JPH118474A - Manufacture of multilevel board - Google Patents

Manufacture of multilevel board

Info

Publication number
JPH118474A
JPH118474A JP9158248A JP15824897A JPH118474A JP H118474 A JPH118474 A JP H118474A JP 9158248 A JP9158248 A JP 9158248A JP 15824897 A JP15824897 A JP 15824897A JP H118474 A JPH118474 A JP H118474A
Authority
JP
Japan
Prior art keywords
substrate
solder
manufacturing
electrode pads
substrates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9158248A
Other languages
Japanese (ja)
Inventor
Kenichi Tokuno
健市 得能
Ikuyuki Morizaki
郁志 森崎
Nobuaki Takahashi
信明 高橋
Naoharu Senba
直治 仙波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP9158248A priority Critical patent/JPH118474A/en
Publication of JPH118474A publication Critical patent/JPH118474A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • H01L2924/1533Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate
    • H01L2924/15331Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate being a ball array, e.g. BGA
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/144Stacked arrangements of planar printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3436Leadless components having an array of bottom contacts, e.g. pad grid array or ball grid array components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/368Assembling printed circuits with other printed circuits parallel to each other

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Combinations Of Printed Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the manufacturing method of a multilevel board which enables improvement in the reliability of connections between semiconductor chips and boards, the reduction in manufacturing time and improvement in productivity by including only a single heat treatment process. SOLUTION: A manufacturing method includes a process, in which a plurality of boards 1 on which semiconductor chips 2 are mounted, and which have electrode pads 4 and 5 on their surfaces and rears respectively, are provided, a process in which a plurality of the boards 1 are layered with connection solder members 7 between the electrode pads 4 and 5 of the respective board 1, and a process in which the layered boards 1 are heated so as to have the connection solder members 7 melted to connect the respective boards 1 to each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は多層基板の製造方法
に関し、特に、ガラスエポキシのような熱膨張係数の大
きい物質で作られた基板を積層するのに適合した多層基
板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a multilayer substrate, and more particularly, to a method for manufacturing a multilayer substrate suitable for stacking substrates made of a material having a high coefficient of thermal expansion such as glass epoxy.

【0002】[0002]

【従来の技術】近年、マルチメディア化の進展に伴い、
オフィスコンピュータ、パーソナルコンピュータ、ゲー
ム機、自動化設備等の電子機器に対し、小型軽量化及び
メモリ容量の大容量化への要求が非常に強くなってきて
いる。これら要求に対応するため、半導体チップを搭載
した基板を積層する多層基板の製造技術が開発されてい
る。
2. Description of the Related Art In recent years, with the development of multimedia,
There has been an increasing demand for electronic devices such as office computers, personal computers, game machines, and automation equipment to be smaller and lighter and have a larger memory capacity. In order to meet these demands, a technique for manufacturing a multilayer substrate in which substrates on which semiconductor chips are mounted is stacked has been developed.

【0003】図4乃至図7は従来の多層基板の製造方法
を示す説明図である。図4に示すように、基板10には
回路パターンが形成されている表面に半導体チップ11
が搭載され、基板10と半導体チップ11との間は封止
樹脂12によって封止されている。また、基板10の表
面と裏面の端部にはそれぞれ電極パッド13、14が設
けられる。
FIGS. 4 to 7 are explanatory views showing a conventional method for manufacturing a multilayer substrate. As shown in FIG. 4, a semiconductor chip 11 is formed on a surface of a substrate 10 on which a circuit pattern is formed.
Is mounted, and the space between the substrate 10 and the semiconductor chip 11 is sealed with a sealing resin 12. Electrode pads 13 and 14 are provided on the front and rear ends of the substrate 10, respectively.

【0004】多層基板を製造する場合、まず、基板10
の表面の電極パッド13にフラックス16を塗布して接
続用半田部材である半田ボール15を搭載する(図4参
照)。
When manufacturing a multilayer substrate, first, the substrate 10
A flux 16 is applied to the electrode pad 13 on the surface of the solder ball and a solder ball 15 as a solder member for connection is mounted (see FIG. 4).

【0005】次いで、半田ボール15を搭載した基板1
0を加熱して、半田ボール15を溶融し、電極パッド1
3上に接続用電極17を形成する(図5参照)。
Next, the substrate 1 on which the solder balls 15 are mounted
0 is heated to melt the solder balls 15 and the electrode pads 1
The connection electrode 17 is formed on the substrate 3 (see FIG. 5).

【0006】次いで、基板10に形成された接続用電極
17と他の基板10の裏面に形成されている電極パッド
14とを位置合わせした後、フラックス18を介して接
触させ、順次積層する(図6参照)。
Next, after the connection electrodes 17 formed on the substrate 10 and the electrode pads 14 formed on the back surface of the other substrate 10 are aligned, they are brought into contact with each other via a flux 18 and are sequentially laminated (FIG. 6).

【0007】最後に、積層された基板10を加熱して、
接続用電極17を溶融し、各基板10を接続する(図7
参照)。
Finally, the laminated substrate 10 is heated,
The connection electrodes 17 are melted to connect the respective substrates 10 (FIG. 7).
reference).

【0008】また、特開平7ー273146号公報に
は、半導体装置のフリップチップ実装方法が開示されて
いる。図8は、この半導体装置の実装方法を説明するた
めの断面図である。図8に示すように、多層配線基板2
0の表面には、半導体装置21の半田バンプ21aと対
向する位置に凹部20aが形成されている。
Japanese Patent Application Laid-Open No. 7-273146 discloses a flip-chip mounting method for a semiconductor device. FIG. 8 is a cross-sectional view for describing a method of mounting the semiconductor device. As shown in FIG. 8, the multilayer wiring board 2
A recess 20a is formed on the surface of the semiconductor device 21 at a position facing the solder bump 21a of the semiconductor device 21.

【0009】半導体装置21を多層配線基板20に実装
する場合、まず、多層配線基板20の凹部20aの底面
に形成された導体層22上に第1の半田ペースト23を
充填・固化する。
When mounting the semiconductor device 21 on the multilayer wiring board 20, first, a first solder paste 23 is filled and solidified on the conductor layer 22 formed on the bottom surface of the concave portion 20a of the multilayer wiring board 20.

【0010】次いで、固化した第1の半田ペースト23
上の凹部20aの空間に、半田バンプ21aと第1の半
田ペースト23の融点より低い融点を持つ第2の半田ペ
ースト24を充填する。
Next, the solidified first solder paste 23
The space of the upper concave portion 20a is filled with a second solder paste 24 having a melting point lower than the melting points of the solder bumps 21a and the first solder paste 23.

【0011】次いで、半田バンプ21aと凹部20aと
が整合するように、半導体装置21を多層配線基板20
上に載置する。
Next, the semiconductor device 21 is mounted on the multilayer wiring board 20 so that the solder bumps 21a and the recesses 20a are aligned.
Place on top.

【0012】最後に、第2の半田ペースト24の融点温
度でリフロー処理を行う。
Finally, a reflow process is performed at the melting point temperature of the second solder paste 24.

【0013】この特開平7ー273146号公報には、
多層配線基板20上に半田バンプ21aを搭載した後に
加熱溶融する点が開示されている。
Japanese Patent Application Laid-Open No. 7-273146 discloses that
It discloses that the solder bumps 21a are mounted on the multilayer wiring board 20 and then heated and melted.

【0014】[0014]

【発明が解決しようとする課題】従来の多層基板の製造
方法では、基板10の電極パッド13上に接続用半田部
材である半田ボール15を加熱溶融させて接続用電極1
7を形成した後、各基板10の接続用電極17と、基板
10の裏面の電極パッド14とを位置合わせして積み重
ねた後、再度加熱処理して各基板10を接続する。その
ため、加熱処理工程が2回必要となり、半導体チップ1
1と基板10との熱膨張係数差に基づき、半導体チップ
11と基板10との接続部に応力が生じる。
In the conventional method of manufacturing a multi-layer substrate, a solder ball 15 as a connection solder member is heated and melted on an electrode pad 13 of a substrate 10 by heating and melting the connection electrode 1.
After forming 7, the connection electrodes 17 of each substrate 10 and the electrode pads 14 on the back surface of the substrate 10 are aligned and stacked, and then heat-treated again to connect the substrates 10. Therefore, two heat treatment steps are required, and the semiconductor chip 1
A stress is generated at a connection portion between the semiconductor chip 11 and the substrate 10 based on a difference in thermal expansion coefficient between the semiconductor chip 11 and the substrate 10.

【0015】特に、ガラスエポキシ等の有機系の物質で
作られた基板10の場合、2回の加熱処理工程による基
板10への熱ストレスにより、基板10の反りや熱膨張
が発生し、半導体チップ11と基板10との接続信頼性
が低下するという問題がある。
In particular, in the case of the substrate 10 made of an organic material such as glass epoxy, the substrate 10 is warped or thermally expanded due to thermal stress on the substrate 10 by two heat treatment steps, and There is a problem that the connection reliability between the substrate 11 and the substrate 10 is reduced.

【0016】また、半田ボール15を基板10に搭載す
る工程、及び各基板10を接続する工程との、2つの工
程を必要とするため、製造時間が長くなるという問題が
ある。
Further, since two steps are required, that is, a step of mounting the solder balls 15 on the substrate 10 and a step of connecting the respective substrates 10, there is a problem that the manufacturing time becomes long.

【0017】特開平7ー273146号公報には、半導
体装置と多層基板との実装方法が開示されているが、基
板同士を積層する製造方法については開示されていな
い。また、半導体装置に半田バンプを接続する工程を必
要としたり、種類の異なる半田ペーストを充填しなけれ
ばならない等、製造時間が長くなるという問題がある。
JP-A-7-273146 discloses a method of mounting a semiconductor device and a multilayer substrate, but does not disclose a manufacturing method of stacking substrates. In addition, there is a problem that a process for connecting a solder bump to a semiconductor device is required, and that a different type of solder paste has to be filled.

【0018】本発明は、上記課題を解決するためになさ
れたものであり、加熱処理工程を1回にすることによ
り、半導体チップと基板との接続信頼性を向上させると
ともに、製造時間を短縮し、生産性を向上させることが
できる多層基板の製造方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and improves the reliability of connection between a semiconductor chip and a substrate by reducing the number of heat treatment steps to one. It is another object of the present invention to provide a method for manufacturing a multilayer substrate which can improve productivity.

【0019】[0019]

【課題を解決するための手段】本発明の多層基板の製造
方法は、(1)半導体チップを実装し表面及び裏面にそ
れぞれ電極パッドを有する基板を複数個備える工程と、
(2)各基板の電極パッド間に接続用半田部材を挟むこ
とにより、複数の基板を積層する工程と、(3)積層し
た基板を加熱して接続用半田部材を溶融し、各基板間を
接続する工程と、を有することを特徴とするものであ
る。
According to the present invention, there is provided a method of manufacturing a multi-layer substrate, comprising the steps of: (1) providing a plurality of substrates each having a semiconductor chip mounted thereon and having an electrode pad on each of the front and back surfaces;
(2) a step of laminating a plurality of substrates by sandwiching the connecting solder members between the electrode pads of each substrate; and (3) a step of heating the laminated substrates to melt the connecting solder members, thereby forming a connection between the substrates. And a connecting step.

【0020】本発明によれば、従来の製造方法に比べ加
熱処理工程が2回から1回に減少するので、半導体チッ
プと基板との熱膨張係数差に基づき半導体チップと基板
との接続部に生じる応力を減少させることができる。
According to the present invention, since the number of heat treatment steps is reduced from two to one as compared with the conventional manufacturing method, the connection between the semiconductor chip and the substrate is determined based on the difference in thermal expansion coefficient between the semiconductor chip and the substrate. The resulting stress can be reduced.

【0021】基板と接続用半田部材との間をペースト状
のフラックスにより接着する工程を有するのが好まし
い。
It is preferable to include a step of bonding between the substrate and the solder member for connection with a paste-like flux.

【0022】接続用半田部材は、例えば半田ボールであ
り、また、半田溶融温度よりも高い融点を有する物質を
含んでもよい。
The connection solder member is, for example, a solder ball, and may include a substance having a melting point higher than the solder melting temperature.

【0023】基板は、例えば、ガラスセラミックス、ア
ルミナ、ガラスエポキシ及びポリイミドからなる群から
選択される物質で作られ、特に、ガラスエポキシのよう
に熱膨張係数の大きい物質で作られている場合に、より
大きな効果を有する。
The substrate is made of, for example, a material selected from the group consisting of glass ceramics, alumina, glass epoxy, and polyimide. In particular, when the substrate is made of a material having a large coefficient of thermal expansion such as glass epoxy, Has a greater effect.

【0024】[0024]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照しながら説明する。図1乃至図3は、本発明の多
層基板の製造方法を示す縦断面図である。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 3 are longitudinal sectional views showing a method for manufacturing a multilayer substrate according to the present invention.

【0025】図1に示すように、基板1の表面には半導
体チップ2がフリップチップ実装され、基板1と半導体
チップ2との間は封止樹脂3によって封止されている。
また、基板1の表面と裏面の端部にはそれぞれ電極パッ
ド4、5が設けられる。基板1の表面に設けられた電極
パッド4と裏面に設けられた電極パッド5とは、スルー
ホール(図示せず)を介して電気的に接続される。
As shown in FIG. 1, a semiconductor chip 2 is flip-chip mounted on the surface of a substrate 1, and the space between the substrate 1 and the semiconductor chip 2 is sealed with a sealing resin 3.
Further, electrode pads 4 and 5 are provided on the front and rear ends of the substrate 1, respectively. The electrode pads 4 provided on the front surface of the substrate 1 and the electrode pads 5 provided on the back surface are electrically connected through through holes (not shown).

【0026】基板1は、無機材料であるガラスセラミッ
クス、アルミナ、又は有機材料であるガラスエポキシ、
ポリイミド等で作られるが、本実施の形態ではガラスエ
ポキシで作られる。
The substrate 1 is made of an inorganic material such as glass ceramics, alumina, or an organic material such as glass epoxy,
Although it is made of polyimide or the like, in this embodiment, it is made of glass epoxy.

【0027】多層基板を製造する場合、まず、基板1の
表面側に設けられる電極パッド4の表面にフラックス6
を塗布した後、接続用半田部材7を電極パッド4上に搭
載する。
When manufacturing a multilayer substrate, first, a flux 6 is applied to the surface of the electrode pad 4 provided on the surface side of the substrate 1.
Is applied, the connection solder member 7 is mounted on the electrode pad 4.

【0028】基板1上の電極パッド4上へのフラックス
6の供給は、メタルマスクによる印刷方式、ディスプレ
イ方式、ポゴピンによる転写方式等がある。ポゴピンに
よる転写によりフラックス6を供給する場合には、基板
1の電極パッド位置に配列されたポゴピンの先端を、平
板の表面に一定膜厚に調整された液状フラックスに押し
付け、一定量のフラックス6をポゴピン先端に付着させ
る。そして、フラックス6の付着したポゴピンを基板1
の電極パッド4に押し付けることにより、一定量のフラ
ックス6を基板1の電極パッド4上に塗布する。
The supply of the flux 6 onto the electrode pads 4 on the substrate 1 includes a printing method using a metal mask, a display method, a transfer method using pogo pins, and the like. When the flux 6 is supplied by the transfer using the pogo pins, the tips of the pogo pins arranged at the electrode pad positions of the substrate 1 are pressed against the liquid flux adjusted to a constant film thickness on the surface of the flat plate, and a certain amount of the flux 6 is supplied. Attach to pogo pin tip. Then, the pogo pins to which the flux 6 is attached are
A certain amount of flux 6 is applied onto the electrode pads 4 of the substrate 1 by pressing the electrode pads 4 on the electrode pads 4.

【0029】また、基板1の電極パッド4上への接続用
半田部材7の供給方法としては、半田ボールの搭載やメ
タルマスクによる印刷が可能である。本実施の形態で
は、半田ボールを搭載することにより供給する。
Further, as a method of supplying the connection solder member 7 on the electrode pad 4 of the substrate 1, mounting of a solder ball or printing with a metal mask is possible. In the present embodiment, the power is supplied by mounting a solder ball.

【0030】半田ボール7を基板1の電極パッド4に搭
載する方法としては、例えば、基板1の電極パッド4の
配列位置に真空吸着用の穴を有するコレット面上に半田
ボール7を吸着させることにより、半田ボール7を配列
させた後、半田ボール7と基板1上の電極パッド4とを
位置合わせして搭載する。
The method of mounting the solder balls 7 on the electrode pads 4 of the substrate 1 is, for example, by adsorbing the solder balls 7 on a collet surface having holes for vacuum adsorption at the arrangement positions of the electrode pads 4 on the substrate 1. After the solder balls 7 are arranged, the solder balls 7 and the electrode pads 4 on the substrate 1 are aligned and mounted.

【0031】次いで、基板1に搭載した半田ボール7と
他の基板1の裏面に形成されている電極パッド5とを位
置合わせした後、フラックス6を介して接触させ、順次
積層する(図2参照)。
Next, after aligning the solder balls 7 mounted on the substrate 1 with the electrode pads 5 formed on the back surface of the other substrate 1, the solder balls 7 are brought into contact with each other via a flux 6 and sequentially laminated (see FIG. 2). ).

【0032】次いで、積層された多層基板を半田ボール
7の溶融温度にまで加熱することにより、半田ボール7
を溶融させて、下側の基板1の電極パッド4と上側の基
板1の電極パッド5との間を電気的に接続する(図3参
照)。
Next, the laminated multilayer substrate is heated to the melting temperature of the solder balls 7 so that the solder balls 7 are melted.
To electrically connect the electrode pads 4 of the lower substrate 1 to the electrode pads 5 of the upper substrate 1 (see FIG. 3).

【0033】なお、半田ボール7としては、例えば、S
nーPb共晶半田や銅ボール表面にSnーPb共晶半田
をコーティングした銅コア半田ボール等が使用される。
銅は、融点が高いので、半田溶融温度では溶融しない。
そのため、銅ボールの径が半導体チップ厚より大きなも
のを使用することにより、各基板1間の間隙を半導体チ
ップ厚より大きくすることが可能となり、半導体チップ
2の表面と基板1の裏面との接触を防止することができ
る。
As the solder ball 7, for example, S
An n-Pb eutectic solder or a copper core solder ball having a copper ball surface coated with Sn-Pb eutectic solder is used.
Copper does not melt at the solder melting temperature because of its high melting point.
Therefore, by using a copper ball having a diameter larger than the thickness of the semiconductor chip, the gap between the substrates 1 can be made larger than the thickness of the semiconductor chip, and the contact between the front surface of the semiconductor chip 2 and the back surface of the substrate 1 can be made. Can be prevented.

【0034】本発明の多層基板の製造方法によれば、基
板1の表面の電極パッド4にフラックス6を塗布した後
に、半田ボール7を載せた基板1を積み重ねた後に半田
ボール7を加熱溶融させて各基板1の電極パッド4、5
間を接続する。
According to the method for manufacturing a multilayer board of the present invention, after applying flux 6 to the electrode pads 4 on the surface of the board 1, the board 1 on which the solder balls 7 are placed is stacked, and then the solder balls 7 are heated and melted. Electrode pads 4 and 5 of each substrate 1
Connect between.

【0035】したがって、従来の製造方法に比べ加熱処
理工程が2回から1回に減少するので、半導体チップ2
と基板1との熱膨張係数差に基づき、半導体チップ2と
基板1との接続部に生じる応力を減少させることがで
き、半導体チップ2と基板1との接続信頼性が向上す
る。特に、熱膨張係数の大きなガラスエポキシの基板1
を使用した場合に、この効果が大きい。
Therefore, the number of heat treatment steps is reduced from two to one as compared with the conventional manufacturing method.
Based on the thermal expansion coefficient difference between the semiconductor chip 2 and the substrate 1, the stress generated at the connection between the semiconductor chip 2 and the substrate 1 can be reduced, and the connection reliability between the semiconductor chip 2 and the substrate 1 is improved. In particular, a glass epoxy substrate 1 having a large thermal expansion coefficient
This effect is large when is used.

【0036】また、加熱処理工程を2回から1回に減少
させることにより、多層基板の製造時間を短縮すること
ができるので、生産性が向上する。
Also, by reducing the number of heat treatment steps from two to one, it is possible to shorten the manufacturing time of the multilayer substrate, thereby improving the productivity.

【0037】本発明は、上記実施の形態に限定されるこ
とはなく、特許請求の範囲に記載された技術的事項の範
囲内において、種々の変更が可能である。例えば、実施
の形態では、基板1を4段に積層しているが、4段以外
の複数段に積層してもよい。基板1や半田ボール7の材
質は、用途の応じて適宜変更することができる。
The present invention is not limited to the above embodiment, and various changes can be made within the scope of the technical matters described in the claims. For example, in the embodiment, the substrate 1 is stacked in four stages, but may be stacked in a plurality of stages other than the four stages. The materials of the substrate 1 and the solder balls 7 can be appropriately changed according to the application.

【0038】[0038]

【発明の効果】本発明の多層基板の製造方法によれば、
各基板の電極パッド間に接続用半田部材を挟むことによ
り、複数の基板を積層した後に、積層した基板を加熱し
て接続用半田部材を溶融し、各基板間を接続する。した
がって、従来の製造方法に比べ加熱処理工程が2回から
1回に減少するので、半導体チップと基板との熱膨張係
数差に基づき半導体チップと基板との接続部に生じる応
力を減少させることができ、半導体チップと基板との接
続信頼性が向上する。特に、熱膨張係数の大きなガラス
エポキシの基板を使用した場合に、この効果が大きい。
According to the method for manufacturing a multilayer substrate of the present invention,
By sandwiching the connection solder members between the electrode pads of the respective substrates, a plurality of substrates are stacked, and then the stacked substrates are heated to melt the connection solder members, thereby connecting the respective substrates. Therefore, since the number of heat treatment steps is reduced from two to one as compared with the conventional manufacturing method, it is possible to reduce the stress generated at the connection between the semiconductor chip and the substrate based on the difference in the coefficient of thermal expansion between the semiconductor chip and the substrate. The connection reliability between the semiconductor chip and the substrate is improved. This effect is particularly significant when a glass epoxy substrate having a large coefficient of thermal expansion is used.

【0039】また、加熱処理工程を2回から1回に減少
させることにより、多層基板の製造時間を短縮すること
ができるので、生産性が向上する。
Further, by reducing the number of heat treatment steps from two to one, the manufacturing time of the multilayer substrate can be shortened, so that the productivity is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の多層基板の製造方法を説明するための
縦断面図である。
FIG. 1 is a longitudinal sectional view for explaining a method for manufacturing a multilayer substrate according to the present invention.

【図2】本発明の多層基板の製造方法を説明するための
縦断面図である。
FIG. 2 is a longitudinal sectional view for explaining a method for manufacturing a multilayer substrate according to the present invention.

【図3】本発明の多層基板の製造方法を説明するための
縦断面図である。
FIG. 3 is a longitudinal sectional view for explaining a method for manufacturing a multilayer substrate according to the present invention.

【図4】従来の多層基板の製造方法を説明するための縦
断面図である。
FIG. 4 is a longitudinal sectional view illustrating a conventional method for manufacturing a multilayer substrate.

【図5】従来の多層基板の製造方法を説明するための縦
断面図である。
FIG. 5 is a longitudinal sectional view for explaining a conventional method for manufacturing a multilayer substrate.

【図6】従来の多層基板の製造方法を説明するための縦
断面図である。
FIG. 6 is a longitudinal sectional view for explaining a conventional method for manufacturing a multilayer substrate.

【図7】従来の多層基板の製造方法を説明するための縦
断面図である。
FIG. 7 is a longitudinal sectional view illustrating a conventional method for manufacturing a multilayer substrate.

【図8】特開平7ー273146号公報に開示された半
導体装置の実装方法を説明するための縦断面図である。
FIG. 8 is a longitudinal sectional view for describing a method of mounting a semiconductor device disclosed in Japanese Patent Application Laid-Open No. 7-273146.

【符号の説明】[Explanation of symbols]

1:基板 2:半導体チップ 3:封止樹脂 4:電極パッド 5:電極パッド 6:フラックス 7:接続用半田部材(半田ボール) 1: substrate 2: semiconductor chip 3: sealing resin 4: electrode pad 5: electrode pad 6: flux 7: soldering member for connection (solder ball)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H05K 3/36 (72)発明者 仙波 直治 東京都港区芝五丁目7番1号 日本電気株 式会社内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI H05K 3/36 (72) Inventor Naoji Senba 7-1-1 Shiba, Minato-ku, Tokyo Inside NEC Corporation

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】(1)半導体チップを実装し表面及び裏面
にそれぞれ電極パッドを有する基板を複数個備える工程
と、(2)各基板の電極パッド間に接続用半田部材を挟
むことにより、前記複数の基板を積層する工程と、
(3)前記積層した基板を加熱して前記接続用半田部材
を溶融し、各基板間を接続する工程と、 を有することを特徴とする多層基板の製造方法。
(1) a step of mounting a plurality of substrates each having a semiconductor chip and having electrode pads on the front and rear surfaces, and (2) sandwiching a connection solder member between the electrode pads of each substrate. Laminating a plurality of substrates,
And (3) a step of heating the laminated substrates to melt the connection solder members and connecting the respective substrates.
【請求項2】前記基板と接続用半田部材との間をペース
ト状のフラックスにより接着する工程を有することを特
徴とする請求項1に記載の多層基板の製造方法。
2. The method according to claim 1, further comprising the step of bonding the substrate and the connection solder member with a paste-like flux.
【請求項3】前記接続用半田部材は、半田ボールである
ことを特徴とする請求項1又は2に記載の多層基板の製
造方法。
3. The method according to claim 1, wherein the connection solder member is a solder ball.
【請求項4】前記接続用半田部材は、半田溶融温度より
も高い融点を有する物質を含むことを特徴とする請求項
1乃至3のいずれか1つの項に記載の多層基板の製造方
法。
4. The method according to claim 1, wherein the connection solder member includes a substance having a melting point higher than a solder melting temperature.
【請求項5】前記基板は、熱膨張係数の大きい物質で作
られることを特徴とする請求項1乃至4のいずれか1つ
の項に記載の多層基板の製造方法。
5. The method according to claim 1, wherein the substrate is made of a material having a high coefficient of thermal expansion.
【請求項6】前記基板は、ガラスセラミックス、アルミ
ナ、ガラスエポキシ及びポリイミドからなる群から選択
される物質で作られることを特徴とする請求項1乃至5
のいずれか1つの項に記載の多層基板の製造方法。
6. The substrate according to claim 1, wherein said substrate is made of a material selected from the group consisting of glass ceramics, alumina, glass epoxy and polyimide.
The method for manufacturing a multilayer substrate according to any one of the above items.
JP9158248A 1997-06-16 1997-06-16 Manufacture of multilevel board Pending JPH118474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9158248A JPH118474A (en) 1997-06-16 1997-06-16 Manufacture of multilevel board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9158248A JPH118474A (en) 1997-06-16 1997-06-16 Manufacture of multilevel board

Publications (1)

Publication Number Publication Date
JPH118474A true JPH118474A (en) 1999-01-12

Family

ID=15667496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9158248A Pending JPH118474A (en) 1997-06-16 1997-06-16 Manufacture of multilevel board

Country Status (1)

Country Link
JP (1) JPH118474A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250907A (en) * 2000-03-08 2001-09-14 Toshiba Corp Semiconductor device and method of manufacturing the same
US7176561B2 (en) 2004-05-26 2007-02-13 Seiko Epson Corporation Semiconductor device, method for manufacturing the same, circuit board, and electronic equipment
KR100808586B1 (en) 2005-11-18 2008-02-29 주식회사 하이닉스반도체 Stack type package
JP2008159955A (en) * 2006-12-26 2008-07-10 Shinko Electric Ind Co Ltd Substrate incorporating electronic component
US7807499B2 (en) 2004-09-29 2010-10-05 Murata Manufacturing Co., Ltd. Stacked module and manufacturing method thereof
US7928557B2 (en) 2006-12-13 2011-04-19 Shinko Electric Industries Co., Ltd. Stacked package and method for manufacturing the package
US8704378B2 (en) 2006-05-19 2014-04-22 Sumitomo Bakelite Co., Ltd. Semiconductor device
US9214422B2 (en) 2013-02-25 2015-12-15 Shinko Electric Industries Co., Ltd. Semiconductor apparatus having signal and ground terminals arranged on vertically adjacent wiring substrates

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250907A (en) * 2000-03-08 2001-09-14 Toshiba Corp Semiconductor device and method of manufacturing the same
US7176561B2 (en) 2004-05-26 2007-02-13 Seiko Epson Corporation Semiconductor device, method for manufacturing the same, circuit board, and electronic equipment
US7807499B2 (en) 2004-09-29 2010-10-05 Murata Manufacturing Co., Ltd. Stacked module and manufacturing method thereof
KR100808586B1 (en) 2005-11-18 2008-02-29 주식회사 하이닉스반도체 Stack type package
US8704378B2 (en) 2006-05-19 2014-04-22 Sumitomo Bakelite Co., Ltd. Semiconductor device
US7928557B2 (en) 2006-12-13 2011-04-19 Shinko Electric Industries Co., Ltd. Stacked package and method for manufacturing the package
JP2008159955A (en) * 2006-12-26 2008-07-10 Shinko Electric Ind Co Ltd Substrate incorporating electronic component
US9214422B2 (en) 2013-02-25 2015-12-15 Shinko Electric Industries Co., Ltd. Semiconductor apparatus having signal and ground terminals arranged on vertically adjacent wiring substrates

Similar Documents

Publication Publication Date Title
JP3320979B2 (en) How to mount a device directly on a device carrier
JP3429734B2 (en) Wiring board, multilayer wiring board, circuit component package, and method of manufacturing wiring board
JP4105409B2 (en) Multi-chip module manufacturing method
JPH06103703B2 (en) Soldering method
KR20020033522A (en) Thin film attachment to laminate using a dendritic interconnection
JP3967263B2 (en) Semiconductor device and display device
KR20020018133A (en) An electronic device and a method of manufacturing the same
JPH1050886A (en) Conductive polymer ball bonding to grid array semiconductor package
JP2001119147A (en) Multilayer board incorporating electronic device and production method therefor
JPH10135267A (en) Structure of mounting board and its manufacture
JPH118474A (en) Manufacture of multilevel board
JP2004296562A (en) Substrate with built-in electronic components, and its manufacturing method
JPH06120671A (en) Multilayer wiring board embedded with component
JP3269390B2 (en) Semiconductor device
JP2570468B2 (en) Manufacturing method of LSI module
JP4046854B2 (en) Method for manufacturing printed wiring board with pins
JPH0314293A (en) Multilayered high-density mounting module
JP2904274B2 (en) LSI package mounting method
JPH1084011A (en) Semiconductor device, manufacture thereof and semiconductor device mounting method
JP3938017B2 (en) Electronic equipment
JPH0982835A (en) Circuit substrate and multilayer circuit substrate
JP3465809B2 (en) Semiconductor device and manufacturing method thereof
JP2000340594A (en) Transfer bump sheet and manufacture thereof
JPH05206379A (en) Multichip module and its manufacture
KR20070063119A (en) Method for manufacturing substrate used to mount flip chip