマト定植前に灌水パイプ1m当たり
の流量約0.7cm3/秒で約24時間、水量にして約
60mm降雨相当の灌水(60l/m2)を行った。
Each test plot had a ridge width of 120 cm and a ridge length of 25 m.
Of a porous tube (leaky pipe, permeability coefficient = 5.4) with one end sealed at the center of each of the four sections.
× 10 −6 cm / sec, manufactured by Nippon Sanso Corporation) was buried at a depth of 20 cm. The other end of the porous pipe was connected to a deoxygenated water producing apparatus, a water heater, and a well water outlet through a pipe and a flow meter with a valve. The ridge surface was mulched with agricultural vinyl. Before planting tomatoes in each section, irrigation (60 l / m 2 ) was performed at a flow rate of about 0.7 cm 3 / sec per meter of irrigation pipe for about 24 hours, equivalent to about 60 mm of rainfall.

【0045】各試験区の線虫密度は灌水処理前と処理後
に測定した。畝土壌を各区各々の深さを変えて3カ所ず
つ採取し、深さ毎に十分に混合した後、20gを取り出
し、その幼虫数をベルマン法で検出した。灌水処理前と
処理後のネコブセンチュウ二期幼虫数(頭/20g)の
結果を表1に示す。これらの栽培用ベッドにそれぞれ株
間30cm間隔でトマト苗を定植し、慣行に従い栽培し
た。栽培終了後に根を掘り上げ、線虫の寄生による被害
程度を5段階(無=0、微=1、少=2、中=3、多=
4、甚=5)に分類し、ねこぶ指数、{Σ(被害程度×
当該株数)/5×調査株数}×100として表した。ト
マト栽培終了後の試験区毎のネコブセンチュウによる被
害(ねこぶ指数)を表2に示す。
The nematode density of each test plot was measured before and after the watering treatment. The furrow soil was collected at three locations at different depths in each section, mixed thoroughly at each depth, 20 g was taken out, and the number of larvae was detected by Bellman method. Table 1 shows the results of the root-knot nematode second-stage larvae (head / 20 g) before and after the watering treatment. Tomato seedlings were planted on these cultivation beds at intervals of 30 cm between the plants, and cultivated according to customary practices. After the cultivation, the roots were dug up and the degree of damage caused by the nematode in 5 stages (none = 0, fine = 1, small = 2, medium = 3, many =
Cattle index, {Σ (degree of damage x)
The number of strains) / 5 × the number of strains to be investigated} × 100. Table 2 shows the damage (nekobu index) of the root-knot nematode in each test plot after completion of tomato cultivation.

【0046】[0046]

【表1】 [Table 1]

【0047】[0047]

【表2】 [Table 2]

【0048】〔実施例2〕 サツマイモネコブセンチュ
ウ多発圃場での防除試験 サツマイモネコブセンチュウ多発圃場(鉄骨ビニールハ
ウス)を用いて、サツマイモネコブセンチュウの防除試
験を行った。作物はトマト(品種名:ハウス桃太郎)を
用い、定法に従って育苗、供試した。圃場作成、灌水資
材は実施例1と全く同様とした。
Example 2 Pest Control Test in a Sweet Potato Nematode Frequently Producing Field Using a sweet potato root-knot nematode frequently occurring field (steel frame greenhouse), a control test of sweet potato root-knot nematodes was performed. As for the crop, tomato (cultivar name: House Momotaro) was used for raising and seedling according to a standard method. Field preparation and irrigation materials were exactly the same as in Example 1.

【0049】灌水処理試験区として、常温(約15℃)
の井水を用いた第1区(対照区)、溶存酸素を除いた常
温の井水を用いた第2区(比較例)、井水を50℃に昇
温したものを用いた第3区(比較例)、溶存酸素を除い
た井水を50℃に昇温したものを用いた第4区(実施
例)の4区を設定した。
As an irrigation treatment plot, normal temperature (about 15 ° C)
First section using well water (control section), second section using room temperature well water without dissolved oxygen (comparative example), third section using well water heated to 50 ° C (Comparative Example) Four sections of a fourth section (Example) using well water excluding dissolved oxygen heated to 50 ° C. were set.

【0050】灌水処理は、定植前処理として実施例1と
同様に、各区ともトマト定植前に灌水パイプ1m当たり
の流量約0.7cm3/秒で約24時間、水量にして約
60mm降雨相当の灌水処理(60l/m2)を行っ
た。更に作中にも各々、第1区には常温の井水、第2区
には脱酸素した常温井水、第3区には40℃に昇温した
井水、第4区には40℃に昇温した脱酸素水を各々2週
間毎に、作前の灌水量の半量(約30mm降雨相当)を
灌水処理した。4ヶ月間栽培した。
In the same manner as in Example 1, the watering treatment was performed as a pre-planting treatment. In each of the plots, before the tomato planting, the flow rate per m of the irrigation pipe was about 0.7 cm 3 / sec for about 24 hours, and the amount of water was about 60 mm. Irrigation treatment (60 l / m 2 ) was performed. Further, during the operation, the wells were at room temperature in the first section, room temperature well water deoxygenated in the second section, well water heated to 40 ° C in the third section, and 40 ° C in the fourth section. The deoxygenated water whose temperature had been raised was half watered (every 30 mm rainfall equivalent) of the pre-crop watering volume every two weeks. Cultivated for 4 months.

【0051】線虫密度の測定は定植前処理前後、及び栽
培終了後に行った。定植前処理前後と栽培終了後のネコ
ブセンチュウ二期幼虫数(頭/20g)の結果を表3に
示す。栽培終了後に、実施例1と同様にトマト栽培終了
後のネコブセンチュウによる被害(ねこぶ指数)を求め
た。これを表4に示す。
The nematode density was measured before and after the pre-planting treatment and after the cultivation. Table 3 shows the results of the number of root-knot nematode second-stage larvae (head / 20 g) before and after the pre-planting treatment and after the completion of the cultivation. After the cultivation was completed, the damage (cat swelling index) by the root-knot nematode after the completion of the tomato cultivation was determined in the same manner as in Example 1. This is shown in Table 4.

【0052】[0052]

【表3】 [Table 3]

【0053】[0053]

【表4】 [Table 4]

【0054】(実施例3) マメコガネの幼虫防除試験 試験区は線虫と同様に、灌水処理試験区として、常温
(約15℃)の井水を用いた第1区(対照区)、溶存酸
素を除いた常温の井水を用いた第2区(比較例)、井水
を50℃に昇温したものを用いた第3区(比較例)、溶
存酸素を除いた井水を50℃に昇温したものを用いた第
4区(実施例)の4区を設定した。
(Example 3) Larvae control test of bean bugs As in the case of the nematodes, the test plot was used as a test plot for irrigation treatment. The first plot (control plot) using well water at normal temperature (about 15 ° C), the dissolved oxygen The second section using room temperature well water excluding water (Comparative Example), the third section using well water whose temperature was raised to 50 ° C. (Comparative Example), and the well water excluding dissolved oxygen at 50 ° C. Four sections of a fourth section (Example) using the heated one were set.

【0055】各試験区共予め一端部を封じた多孔質管
(リーキーパイプ、透水係数6.2×10-6cm/秒、
日本酸素株式会社製)を、深さ約20cmに設置した。
マメコガネ幼虫を20頭ずつ、土壌とともに網状の袋に
入れたものを9つ用意した。これらを、各試験区に3つ
ずつ、深さ10cm、20cm、30cmに埋設した。
多孔質管の他端部はそれぞれ、配管と弁付き流量計とを
介して、給水源に接続した。灌水はそれぞれパイプ1m
当たりの流量約0.7cm3/秒で24時間、量にして
約60mm降雨相当の灌水(60l/m2)を行った。
In each of the test sections, a porous tube (a leaky pipe, having a permeability of 6.2 × 10 −6 cm / sec.
(Manufactured by Nippon Sanso Corporation) at a depth of about 20 cm.
Nine mamekogane larvae, each in a net-like bag together with soil, were prepared. Three of these were buried in each test plot at a depth of 10 cm, 20 cm, and 30 cm.
The other end of the porous tube was connected to a water supply source via a pipe and a flow meter with a valve. Irrigation is 1m each pipe
Watering (60 l / m 2 ) equivalent to about 60 mm rainfall was performed at a flow rate of about 0.7 cm 3 / sec for 24 hours.

【0056】灌水処理直後、マメコガネ幼虫を入れた袋
をすべて回収し、各試験区での生存数を計測した。結果
を表5に示す。尚、表5において、防除率は対照区であ
る第1区の生存幼虫数から、各試験区での生存幼虫数を
減じ、これを対照区での生存幼虫数で割ったものを10
0倍することにより求めた。
Immediately after the watering treatment, all the bags containing the beetle larvae were collected, and the number of survivors in each test plot was counted. Table 5 shows the results. In Table 5, the control rate was calculated by subtracting the number of surviving larvae in each test plot from the number of surviving larvae in the control plot No. 1 and dividing this by the number of surviving larvae in the control plot.
It was determined by multiplying by 0.

【0057】[0057]

【表5】 [Table 5]

【0058】[0058]

【発明の効果】本発明は、作物に障害を与えず、安全で
環境に優しく、且つ簡便に、低コストで土壌中の有害生
物を効果的に防除する、優れた土壌中の有害生物の防除
方法を提供することができる。
INDUSTRIAL APPLICABILITY The present invention provides an excellent control of pests in soil which does not hinder crops, is safe, is environmentally friendly, is simple, and effectively controls pests in soil at low cost. A method can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の土壌中の有害生物の防除方法におい
て、地中に灌水パイプを設置する場合の一例を示す図で
ある。
FIG. 1 is a diagram showing an example of a case where an irrigation pipe is installed underground in the method for controlling pests in soil according to the present invention.

【図2】 脱酸素水及び水道水の20℃及び35℃にお
ける経過時間ごとの線虫の生存率を示す図である。
FIG. 2 is a diagram showing the survival rates of nematodes for each elapsed time at 20 ° C. and 35 ° C. in deoxygenated water and tap water.

【符号の説明】[Explanation of symbols]

3 灌水パイプ 4 土壌 5 畝 3 irrigation pipe 4 soil 5 ridge

───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷口 正幸 東京都港区西新橋1丁目16番7号 日本酸 素株式会社内 (72)発明者 藤原 有仁 千葉県佐倉市江原台2−2−7 ディアコ ートA103 (72)発明者 藤井 卓 千葉県千葉市美浜区高浜6−5−7 (72)発明者 増井 正明 千葉県千葉市若葉区桜木町594−9 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Masayuki Taniguchi 1-16-7 Nishi-Shimbashi, Minato-ku, Tokyo Inside Nippon Oxide Co., Ltd. (72) Inventor Yuji Fujiwara 2-2 Ebaradai, Sakura City, Chiba Prefecture 7 Diacoat A103 (72) Inventor Taku Fujii 6-5-7 Takahama, Mihama-ku, Chiba City, Chiba Prefecture (72) Inventor Masaaki Masui 594-9, Sakuragicho, Wakaba-ku, Chiba City, Chiba Prefecture

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 作物を播種または定植する前に、作物の
根圏深さ付近の土壌に設置した灌水パイプから、溶存酸
素を除去した温水を供給することにより、作物の根圏付
近から地表下5cm迄の温度を30℃以上に上昇させる
ことを特徴とする土壌中の有害生物の防除方法。
1. Before sowing or planting a crop, hot water from which dissolved oxygen has been removed is supplied from an irrigation pipe installed in soil near the depth of the rhizosphere of the crop, so that the groundwater is removed from the vicinity of the rhizosphere of the crop. A method for controlling pests in soil, comprising raising the temperature up to 5 cm to 30 ° C. or higher.
【請求項2】 溶存酸素を除去した温水の温度が40℃
以上であることを特徴とする請求項1に記載の土壌中の
有害生物の防除方法。
2. The temperature of hot water from which dissolved oxygen has been removed is 40 ° C.
The method for controlling pests in soil according to claim 1, wherein:
【請求項3】 作物の成育中に作物の根圏深さ付近の土
壌に設置した灌水パイプから、溶存酸素を除去した温水
を供給することにより、作物の根圏付近から地表下5c
m迄の温度を30℃以上に上昇させることを特徴とする
土壌中の有害生物の防除方法。
3. During growth of the crop, hot water from which dissolved oxygen has been removed is supplied from an irrigation pipe installed on the soil near the depth of the rhizosphere of the crop, so that the ground water is removed from the vicinity of the rhizosphere of the crop.
A method for controlling pests in soil, comprising raising the temperature up to 30 ° C. or higher.
【請求項4】 溶存酸素を除去した温水の温度が、40
℃以下であることを特徴とする請求項3に記載の土壌中
の有害生物の防除方法。
4. The temperature of hot water from which dissolved oxygen has been removed is 40.
The method for controlling pests in soil according to claim 3, wherein the temperature is not higher than ℃.
【請求項5】 溶存酸素を除去した温水の溶存酸素濃度
が、4ppm以下であることを特徴とする請求項1〜4
のいずれか一つに記載の土壌中の有害生物の防除方法。
5. The dissolved oxygen concentration of warm water from which dissolved oxygen has been removed is 4 ppm or less.
The method for controlling pests in soil according to any one of the above.
【請求項6】 溶存酸素を除去した温水の土壌中への供
給流量を、灌水パイプ1m当たり3.0cm3/秒以下
とすることを特徴とする請求項1〜4のいずれか一つに
記載の土壌中の有害生物の防除方法。
6. The method according to claim 1, wherein the flow rate of the hot water from which dissolved oxygen has been removed to the soil is 3.0 cm 3 / sec or less per 1 m of the irrigation pipe. For controlling pests in soil.
【請求項7】 有害生物が植物寄生性土壌線虫であるこ
とを特徴とする請求項1〜4のいずれか一つに記載の土
壌中の有害生物の防除方法。
7. The method for controlling pests in soil according to claim 1, wherein the pests are plant parasitic soil nematodes.
JP17055197A 1997-06-26 1997-06-26 Control of pest in soil Withdrawn JPH119091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17055197A JPH119091A (en) 1997-06-26 1997-06-26 Control of pest in soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17055197A JPH119091A (en) 1997-06-26 1997-06-26 Control of pest in soil

Publications (1)

Publication Number Publication Date
JPH119091A true JPH119091A (en) 1999-01-19

Family

ID=15906976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17055197A Withdrawn JPH119091A (en) 1997-06-26 1997-06-26 Control of pest in soil

Country Status (1)

Country Link
JP (1) JPH119091A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007111003A (en) * 2005-10-21 2007-05-10 Matsushita Electric Works Ltd Method and system for controlling insect pest
JP2007236290A (en) * 2006-03-09 2007-09-20 National Agriculture & Food Research Organization Method for growing crop

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007111003A (en) * 2005-10-21 2007-05-10 Matsushita Electric Works Ltd Method and system for controlling insect pest
JP2007236290A (en) * 2006-03-09 2007-09-20 National Agriculture & Food Research Organization Method for growing crop

Similar Documents

Publication Publication Date Title
CN103598241B (en) The composition of process soil and method
EP0740506B1 (en) Method and apparatus for ozone treatment of soil to kill living organisms
US20060150497A1 (en) Method of hydroponic cultivation and components for use therewith
JP2012120523A (en) Method and apparatus for controlling environment of underground rooting zone of crop through forcible water and air flow and drainage
Mulder Soil disinfestation
US20180220604A1 (en) In-ground root protection system and method
JP5299264B2 (en) Soil reduction disinfection method, soil reduction disinfectant, soil wetting disinfection method, soil wetting disinfectant and soil disinfectant irrigation system
Stanghellini et al. Vol. 59, No. 7--PLANT DISEASE REPORTER--July 1975 559 PYTHIUM APHANIDERMATUM: ITS OCCURRENCE AND CONTROL WITH PYROXY CHLOR IN THE ARABIAN DESERT AT ABU DHABI
US5735076A (en) Method for producing high quality crop
JP3360816B2 (en) How to heat disinfect soil
JPH119091A (en) Control of pest in soil
RU2773829C1 (en) Method for applying herbicides during drip irrigation of gardens and a device for its implementation
JP2004121235A (en) Method for preventing soil from being damaged by disease or insect pest and apparatus for the same
US7316190B2 (en) Under bed fumigator
JPH0930912A (en) Control of pest living in soil
Van Assche et al. Special phytopathological problems in soilless cultures and substrate cultures
JPH0763280B2 (en) Portable hot water soil disinfection method and equipment
JP3395853B2 (en) How to control soil-dwelling organisms
Svihra et al. Treeshelters for nursery plants may increase growth, be cost effective
JP2000069869A (en) Dual service installation for plowed and paddy fields of plastic greenhouse
RU2767069C1 (en) Method for application of herbicides during drip irrigation of gardens and device for implementation thereof
NL2030270B1 (en) Bottom provided with an assembly of tubes.
JP2004329011A (en) Method and device for plant cultivation
Basile Decontamination of soil treated by methyl bromide.
JPH01148125A (en) Method for controlling soil under farm field

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040907