JPH118278A - Device and method for inspecting semiconductor wafer by charged particle beam - Google Patents

Device and method for inspecting semiconductor wafer by charged particle beam

Info

Publication number
JPH118278A
JPH118278A JP9161124A JP16112497A JPH118278A JP H118278 A JPH118278 A JP H118278A JP 9161124 A JP9161124 A JP 9161124A JP 16112497 A JP16112497 A JP 16112497A JP H118278 A JPH118278 A JP H118278A
Authority
JP
Japan
Prior art keywords
potential
electrode
secondary electron
wafer
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9161124A
Other languages
Japanese (ja)
Other versions
JP2959529B2 (en
Inventor
Hiroyuki Hamada
弘幸 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP9161124A priority Critical patent/JP2959529B2/en
Publication of JPH118278A publication Critical patent/JPH118278A/en
Application granted granted Critical
Publication of JP2959529B2 publication Critical patent/JP2959529B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To perform an electrical inspection in a halfway stage through manufacturing by comparing the measurement value of a secondary electron observation quantity with a threshold and perform classification, depending on whether the measurement value is larger or smaller than the threshold. SOLUTION: A wafer stage 2 has a reverse side electrode 3 that touches the reverse side of a wafer 8 and a counter electrode 4 so that it faces opposite a wafer 10. A voltage generator 5 is connected between the reverse side electrode 3 and the counter electrode 4 by an electric wire 6 for controlling a potential. Electron beam 11 is emitted from an electron gun 1 towards the wafer 10, electric charges are injected to the wafer 10, and then secondary electrons 12 are detected by a secondary electron observation equipment 7, thus observing a secondary electron image. At this time, the threshold of the secondary electron observation quantity to be detected is determined by a threshold-determining device 8, and the secondary electron observation quantity according to a secondary electron comparison device 9 is compared with its threshold for classification, thus obtaining a semiconductor wafer inspection method for performing an electrical, defect inspection without any contact, without making contact even at a halfway stage in the manufacture of an LSI.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は製造途中の工程にお
いて非接触で素子形成の電気的検査を行うLSIの検査
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an LSI inspection method for performing an electrical inspection of element formation in a non-contact manner during a manufacturing process.

【0002】[0002]

【従来の技術】基板上に形成された素子に対し、非接触
で検査を行うものとして、光学的にLSIのパターンを
検査して形状欠陥を検出する方法がある。この方法では
LSI製造工程中に発生する形状異常を検察できるた
め、異常が発生した場合に比較的早い段階でその原因を
除去することができる。
2. Description of the Related Art As a method for inspecting an element formed on a substrate in a non-contact manner, there is a method of optically inspecting an LSI pattern to detect a shape defect. According to this method, a shape abnormality occurring during the LSI manufacturing process can be detected, and when an abnormality occurs, its cause can be removed at a relatively early stage.

【0003】また電気的な不良を検出する方法として
は、LSI製造後、電極への物理的な接触により電気的
検査を行う方法がある。テスターを用いたものがその代
表である。一般的にLSIの製造工程においてLSIの
正常動作の確認は最終工程の段階で電気的検査が行われ
ている。
As a method of detecting an electrical defect, there is a method of performing an electrical inspection by physical contact with an electrode after manufacturing an LSI. The one using a tester is a typical example. Generally, in an LSI manufacturing process, an electrical inspection is performed in a final process to confirm a normal operation of the LSI.

【0004】また、電子ビームを用いた検査方法として
は、走査型電子顕微鏡による形状観察や、LSI完成後
電子ビームテスタによるLSI動作中の配線電位を電位
コントラストとして調べる方法がある。
As an inspection method using an electron beam, there are a method of observing a shape by a scanning electron microscope and a method of examining a wiring potential during LSI operation by an electron beam tester after completion of the LSI as a potential contrast.

【0005】[0005]

【発明が解決しようとする課題】しかし光学的な方法に
よるパターン検査は、検出された形状異常が必ずしも最
終的なLSIの電気的な不良と結びつかないという問題
点がある。つまり、形状異常の原因を除去したからとい
って、LSIの正常な電気的機能は保証されない。また
検出する解像度にも限界があり、平面的な検査であるの
で立体構造に起因した欠陥の検出が困難である。さらに
薄膜へのリーク不良などの検出も困難である。
However, the pattern inspection by the optical method has a problem that the detected shape abnormality is not always linked to the final electrical failure of the LSI. That is, even if the cause of the shape abnormality is removed, the normal electrical function of the LSI is not guaranteed. In addition, there is a limit to the resolution to be detected, and it is difficult to detect a defect caused by a three-dimensional structure because it is a planar inspection. Further, it is difficult to detect a leak failure or the like to the thin film.

【0006】一方、電気的な機能検査は、LSI素子へ
の物理的な接触を伴い、接触により素子が破壊されると
いう問題点や、接触を行うためのパッドを製造する必要
があるため配線などの最終工程にならないと検査できな
い。
On the other hand, the electrical function test involves physical contact with the LSI element, and the element is destroyed by the contact. Also, since it is necessary to manufacture pads for making contact, wiring and the like are required. Inspection is not possible until the final step.

【0007】走査型電子顕微鏡による形状観察において
も形状検査が必ずしも電気的不良を検出するものではな
い。
[0007] In shape observation with a scanning electron microscope, shape inspection does not always detect electrical failure.

【0008】また、一般の走査型電子顕微鏡よりも二次
電子像がより試料の電位によるコントラストを得やす
い、電子ビームテスタによる検査方法においても、LS
I製造後にLSIを動作状態にして不良を検査するので
不良の作り込みから検出までの期間が長くなるという欠
点があった。
Further, in an inspection method using an electron beam tester, a secondary electron image is more likely to obtain a contrast due to the potential of the sample than a general scanning electron microscope.
There is a drawback that the period from the creation of the defect to the detection is lengthened because the LSI is put into an operating state and the defect is inspected after manufacturing.

【0009】本発明の目的は、製造の途中段階で電気的
な検査を行うことを実現するものであり、検査する素子
に非接触でも効果的な電位を与え、不良を判断する方法
を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to realize an electrical inspection in the middle of manufacturing, and to provide a method for applying an effective potential to a device to be inspected even in a non-contact manner and judging a defect. That is.

【0010】[0010]

【課題を解決するための手段】本発明の荷電粒子ビーム
による半導体ウエハー検査装置は、半導体ウエハー上に
形成された第一導電層、第二絶縁膜および第三素子のう
ち、第一導電層と第三素子の間の電気的接触を検査する
装置において、 二次電子像の電位コントラストが二次
電子検出器の二次電子観測量の大小によって得られるウ
エハーステージを備えた走査型荷電粒子顕微鏡の、ウエ
ハーの裏面に接触する裏面電極と、ウエハー表面の少な
くとも一部が空間を置いて裏面電極に対向する部分を有
する対向電極と、裏面電極の電位と対向電極電位の電位
差を制御する装置と、二次電子観測量の閾値を決定する
装置と、二次電子観測量の測定値と前記閾値を比較し
て、二次電子観測量の測定値が前記閾値よりも多いか少
ないかにより類別する装置と、を有する。
According to the present invention, there is provided a semiconductor wafer inspection apparatus using a charged particle beam, comprising: a first conductive layer, a second insulating film and a third element formed on a semiconductor wafer; In an apparatus for inspecting electrical contact between the third elements, a scanning charged particle microscope equipped with a wafer stage in which a potential contrast of a secondary electron image is obtained according to a magnitude of a secondary electron observation amount of a secondary electron detector. A back electrode in contact with the back surface of the wafer, a counter electrode having at least a portion of the wafer surface facing the back electrode with a space, and a device for controlling the potential difference between the potential of the back electrode and the counter electrode potential, Apparatus for determining the threshold of the secondary electron observable, and comparing the measured value of the secondary electron observable with the threshold, and classifying according to whether the measured value of the secondary electron observable is larger or smaller than the threshold. And a device.

【0011】また、本発明の荷電粒子ビームによる半導
体ウエハー検査方法は、半導体ウエハー上に形成された
第一導電層、第二絶縁膜および第三素子のうち、前記第
一導電層と前記第三素子の間の電気的接触を検査する方
法において、二次電子像の電位コントラストが二次電子
観測量の大小によって得られるウエハーステージを備え
た走査型荷電粒子顕微鏡の、ウエハーの裏面に接触する
裏面電極と、ウエハー表面の少なくとも一部が空間を置
いて裏面電極に対向する部分を有する対向電極と、裏面
電極電位と対向電極電位との電位差を制御する装置とを
使用して、裏面電極電位を対向電極電位よりも小さくし
て、荷電粒子ビームをウエハー上に照射することにより
ウエハー上に形成された少なくとも第二絶縁膜および第
三素子に電荷を注入し、第三素子と第一導電層の間に電
気的接触が有るか無いかにより、第三素子に異なる電位
を形成し、第三素子に荷電粒子ビームを照射して発生す
る二次電子観測量を閾値と比較し、第三素子における二
次電子観測量が閾値よりも大きいものを第三素子と第一
導電層の間に電気的接触があると判断し、裏面電極電位
を前記対向電極電位よりも大きくして、荷電粒子ビーム
をウエハー上に照射することによりウエハー上に形成さ
れた少なくとも第二絶縁膜および第三素子に電荷を注入
し、第三素子と前記第一導電層の間に電気的接触が有る
か無いかにより、第三素子に異なる電位を形成し、第三
素子に荷電粒子ビームを照射して発生する二次電子観測
量を閾値と比較し、第三素子における二次電子観測量が
閾値よりも小さいものを第三素子と第一導電層の間に電
気的接触があると判断する。
Further, according to the method for inspecting a semiconductor wafer by a charged particle beam of the present invention, of the first conductive layer, the second insulating film and the third element formed on the semiconductor wafer, the first conductive layer and the third In a method of inspecting electrical contact between elements, a back surface of a scanning charged particle microscope equipped with a wafer stage in which a potential contrast of a secondary electron image is obtained according to a magnitude of a secondary electron observation amount, the back surface contacting the back surface of the wafer An electrode, a counter electrode having at least a portion of the wafer surface facing the back electrode with a space therebetween, and a device for controlling the potential difference between the back electrode potential and the counter electrode potential, using a back electrode potential. By irradiating the charged particle beam onto the wafer with the potential lower than the counter electrode potential, electric charges are injected into at least the second insulating film and the third element formed on the wafer. Then, depending on whether there is electrical contact between the third element and the first conductive layer, different potentials are formed on the third element, and secondary electrons generated by irradiating the third element with a charged particle beam are generated. The amount is compared with a threshold value, the secondary electron observation amount in the third element is larger than the threshold value, it is determined that there is electrical contact between the third element and the first conductive layer, and the back electrode potential is set to the counter electrode. The potential is made larger than the potential, and a charged particle beam is irradiated on the wafer to inject electric charge into at least the second insulating film and the third element formed on the wafer, so that a charge is injected between the third element and the first conductive layer. A different potential is formed on the third element depending on whether or not there is electrical contact with the third element, and the amount of secondary electrons generated by irradiating the third element with the charged particle beam is compared with a threshold value. If the amount of secondary electron observation is smaller than the threshold, It is determined that there is electrical contact between the one conductivity layer.

【0012】次に、本発明の原理について説明する。Next, the principle of the present invention will be described.

【0013】ウエハー上に形成される素子には絶縁層
と、ウエハーの導電層に電気的に接続する素子と、ウエ
ハーの導電層とは電気的に絶縁される素子がある。絶縁
層としては例えばゲート酸化膜や層間絶縁膜などがあ
り、ウエハーの導電層に接続する素子としてはコンタク
トホールやコンタクトホールに埋め込む電極などがあ
る。また、ウエハーの導電層と電気的に絶縁される素子
としてはゲート電極などがある。
Elements formed on the wafer include an insulating layer, an element electrically connected to the conductive layer of the wafer, and an element electrically insulated from the conductive layer of the wafer. Examples of the insulating layer include a gate oxide film and an interlayer insulating film, and examples of an element connected to the conductive layer of the wafer include a contact hole and an electrode embedded in the contact hole. Elements that are electrically insulated from the conductive layer of the wafer include a gate electrode and the like.

【0014】これらの素子に電荷を注入し、ウエハーの
導電層に電荷が流れ込むとその素子の電位はウエハーの
電位と等しくなるが、ウエハーの導電層と絶縁されてい
るとその素子は帯電によりウエハーの導電層とは異なる
電位が生成される。この電荷注入により形成される電位
を制御する手段として、ウエハーへの裏面電極と対向電
極の電位を選ぶことにより行う。荷電粒子ビームの照射
によって発生する二次電子のエネルギーは数eV以下で
あるので、裏面電極と対向電極の電位差によってウエハ
ー上に再注入する場合と、対向電極方向へ逃がす場合を
選択制御することができる。つまり、二次電子を再注入
する二次帯電の過程を制御する。
When electric charge is injected into these elements and the electric charge flows into the conductive layer of the wafer, the potential of the element becomes equal to the potential of the wafer. However, when the element is insulated from the conductive layer of the wafer, the element is charged by the wafer. A different potential from that of the conductive layer is generated. As a means for controlling the potential formed by the charge injection, the potential is selected by selecting the potentials of the back electrode and the counter electrode on the wafer. Since the energy of the secondary electrons generated by the irradiation of the charged particle beam is several eV or less, it is possible to selectively control the case of re-injection into the wafer and the case of escaping in the direction of the counter electrode by the potential difference between the back electrode and the counter electrode. it can. That is, the secondary charging process for re-injecting the secondary electrons is controlled.

【0015】ウエハー上の再注入する場合を選ぶとウエ
ハー上の絶縁層やウエハーの導電層とは絶縁されている
素子は負に帯電する。しかし、逆の場合には正に帯電す
る。このとき、正の帯電を得るためには、一次注入電荷
と二次電子放出による一次帯電を正にしておく必要があ
るが、Gaイオンビームを用いるか、あるいは電子ビー
ムを用いた場合でも加速エネルギーを1keV近辺にす
ることにより一次帯電を正の方向にすることができる。
If re-injection on the wafer is selected, the element insulated from the insulating layer on the wafer or the conductive layer on the wafer is negatively charged. However, in the opposite case, it is positively charged. At this time, in order to obtain a positive charge, it is necessary to make the primary charge by primary injection charge and secondary electron emission positive. However, even if a Ga ion beam or an electron beam is used, the acceleration energy is increased. Is set to around 1 keV, the primary charging can be in the positive direction.

【0016】このようにして、本来ウエハーとは絶縁さ
れていなければならないゲート電極などのウエハーへの
リーク不良や、ウエハーとは導通していなければならな
いコンタクトホールの絶縁不良などに良品との電位差を
与える。この結果得られる二次電子像は、電位の低い個
所では二次電子観測量が多く、白く明度の高い電位コン
トラストが得られ、電位の高い個所では二次電子観測量
が少なく、黒く明度の低い電位コントラストが得られ
る。この二次電子観測量あるいは二次電子像の電位コン
トラストにより不良を検出する。
In this manner, the potential difference between the non-defective product and the non-defective product is reduced due to a leak failure to the wafer, such as a gate electrode, which must be originally insulated from the wafer, or a poor insulation of a contact hole, which must be insulated from the wafer. give. The secondary electron image obtained as a result has a large amount of secondary electron observables in places where the potential is low, a high potential contrast of white and high brightness is obtained, and a small amount of secondary electron observables in places where the potential is high and black and low brightness. Potential contrast is obtained. A defect is detected based on the amount of observed secondary electrons or the potential contrast of the secondary electron image.

【0017】また、本発明の方法において二次電子観測
量を用いて不良を判断するか、あるいは電位コントラス
トを用いて不良を判断するかは同一の結果をもたらすの
でどちらで表現されていたとしても、両方の方法を含ん
でいることを意味している。
In the method of the present invention, whether a defect is determined by using the observed amount of secondary electrons or a defect is determined by using the potential contrast produces the same result. , Which means that it includes both methods.

【0018】[0018]

【発明の実施の形態】次に図面を参照して本発明の実施
例を詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described in detail with reference to the drawings.

【0019】図1は、本発明の荷電粒子ビームによる半
導体ウエハー検査装置の一実施形態例の構成図、図2
は、電子ビーム加速電圧と二次電子放出比との関係を示
すグラフ、図3(a)は、二次電子によるウエハー上絶
縁膜が正の帯電の場合の説明図、(b)は、同じく負の
帯電の場合の説明図である。
FIG. 1 is a block diagram of an embodiment of a semiconductor wafer inspection apparatus using a charged particle beam according to the present invention, and FIG.
FIG. 3A is a graph showing the relationship between the electron beam acceleration voltage and the secondary electron emission ratio, FIG. 3A is an explanatory diagram in the case where the insulating film on the wafer is positively charged by secondary electrons, and FIG. FIG. 7 is an explanatory diagram in the case of negative charging.

【0020】図1において、ウエハーステージ2にウエ
ハー8の裏面に接触する裏面電極3があり、ウエハー1
0と対向するように対向電極4がある。裏面電極3と対
向電極4の間には電圧発生器5が電線6で接続され、電
位を制御する。
In FIG. 1, a back surface electrode 3 is provided on a wafer stage 2 to be in contact with the back surface of a wafer 8.
The counter electrode 4 is provided so as to face 0. A voltage generator 5 is connected between the back surface electrode 3 and the counter electrode 4 by an electric wire 6, and controls a potential.

【0021】電子銃1からウエハー10に向かって電子
ビーム11を照射し、ウエハー10に電荷を注入した
後、二次電子12を二次電子観測器7で検出し、二次電
子像を観測する。このとき検出する二次電子観測量の閾
値を閾値決定装置8によって決定し、二次電子比較装置
9による二次電子観測量をその閾値と比較して類別を行
う。
After irradiating the electron beam 11 from the electron gun 1 to the wafer 10 and injecting charges into the wafer 10, the secondary electrons 12 are detected by the secondary electron observation device 7, and the secondary electron image is observed. . At this time, the threshold value of the secondary electron observation amount to be detected is determined by the threshold value determination device 8, and the secondary electron observation amount by the secondary electron comparison device 9 is compared with the threshold value to perform classification.

【0022】ここで、例えばウエハー上に形成されてい
る絶縁膜の帯電電位を制御する方法を説明する。
Here, a method for controlling the charged potential of an insulating film formed on a wafer, for example, will be described.

【0023】図2に示すように、加速電圧が1keVの
ときは二次電子放出比が1より大きいので、電子ビーム
注入と二次電子放出による絶縁膜の一次帯電は正の方向
になる。
As shown in FIG. 2, when the acceleration voltage is 1 keV, the secondary electron emission ratio is larger than 1, so that the primary charging of the insulating film by the electron beam injection and the secondary electron emission is in the positive direction.

【0024】この状態で裏面電極と対向電極により絶縁
膜電位を制御することができる。
In this state, the potential of the insulating film can be controlled by the back electrode and the counter electrode.

【0025】図3によりウエハー30上の絶縁膜の帯電
電位を制御する説明をすると、図3(a)に示すよう
に、電圧発生器25により、裏面電極23の電位を対向
電極24の電位よりも小さくすると二次電子は対向電極
方向に加速されるので絶縁膜には正の電荷が帯電する。
Referring to FIG. 3, the control of the charging potential of the insulating film on the wafer 30 will be described. As shown in FIG. 3A, the potential of the back electrode 23 is changed from the potential of the counter electrode 24 by the voltage generator 25. If the distance is also reduced, the secondary electrons are accelerated in the direction of the counter electrode, so that the insulating film is charged with positive charges.

【0026】ところが図3(b)に示すように裏面電極
23の電位を対向電極24の電位よりも大きくするとエ
ネルギーの小さい二次電子はウエハー30方向に引き戻
され、負の方向の二次帯電が起こる。その結果、絶縁膜
は負に帯電する。
However, as shown in FIG. 3B, when the potential of the back electrode 23 is made higher than the potential of the counter electrode 24, the secondary electrons having a small energy are pulled back toward the wafer 30, and the secondary charge in the negative direction is generated. Occur. As a result, the insulating film is negatively charged.

【0027】このようにして、絶縁膜の電位をコントロ
ールすることができる。
Thus, the potential of the insulating film can be controlled.

【0028】ウエハー30上に形成されている絶縁膜以
外の素子でも同様に帯電電位をコントロールする。
The charge potential is similarly controlled for elements other than the insulating film formed on the wafer 30.

【0029】この場合、素子がウエハー30の拡散層な
どとは本来絶縁されているものであればこのように帯電
により電位を得るが、不良でウエハー30とは電気的に
接触がある場合はウエハー30の拡散層と同一の電位と
なる。ウエハー30の拡散層は裏面電極23によって電
位が与えられるので正常な素子と不良の素子では電位差
を生じ、電位差が生じた後に二次電子像を観測すること
により低電位の個所は白く、高電位の個所は黒く電位コ
ントラストを観測でき、不良個所を特定することが可能
となる。
In this case, if the element is originally insulated from the diffusion layer or the like of the wafer 30, the potential is obtained by charging as described above. It has the same potential as the 30 diffusion layers. Since a potential is applied to the diffusion layer of the wafer 30 by the back electrode 23, a potential difference occurs between a normal element and a defective element, and a low-potential portion is white by observing a secondary electron image after the potential difference has occurred, and a high potential The potential contrast can be observed at a black spot, and the defective spot can be specified.

【0030】(第2の実施の形態例)次に図4を参照し
て、本発明において電極がウエハーの導電層と電気的に
接続しているかを判断する閾値の決定方法について説明
する。
(Second Embodiment) Next, with reference to FIG. 4, a method of determining a threshold value for determining whether an electrode is electrically connected to a conductive layer of a wafer in the present invention will be described.

【0031】図4は、本発明の第2、第3、第4の実施
形態例の説明図であって、(a)は、本発明の検査にお
ける閾値の選択を説明するための構造図、(b)は、同
じく説明するための各部分の電位および二次電子観測量
を示す図である。
FIG. 4 is an explanatory view of the second, third, and fourth embodiments of the present invention. FIG. 4A is a structural diagram for explaining selection of a threshold value in the inspection of the present invention. (B) is a diagram showing the potential of each part and the amount of observed secondary electrons for the same explanation.

【0032】下から順に第1のウエハー導電層41上に
第2の絶縁膜42が形成され、ウエハー導電層41とは
電気的に接触していない第3の非導通電極43、ウエハ
ー導電層と電気的に接触している導通電極(A)44が
形成されている。
A second insulating film 42 is formed on the first wafer conductive layer 41 in order from the bottom, and a third non-conductive electrode 43 which is not in electrical contact with the wafer conductive layer 41, and a wafer conductive layer. A conductive electrode (A) 44 in electrical contact is formed.

【0033】ここに例えば、裏面電極電位を対向電極電
位よりも小さくして電子ビームを1keVで照射する
と、各素子の電位は、図4(b)に示すようにウエハー
導電層41と電気的に接触している素子は電位が相対的
に低くなるが、ウエハー導電層41と電気的に接触して
いない素子および絶縁膜は電位が相対的に高くなる。
Here, for example, when the back electrode potential is made smaller than the counter electrode potential and the electron beam is irradiated at 1 keV, the potential of each element becomes electrically connected to the wafer conductive layer 41 as shown in FIG. The potential of the element in contact is relatively low, but the potential of the element and the insulating film not in electrical contact with the wafer conductive layer 41 is relatively high.

【0034】ここで導通電極(A)44が正常にウエハ
ー導通層41と電気的に接触しているか否かを判断する
閾値として、絶縁膜42における二次電子観測量を閾値
として導通電極(A)44における二次電子観測量と比
較する。つまり閾値として、図4(b)の閾値(1)を
選ぶ。
Here, as a threshold value for determining whether or not the conductive electrode (A) 44 is normally electrically in contact with the wafer conductive layer 41, the amount of the secondary electrons observed in the insulating film 42 is used as a threshold value. ) 44 compared with the observed secondary electron quantity. That is, the threshold (1) in FIG. 4B is selected as the threshold.

【0035】導通電極(A)44における二次電子観測
量がこの閾値(1)よりも大きい場合、導通電極(A)
44の電位は絶縁膜42の電位よりも低いということに
なるので、導通電極(A)44は正常にウエハー導電層
41と電気的に接触していると判断できる。
When the amount of observed secondary electrons at the conductive electrode (A) 44 is larger than the threshold value (1), the conductive electrode (A)
Since the potential of 44 is lower than the potential of the insulating film 42, it can be determined that the conductive electrode (A) 44 is normally in electrical contact with the wafer conductive layer 41.

【0036】逆に、導通電極44における二次電子観測
量が閾値(1)とほぼ等しい場合、導通電極(A)44
の電位は絶縁膜42の電位と等しいことになり、ウエハ
ー導電層41とは絶縁されて不良であると判断できる。
Conversely, when the amount of secondary electrons observed at the conductive electrode 44 is substantially equal to the threshold value (1), the conductive electrode (A) 44
Is equal to the potential of the insulating film 42, and is insulated from the wafer conductive layer 41 and can be determined to be defective.

【0037】この例では二次電子観測量を判断の基準と
した例を示したが、二次電子像の電位コントラストを判
断の基準としても同様である。つまり、導通電極(A)
44での電位コントラストを絶縁膜42での電位コント
ラストと比較して、導通電極(A)44での電位コント
ラストがより明度が高く白い場合は導通電極(A)44
は正常にウエハー導電層41と電気的に接触していると
判断できる。
In this example, an example in which the amount of observed secondary electrons is used as a criterion for determination is shown, but the same applies when the potential contrast of a secondary electron image is used as a criterion for determination. That is, the conductive electrode (A)
Comparing the potential contrast at 44 with the potential contrast at the insulating film 42, if the potential contrast at the conductive electrode (A) 44 is higher in brightness and white, the conductive electrode (A) 44
Can be determined to be normally in electrical contact with the wafer conductive layer 41.

【0038】(第3の実施形態例)第2の実施形態例と
同様にして図4を参照して、閾値として図4(b)の閾
値2で示される電子ビーム照射領域の平均値を選ぶ。
(Third Embodiment) Referring to FIG. 4, similarly to the second embodiment, an average value of the electron beam irradiation area indicated by threshold 2 in FIG. 4B is selected as the threshold. .

【0039】この場合、ウエハー導電層41と電気的に
接触していない素子である絶縁膜42および非導通電極
43では正常である場合、二次電子観測量がこの閾値
(2)よりも小さくなり、電位はウエハー導電層よりも
大きくなっている。
In this case, when the insulating film 42 and the non-conducting electrode 43, which are elements that are not in electrical contact with the wafer conductive layer 41, are normal, the amount of secondary electrons observed becomes smaller than the threshold value (2). , The potential is greater than the wafer conductive layer.

【0040】逆にウエハー導電層と電気的に接触してい
る導通電極(A)44では正常である場合、二次電子観
測量はこの閾値(2)よりも大きくなり、電位はウエハ
ー導電層と同じとなる。
On the contrary, when the conduction electrode (A) 44 which is in electrical contact with the wafer conductive layer is normal, the observed secondary electron quantity becomes larger than the threshold value (2), and the potential becomes lower than the threshold value (2). Will be the same.

【0041】このようにして、電子ビーム照射領域にお
ける二次電子観測量の平均値を閾値(2)とすること
で、ウエハー導電層に電気的に接続している素子とそう
でない素子を検出することができる。
In this manner, by setting the average value of the observed amount of secondary electrons in the electron beam irradiation area to the threshold value (2), the elements electrically connected to the wafer conductive layer and the elements not connected to the wafer conductive layer are detected. be able to.

【0042】(第4の実施形態例)第2の実施形態例と
同様にして図4を参照して、閾値として電子ビーム走査
範囲内での被検査素子と同一のレイヤーで製造された被
検査素子とは異なる個所にある素子に電子ビームを照射
しているときの二次電子観測量を選ぶ。
(Fourth Embodiment) Referring to FIG. 4 in the same manner as in the second embodiment, a device to be inspected manufactured on the same layer as the device to be inspected within the electron beam scanning range as a threshold value Select the amount of secondary electrons observed when the element located at a different location from the element is irradiated with the electron beam.

【0043】つまり、導通電極(A)44を被検査素子
とするとき、閾値としては導通電極(B)45における
二次電子観測量を閾値とする。この場合、図4(b)で
は閾値(3)がこれに対応する。
That is, when the conductive electrode (A) 44 is used as the device to be inspected, the observed amount of secondary electrons at the conductive electrode (B) 45 is used as the threshold. In this case, the threshold (3) corresponds to this in FIG.

【0044】導通電極(A)44が正常にウエハー導電
層41と電気的に接触しているかを検査する場合、導通
電極(A)44に電子ビームを照射しているときの二次
電子観測量を閾値(3)と比較して、閾値(3)よりも
小さい場合は、導通電極(A)44はウエハー導電層4
1とは電気的な接触は絶たれていて不良と判断できる。
逆に、閾値(3)と同程度の二次電子観測量であれば正
常にウエハー導電層41と電気的に接触していると判断
できる。
When inspecting whether the conductive electrode (A) 44 is normally in electrical contact with the wafer conductive layer 41, the amount of secondary electrons observed when the conductive electrode (A) 44 is irradiated with an electron beam. Is smaller than the threshold value (3). If the conduction electrode (A) 44 is smaller than the threshold value (3),
In the case of No. 1, the electrical contact has been cut off, and it can be determined that it is defective.
Conversely, if the amount of secondary electrons observed is about the same as the threshold value (3), it can be determined that the wafer electrically contacts the wafer conductive layer 41 normally.

【0045】(第5の実施形態例)本実施形態例では、
図5を参照しながら、コンタクトホールの不良を検出す
る例について述べる。
(Fifth Embodiment) In this embodiment,
An example of detecting a contact hole defect will be described with reference to FIG.

【0046】図5は、本発明の第5、第6の実施形態例
の説明図であって、(a)は、本発明により、コンタク
トホールに電極が埋め込まれた後の不良を検出する場合
の説明図、(b)は、本発明により、コンタクトホール
開孔後にコンタクトホールの不良を検出する場合の説明
図である。
FIGS. 5A and 5B are explanatory diagrams of the fifth and sixth embodiments of the present invention. FIG. 5A shows a case where a defect is detected after an electrode is buried in a contact hole according to the present invention. FIG. 3B is an explanatory diagram in a case where a defect of a contact hole is detected after the contact hole is opened according to the present invention.

【0047】第1の実施形態例の方法を用いて、裏面電
極電位を対向電極電位よりも例えば5V低電位にする。
不良コンタクト53および絶縁膜52は電子ビームを照
射することにより二次電子が放出されて正の電荷が帯電
するが、正常コンタクト54は基板51と同一電位とな
る。
By using the method of the first embodiment, the back electrode potential is set to, for example, 5 V lower than the counter electrode potential.
When the defective contact 53 and the insulating film 52 are irradiated with an electron beam, secondary electrons are emitted and positive charges are charged, but the normal contact 54 has the same potential as the substrate 51.

【0048】基板51の電位は裏面電極電位と同一電位
となっているので、不良電極53および絶縁膜52は基
板51および正常コンタクト54よりも高電位となり、
二次電子観測量は不良コンタクト53では少なく、正常
コンタクト54では多くなる。
Since the potential of the substrate 51 is the same as the potential of the back electrode, the potential of the defective electrode 53 and the insulating film 52 becomes higher than those of the substrate 51 and the normal contact 54.
The amount of secondary electrons observed is small for the bad contact 53 and large for the normal contact 54.

【0049】また、その結果得られる二次電子像の電位
コントラストは不良コンタクト53は黒く、正常コンタ
クト54は白くなり、不良コンタクト53を検出するこ
とができる。
The potential contrast of the secondary electron image obtained as a result is such that the defective contact 53 is black and the normal contact 54 is white, so that the defective contact 53 can be detected.

【0050】(第6の実施形態例)図5(b)に示すコ
ンタクトホール開孔後にコンタクトホールの不良を検出
する例について説明する。
(Sixth Embodiment) An example in which a contact hole defect is detected after opening the contact hole shown in FIG. 5B will be described.

【0051】前例と同様に第1の実施形態例の方法を用
いて、裏面電極電位を対向電極電位よりも低電位にす
る。絶縁膜52および底部に絶縁膜が残っている不良コ
ンタクト56では正の電荷が帯電するが、正常コンタク
ト57ではコンタクト底部の電位は基板51の電位とな
るので、二次電子像の電位コントラストは不良コンタク
ト56底部は黒く、正常コンタクト57底部は白くな
り、不良コンタクト56を検出することができる。
As in the previous example, the potential of the back electrode is made lower than the potential of the counter electrode by using the method of the first embodiment. Positive charges are charged in the insulating film 52 and the defective contact 56 in which the insulating film remains on the bottom, but the potential of the contact bottom is the potential of the substrate 51 in the normal contact 57, so that the potential contrast of the secondary electron image is poor. The bottom of the contact 56 is black and the bottom of the normal contact 57 is white, and the defective contact 56 can be detected.

【0052】(第7の実施形態例)図6は、本発明の第
7の実施形態例のゲート酸化膜検査の説明図である。
(Seventh Embodiment) FIG. 6 is an explanatory diagram of a gate oxide film inspection according to a seventh embodiment of the present invention.

【0053】本実施形態例では、図6を参照してゲート
酸化膜のリーク不良を検査する例について述べる。基板
61上に形成されているゲート酸化膜62の上にゲート
電極63または64が形成されている。正常なゲート酸
化膜の上に形成されている正常ゲート電極63と、絶縁
不良のあるゲート酸化膜上に形成されている不良ゲート
電極64がある。
In this embodiment, an example in which a leak defect of a gate oxide film is inspected will be described with reference to FIG. A gate electrode 63 or 64 is formed on a gate oxide film 62 formed on a substrate 61. There is a normal gate electrode 63 formed on a normal gate oxide film and a defective gate electrode 64 formed on a gate oxide film having insulation failure.

【0054】第1の実施形態例の方法を用いて、裏面電
極電位を対向電極電位よりも例えば5V低電位にする。
正常なゲート電極63は正の電荷が帯電するが、不良の
ゲート電極64は基板61と同一電位となり、その結果
得られる二次電子像は正常なゲート電極63が黒く、不
良のゲート電極64が白く電位コントラストを得ること
ができ、不良のゲート酸化膜上に形成されているゲート
電極64を検出することができる。
Using the method of the first embodiment, the back electrode potential is set to, for example, 5 V lower than the counter electrode potential.
The normal gate electrode 63 is charged with a positive charge, but the defective gate electrode 64 has the same potential as the substrate 61, and the resulting secondary electron image shows that the normal gate electrode 63 is black and the defective gate electrode 64 is A white potential contrast can be obtained, and the gate electrode 64 formed on the defective gate oxide film can be detected.

【0055】(第8の実施形態例)図7は、本発明の第
8の実施形態例のゲート酸化膜の絶縁耐圧測定の説明図
である。
(Eighth Embodiment) FIG. 7 is an explanatory diagram of a measurement of a dielectric strength of a gate oxide film according to an eighth embodiment of the present invention.

【0056】図7に示すように、基板上にゲート酸化膜
が形成され、その上にゲート電極が形成された試料のゲ
ート電極と基板の間のゲート酸化膜の絶縁耐圧を測定す
る。本手法では対向電極と裏面電極の間の電位差を時間
と共に徐々に大きくして行く。この例では、対向電極電
位は固定して、裏面電極電位を正の方向に徐々に大きく
して行く。図7に示すように、裏面電極電位を正の方向
に大きくして行くと、ゲート電極電位もつられて正の方
向にシフトするが、ゲート電極に形成される電位が対向
電極電位よりも大きくなると、二次電子がゲート電極の
方に再注入されるのでゲート電極の電位は対向電極の電
位と若干のシフトがあるがほぼ等しく保たれる。
As shown in FIG. 7, a gate oxide film is formed on a substrate, and the withstand voltage of the gate oxide film between the substrate and the gate electrode of the sample having the gate electrode formed thereon is measured. In this method, the potential difference between the counter electrode and the back electrode is gradually increased with time. In this example, the potential of the counter electrode is fixed, and the potential of the back electrode is gradually increased in the positive direction. As shown in FIG. 7, when the back electrode potential is increased in the positive direction, the gate electrode potential is shifted in the positive direction, but when the potential formed on the gate electrode is higher than the counter electrode potential. Since the secondary electrons are re-injected into the gate electrode, the potential of the gate electrode is kept almost equal to the potential of the counter electrode although there is a slight shift.

【0057】したがって、ゲート電極電位と基板電位と
の間の電位差は拡大していく、ゲート酸化膜の絶縁耐圧
を超えるところで破壊が起こり、ゲート電極電位は基板
電位と等しくなる。ゲート酸化膜の絶縁耐圧はこの破壊
が起こる直前の基板電位とゲート電極電位との間の電位
差であるが、これは裏面電極電位と対向電極電位の電位
差から若干のシフト量を差し引いた値として測定するこ
とができる。
Therefore, the potential difference between the gate electrode potential and the substrate potential increases, and breakdown occurs at a level exceeding the withstand voltage of the gate oxide film, and the gate electrode potential becomes equal to the substrate potential. The withstand voltage of the gate oxide film is the potential difference between the substrate potential and the gate electrode potential immediately before this breakdown occurs, and is measured as a value obtained by subtracting a slight shift amount from the potential difference between the back electrode potential and the counter electrode potential. can do.

【0058】(第9の実施形態例)表1を参照して、本
発明の第9の実施形態例の、帯電のための電子ビーム照
射と、電位測定のための電子ビーム照射の2種類の照射
を行う例について説明する。
(Ninth Embodiment) Referring to Table 1, two types of electron beam irradiation for charging and electron beam irradiation for potential measurement according to the ninth embodiment of the present invention will be described. An example of performing irradiation will be described.

【0059】 まず、ステップ1として、加速電圧10kVで、ビーム
電流50nA、裏面電極電位+10Vで観測する領域を
照射する。次にステップ2で、加速電圧1kV、ビーム
電流500pA、裏面電極電位+10Vで電子ビームを
照射しながら二次電子を観測する。本実施形態例ではス
テップ1で試料に十分な帯電を短時間で行うことがで
き、ステップ2でその帯電電位を精密に観測することが
できる。
[0059] First, as Step 1, an area to be observed is irradiated with an acceleration voltage of 10 kV, a beam current of 50 nA, and a back electrode potential of +10 V. Next, in step 2, secondary electrons are observed while irradiating an electron beam at an acceleration voltage of 1 kV, a beam current of 500 pA, and a back electrode potential of +10 V. In the present embodiment, the sample can be sufficiently charged in a short time in step 1, and the charged potential can be precisely observed in step 2.

【0060】(第10の実施形態例)図8は、本発明の
第10の実施形態例の、電位コントラスト反転の説明図
である。
(Tenth Embodiment) FIG. 8 is an explanatory diagram of potential contrast inversion according to a tenth embodiment of the present invention.

【0061】図8を参照して第10の実施形態例につい
て説明すると、コンタクトホール開孔後のウエハーの検
査において、裏面電極電位を+10Vで電位像(1)を
取得する。次に裏面電極電位−10Vで電位像(2)を
取得する。電位像(1)では正常なコンタクトホールは
黒く電位コントラストが得られるが、不良のコンタクト
ホールは灰色となる。次に電位像(2)では正常なコン
タクトホールは白く電位コントラストが得られるが、不
良のコンタクトホールは灰色となる。
The tenth embodiment will be described with reference to FIG. 8. In the inspection of the wafer after the contact hole is opened, the potential image (1) is obtained with the back electrode potential at +10 V. Next, a potential image (2) is obtained at a back electrode potential of -10V. In the potential image (1), a normal contact hole is black and a potential contrast is obtained, but a defective contact hole is gray. Next, in the potential image (2), a normal contact hole is white and a potential contrast is obtained, but a defective contact hole is gray.

【0062】つまり、電位像(1)と電位像(2)では
正常なコンタクトホールの電位コントラストは反転して
いるが、不良のコンタクトホールはあまり電位コントラ
ストが変化しない。
That is, in the potential images (1) and (2), the potential contrast of the normal contact hole is inverted, but the potential contrast of the defective contact hole does not change much.

【0063】このコントラストの反転を検出することに
より正常なコンタクトホールと不良のコンタクトホール
を容易に区別することができる。
By detecting the inversion of the contrast, a normal contact hole and a defective contact hole can be easily distinguished.

【0064】本実施形態例では電位像(1)と電位像
(2)の差像をとることによりコントラストが反転して
いる個所のみを抽出している。
In this embodiment, the difference image between the potential image (1) and the potential image (2) is taken to extract only the portion where the contrast is inverted.

【0065】(第11の実施形態例)図9は、本発明の
第11の実施の形態例の、ウエハー上に形成されたゲー
ト酸化膜の不良の検出例の説明図であって、(a)は、
裏面電極に電圧をパルス的に与えた図、(b)は、ゲー
ト電極の正常と不良を示す図である。
(Eleventh Embodiment) FIG. 9 is an explanatory diagram of an example of detecting a defect of a gate oxide film formed on a wafer according to an eleventh embodiment of the present invention. )
FIG. 3B is a diagram in which a voltage is applied to the back electrode in a pulsed manner, and FIG.

【0066】図9により第11の実施形態例を説明する
と、ウエハー上にゲート電極が形成された試料のゲート
酸化膜の不良を検出する例を示すが、本例ではウエハー
裏面に酸化膜あるいはウエハーにウエルが多重で形成さ
れている場合でも良好な電位コントラストを得る手法に
ついて述べる。
Referring to FIG. 9, an eleventh embodiment will be described. An example of detecting a defect of a gate oxide film of a sample having a gate electrode formed on a wafer is shown. In this embodiment, an oxide film or a wafer is formed on the back surface of the wafer. A method for obtaining a good potential contrast even when multiple wells are formed will be described.

【0067】一般にこのような試料では裏面電極とウエ
ハー導電層が絶縁されているため、電子ビーム照射によ
って、ウエハー表面絶縁膜や正常ゲート電極のみでな
く、ウエハー自身も帯電するためのリーク不良のあるゲ
ート電極も同様に帯電し、正常なゲート電極と不良ゲー
ト電極との間の電位コントラストを得ることが困難とな
る。本例では、この問題を解決して良好な電位コントラ
ストを形成する手法を提供する。
In general, in such a sample, since the back electrode and the wafer conductive layer are insulated, there is a leak defect that not only the wafer surface insulating film and the normal gate electrode but also the wafer itself is charged by electron beam irradiation. The gate electrode is similarly charged, making it difficult to obtain a potential contrast between a normal gate electrode and a defective gate electrode. This embodiment provides a method for solving this problem and forming a good potential contrast.

【0068】図9(a)に示すように、裏面電極電位を
+5Vから0V、0Vから+5Vというようにパルス的
に変化させる。このとき、ウエハー上に形成されている
ゲート電極の電位は、裏面電極電位からの容量結合によ
る変動と、電子ビーム照射の帯電による均一化が起こ
り、図9(b)に示すような変化を示す。
As shown in FIG. 9A, the back electrode potential is pulsed from +5 V to 0 V and from 0 V to +5 V. At this time, the potential of the gate electrode formed on the wafer fluctuates due to capacitive coupling from the back electrode potential and becomes uniform due to charging of electron beam irradiation, and changes as shown in FIG. 9B. .

【0069】ウエハーと絶縁されている正常なゲート電
極は実線のように変化し、ウエハーにリ−クしている不
良のゲート電極は電気容量が大きいので破線のように変
化する。ここで、裏面電極が変動してしばらくの間は、
正常なゲート電極の電位と不良のゲート電極の電位が異
なる期間が発生する。この期間に像取得ゲートを活性化
してこの期間内のみ像を取得することで正常のゲート電
極と不良のゲート電極の間の電位コントラストを得るこ
とができる。
The normal gate electrode insulated from the wafer changes as shown by the solid line, and the defective gate electrode leaking to the wafer changes as shown by the broken line because of its large electric capacity. Here, for a while after the back electrode fluctuates,
A period occurs in which the potential of the normal gate electrode is different from the potential of the defective gate electrode. By activating the image acquisition gate during this period and acquiring an image only during this period, a potential contrast between a normal gate electrode and a defective gate electrode can be obtained.

【0070】[0070]

【発明の効果】以上説明したように本発明は、ウエハー
ステージを備えた走査型荷電粒子顕微鏡の、ウエハーの
裏面電極電位と対向電極電位の電位差を制御して、荷電
粒子ビームをウエハー上に照射することによりウエハー
上に形成された素子に電荷を注入し、二次観測量を閾値
と比較して電気的な接触の不良を判断する方法を採るの
で、LSIの製造途中段階でも電気的な不良検査を非接
触で行うことができる半導体ウエハー検査方法を提供す
ることができる効果がある。
As described above, the present invention irradiates a charged particle beam onto a wafer by controlling the potential difference between the back electrode potential and the counter electrode potential of a scanning charged particle microscope equipped with a wafer stage. In this method, electric charge is injected into the device formed on the wafer, and the secondary observation amount is compared with a threshold value to determine a defective electrical contact. There is an effect that it is possible to provide a semiconductor wafer inspection method capable of performing inspection without contact.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の荷電粒子ビームによる半導体ウエハー
検査装置の一実施形態例の構成図である。
FIG. 1 is a configuration diagram of an embodiment of a semiconductor wafer inspection apparatus using a charged particle beam according to the present invention.

【図2】電子ビーム加速電圧と二次電子放出比との関係
を示すグラフである。
FIG. 2 is a graph showing a relationship between an electron beam acceleration voltage and a secondary electron emission ratio.

【図3】(a)は、二次電子によるウエハー上絶縁膜が
正の帯電の場合の説明図、(b)は、同じく負の帯電の
場合の説明図である。
FIG. 3A is an explanatory diagram in a case where an insulating film on a wafer is positively charged by secondary electrons, and FIG. 3B is an explanatory diagram in a case where the insulating film is negatively charged.

【図4】本発明の第2、第3、第4の実施形態例の説明
図であって、(a)は、本発明の検査における閾値の選
択を説明するための構造図、(b)は、同じく説明する
ための各部分の電位および二次電子観測量を示す図であ
る。
FIGS. 4A and 4B are explanatory diagrams of second, third, and fourth embodiments of the present invention, wherein FIG. 4A is a structural diagram for explaining selection of a threshold value in an inspection of the present invention, and FIG. FIG. 7 is a diagram showing the potential of each part and the amount of secondary electrons observed for the same explanation.

【図5】本発明の第5、第6の実施形態例の説明図であ
って、(a)は、本発明により、コンタクトホールに電
極が埋め込まれた後の不良を検出する場合の説明図、
(b)は、本発明により、コンタクトホール開孔後にコ
ンタクトホールの不良を検出する場合の説明図である。
FIGS. 5A and 5B are explanatory views of fifth and sixth embodiments of the present invention, wherein FIG. 5A is an explanatory view of detecting a defect after an electrode is buried in a contact hole according to the present invention. ,
FIG. 3B is an explanatory diagram in a case where a defect of the contact hole is detected after the contact hole is opened according to the present invention.

【図6】本発明の第7の実施形態例のゲート酸化膜検査
の説明図である。
FIG. 6 is an explanatory view of a gate oxide film inspection according to a seventh embodiment of the present invention.

【図7】本発明の第8の実施形態例のゲート酸化膜の絶
縁耐圧測定の説明図である。
FIG. 7 is an explanatory diagram of a dielectric strength measurement of a gate oxide film according to an eighth embodiment of the present invention.

【図8】本発明の第10の実施形態例の電位コントラス
ト反転の説明図である。
FIG. 8 is an explanatory diagram of potential contrast inversion according to a tenth embodiment of the present invention.

【図9】本発明の第11の実施形態例の、ウエハー上に
形成されたゲート酸化膜の不良の検出例の説明図であっ
て、(a)は、裏面電極に電圧をパルス的に与えた図、
(b)は、ゲート電極の正常と不良を示す図である。
FIG. 9 is an explanatory diagram of an example of detecting a defect of a gate oxide film formed on a wafer according to an eleventh embodiment of the present invention. Figure,
(B) is a diagram showing normal and defective gate electrodes.

【符号の説明】 1 電子銃 2 ウエハーステージ 3,23 裏面電極 4,24 対向電極 5,25 電圧発生器 6 電線 7 二次電子観測機 8 閾値決定装置 9 閾値比較装置 10,30 ウエハー 11,55,65 電子ビーム 12 二次電子 41 ウエハー導電層 42,52 絶縁膜 43 非導通電極 44 導通電極(A) 45 導通電極(B) 51,61 基板 53,56 不良コンタクト 54,57 正常コンタクト 62 ゲート酸化膜 63 正常ゲート電極 64 不良ゲート電極[Description of Signs] 1 Electron gun 2 Wafer stage 3,23 Back electrode 4,24 Counter electrode 5,25 Voltage generator 6 Electric wire 7 Secondary electron observation device 8 Threshold determination device 9 Threshold comparison device 10,30 Wafer 11,55 , 65 electron beam 12 secondary electron 41 wafer conductive layer 42, 52 insulating film 43 non-conductive electrode 44 conductive electrode (A) 45 conductive electrode (B) 51, 61 substrate 53, 56 defective contact 54, 57 normal contact 62 gate oxidation Film 63 Normal gate electrode 64 Bad gate electrode

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 半導体ウエハー上に形成された第一導電
層、第二絶縁膜および第三素子のうち、前記第一導電層
と前記第三素子の間の電気的接触を検査する装置におい
て、 二次電子像の電位コントラストが二次電子検出器の二次
電子観測量の大小によって得られるウエハーステージを
備えた走査型荷電粒子顕微鏡の、ウエハーの裏面に接触
する裏面電極と、 ウエハー表面の少なくとも一部が空間を置いて前記裏面
電極に対向する部分を有する対向電極と、 前記裏面電極の電位と前記対向電極電位の電位差を制御
する装置と、 二次電子観測量の閾値を決定する装置と、 二次電子観測量の測定値と前記閾値を比較して、二次電
子観測量の測定値が前記閾値よりも多いか少ないかによ
り類別する装置と、を有する荷電粒子ビームによる半導
体ウエハー検査装置。
An apparatus for inspecting an electrical contact between the first conductive layer and the third element among a first conductive layer, a second insulating film, and a third element formed on a semiconductor wafer, The potential contrast of the secondary electron image of the scanning charged particle microscope equipped with the wafer stage obtained by the magnitude of the secondary electron observation amount of the secondary electron detector, the back electrode contacting the back surface of the wafer, at least the surface of the wafer A counter electrode having a portion facing the back electrode with a space therebetween, a device for controlling a potential difference between the potential of the back electrode and the potential of the counter electrode, and a device for determining a threshold value of a secondary electron observation amount A device for comparing the measured value of the secondary electron observable amount with the threshold value and classifying the measured value of the secondary electron observable value according to whether the measured value of the secondary electron amount is larger or smaller than the threshold value. Over inspection apparatus.
【請求項2】 半導体ウエハー上に形成された第一導電
層、第二絶縁膜および第三素子のうち、前記第一導電層
と前記第三素子の間の電気的接触を検査する方法におい
て、 二次電子像の電位コントラストが二次電子観測量の大小
によって得られるウエハーステージを備えた走査型荷電
粒子顕微鏡の、ウエハーの裏面に接触する裏面電極と、
ウエハー表面の少なくとも一部が空間を置いて前記裏面
電極に対向する部分を有する対向電極と、前記裏面電極
電位と前記対向電極電位との電位差を制御する装置とを
使用して、 前記裏面電極電位を前記対向電極電位よりも小さくし
て、荷電粒子ビームをウエハー上に照射することにより
ウエハー上に形成された少なくとも前記第二絶縁膜およ
び前記第三素子に電荷を注入し、 前記第三素子と前記第一導電層の間に電気的接触が有る
か無いかにより、前記第三素子に異なる電位を形成し、 前記第三素子に荷電粒子ビームを照射して発生する二次
電子観測量を閾値と比較し、 前記第三素子における二次電子観測量が前記閾値よりも
大きいものを前記第三素子と前記第一導電層の間に電気
的接触があると判断し、 前記裏面電極電位を前記対向電極電位よりも大きくし
て、荷電粒子ビームをウエハー上に照射することにより
ウエハー上に形成された少なくとも前記第二絶縁膜およ
び第三素子に電荷を注入し、 前記第三素子と前記第一導電層の間に電気的接触がある
か無いかにより、前記第三素子に異なる電位を形成し、 前記第三素子に荷電粒子ビームを照射して発生する二次
電子観測量を閾値と比較し、 前記第三素子における二次電子観測量が前記閾値よりも
小さいものを前記第三素子と前記第一導電層の間に電気
的接触があると判断する、半導体ウエハー検査方法。
2. A method of inspecting an electrical contact between the first conductive layer and the third element among a first conductive layer, a second insulating film, and a third element formed on a semiconductor wafer, The back surface electrode of the scanning charged particle microscope equipped with a wafer stage in which the potential contrast of the secondary electron image is obtained according to the magnitude of the observed secondary electrons,
Using a counter electrode having at least a portion of the wafer surface with a space facing the back electrode and a device for controlling the potential difference between the back electrode potential and the counter electrode potential, using the back electrode potential Is smaller than the counter electrode potential, by injecting charge into at least the second insulating film and the third element formed on the wafer by irradiating the wafer with a charged particle beam, the third element and Depending on whether or not there is an electrical contact between the first conductive layers, different potentials are formed on the third element, and a secondary electron observation amount generated by irradiating the third element with a charged particle beam is a threshold. Compared with, it is determined that the amount of secondary electrons observed in the third element is larger than the threshold value and that there is an electrical contact between the third element and the first conductive layer, the back electrode potential the Opposite The potential is greater than the pole potential, and a charged particle beam is irradiated on the wafer to inject charges into at least the second insulating film and the third element formed on the wafer, and the third element and the first conductive element are charged. Depending on whether or not there is electrical contact between the layers, different potentials are formed on the third element, and a secondary electron observation amount generated by irradiating the third element with a charged particle beam is compared with a threshold, A method for inspecting a semiconductor wafer, comprising: judging that the amount of observed secondary electrons in the third element is smaller than the threshold value, that there is an electrical contact between the third element and the first conductive layer.
【請求項3】 第三素子における二次電子観測量を判断
する閾値として、絶縁膜に荷電粒子ビームを照射して得
られた二次電子観測量が用いられる、請求項2記載の半
導体ウエハー検査方法。
3. The semiconductor wafer inspection according to claim 2, wherein a secondary electron observation amount obtained by irradiating the insulating film with a charged particle beam is used as a threshold for judging a secondary electron observation amount in the third element. Method.
【請求項4】 第三素子における二次電子観測量を判断
する閾値として、荷電粒子ビーム走査範囲内における二
次電子観測量の平均値が用いられる、請求項2記載の半
導体ウエハー検査方法。
4. The semiconductor wafer inspection method according to claim 2, wherein an average value of the observed amount of secondary electrons in a charged particle beam scanning range is used as a threshold for judging the amount of observed secondary electrons in the third element.
【請求項5】 第三素子における二次電子観測量を判断
する閾値として、荷電粒子ビーム走査範囲内における前
記第三素子と同一のレイヤーで製造された前記第三素子
とは異なる個所にある素子に荷電粒子ビームを照射して
いるときの二次電子観測量が用いられる、請求項2記載
の半導体ウエハー検査方法。
5. An element located at a different position from the third element manufactured on the same layer as the third element within a charged particle beam scanning range, as a threshold for judging a secondary electron observation amount in the third element. 3. The semiconductor wafer inspection method according to claim 2, wherein an observed amount of secondary electrons is used when the charged particle beam is irradiated on the semiconductor wafer.
【請求項6】 半導体ウエハー上に絶縁膜と前記絶縁膜
にコンタクトホールが形成された前記コンタクトホール
の前記ウエハーへの開孔を電気的に検査する方法におい
て、 他のコンタクトホールにおける二次電子観測量あるいは
絶縁膜における二次電子観測量により閾値を決定し、 裏面電極電位を対向電極電位よりも小さくして、被検査
コンタクトホールにおける二次電子観測量が前記閾値よ
りも大きいものを正常なコンタクトホールと判断し、前
記閾値より小さいものを不良のコンタクトホールと判断
し、 裏面電極電位を対向電極電位よりも大きくして、被検査
コンタクトホールにおける二次電子観測量が前記閾値よ
りも大きいものを不良のコンタクトホールと判断し、前
記閾値よりも小さいものを正常なコンタクトホールと判
断する、請求項2記載の半導体ウエハー検査方法。
6. A method for electrically inspecting an opening in said wafer, said insulating hole having a contact hole formed in said insulating film and said insulating film on a semiconductor wafer, wherein a secondary electron is observed in another contact hole. The threshold value is determined based on the amount of secondary electrons in the insulating film or the amount of secondary electrons observed in the insulating film. The potential of the back electrode is made smaller than the potential of the counter electrode. Judgment as a hole, those smaller than the threshold are judged as defective contact holes, the back electrode potential is set higher than the counter electrode potential, and the secondary electron observation amount in the contact hole to be inspected is larger than the threshold. A contact hole that is determined to be a defective contact hole and a hole smaller than the threshold value is determined to be a normal contact hole. The method for inspecting a semiconductor wafer according to claim 2.
【請求項7】 コンタクトホールに電極が形成された半
導体ウエハーのコンタクトの導通性を検査する方法にお
いて、 前記電極部分における二次電子観測量の閾値を、他の電
極における二次電子観測量あるいは絶縁膜における二次
電子観測量により決定し、 裏面電極電位を対向電極電位よりも小さくして、被検査
コンタクト電極における二次電子観測量が前記閾値より
も大きいものを正常なコンタクトと判断し、前記閾値よ
りも小さいものを不良のコンタクトと判断し、 裏面電極電位を対向電極電位よりも大きくして、被検査
コンタクト電極における二次電子観測量が前記閾値より
も大きいものを不良のコンタクトと判断し、前記閾値よ
り小さいものを正常なコンタクトと判断する、請求項2
記載の半導体ウエハー検査方法。
7. A method for inspecting the continuity of a contact of a semiconductor wafer having an electrode formed in a contact hole, wherein a threshold value of a secondary electron observation amount at the electrode portion is determined by using a secondary electron observation amount or insulation at another electrode. Determined by the amount of secondary electrons observed in the film, the back electrode potential is made smaller than the potential of the counter electrode, and the one where the amount of secondary electrons observed in the contact electrode to be inspected is larger than the threshold value is determined as a normal contact. A contact smaller than the threshold is determined to be a defective contact, the back electrode potential is set to be higher than the counter electrode potential, and a secondary electron observation amount in the contact electrode to be inspected that is larger than the threshold is determined to be a defective contact. And determining a contact smaller than the threshold value as a normal contact.
The semiconductor wafer inspection method according to the above.
【請求項8】 ゲート酸化膜上にゲート電極が形成され
た半導体ウエハーのゲート酸化膜の絶縁性を検査する方
法において、 前記ゲート電極における二次電子観測量の閾値を、他の
ゲート電極あるいは絶縁膜における二次電子観測量によ
り決定し、 裏面電極電位を対向電極電位よりも小さくして、被検査
ゲート電極における二次電子観測量が前記閾値よりも大
きいものを不良のゲート酸化膜と判断し、前記閾値より
も小さいものを正常のゲート酸化膜と判断し、 裏面電極電位を対向電極電位よりも大きくして、被検査
ゲート電極における二次電子観測量が前記閾値よりも大
きいものを正常のゲート電極と判断し、前記閾値より小
さいものを不良のゲート電極と判断する、請求項2記載
の半導体ウエハー検査方法。
8. A method for inspecting the insulating property of a gate oxide film of a semiconductor wafer having a gate electrode formed on the gate oxide film, the method comprising: Determined by the amount of secondary electrons observed in the film, the back electrode potential is made smaller than the potential of the counter electrode, and the one where the amount of secondary electrons observed in the gate electrode to be inspected is larger than the threshold value is determined as a defective gate oxide film. The one smaller than the threshold value is determined as a normal gate oxide film, the back electrode potential is set higher than the counter electrode potential, and the one where the amount of secondary electrons observed at the gate electrode to be tested is larger than the threshold value is determined as normal. 3. The semiconductor wafer inspection method according to claim 2, wherein a gate electrode is determined, and a gate electrode smaller than the threshold is determined as a defective gate electrode.
【請求項9】 ゲート酸化膜上のゲート電極が形成され
た半導体ウエハーの検査方法において、 荷電粒子ビームをウエハー上に照射しつつ裏面電極と対
向電極の間の電位差を徐々に大きくして、前記ゲート電
極部分の電位コントラストが極大あるいは極小になると
きの電位差を測定してゲート酸化膜の絶縁耐圧を求め
る、請求項2記載の半導体ウエハー検査方法。
9. A method for inspecting a semiconductor wafer having a gate electrode formed on a gate oxide film, the method comprising: irradiating a charged particle beam onto the wafer while gradually increasing a potential difference between a back electrode and a counter electrode. 3. The semiconductor wafer inspection method according to claim 2, wherein a potential difference when the potential contrast of the gate electrode portion becomes maximum or minimum is measured to determine the dielectric strength of the gate oxide film.
【請求項10】 荷電粒子ビームの照射は、を素子に電
位を与える第一の照射と、二次電子を観測するための第
二の照射を含む、請求項2記載の半導体ウエハー検査方
法。
10. The semiconductor wafer inspection method according to claim 2, wherein the irradiation of the charged particle beam includes first irradiation for applying a potential to the device and second irradiation for observing secondary electrons.
【請求項11】 裏面電極の電位を対向電極電位以下に
して第1の二次電子像を取得し、裏面電極の電位を対向
電極電位よりも高くして第2の二次電子像を取得し、前
記第1の二次電子像と前記第2の二次電子像で電位コン
トラストの反転を検査して、電位コントラストが反転し
ていない素子を不良として検出する、請求項2記載の半
導体ウエハー検査方法。
11. A first secondary electron image is obtained by setting the potential of the back electrode to the potential of the counter electrode or lower, and a second secondary electron image is obtained by setting the potential of the back electrode higher than the potential of the counter electrode. 3. The semiconductor wafer inspection method according to claim 2, wherein the first secondary electron image and the second secondary electron image are used to check for inversion of potential contrast, and to detect an element whose potential contrast is not inverted as a defect. Method.
【請求項12】 荷電粒子ビームを連続照射しつつ裏面
電極電位を第1の電位から第2の電位に変化させて、前
記裏面電極が第2の電位に変化した後の所定期間のみの
二次電子像を、選択期間のみの二次電子像を取得するゲ
ートにより取得し、前期二次電子像により素子の不良を
判定する、請求項2記載の半導体ウエハー検査方法。
12. The secondary electrode potential is changed from a first potential to a second potential while continuously irradiating a charged particle beam, and the secondary electrode is changed only for a predetermined period after the rear electrode changes to a second potential. 3. The semiconductor wafer inspection method according to claim 2, wherein the electronic image is obtained by a gate that obtains a secondary electron image only for a selected period, and the element defect is determined based on the secondary electron image.
JP9161124A 1997-06-18 1997-06-18 Semiconductor wafer inspection apparatus and inspection method using charged particle beam Expired - Fee Related JP2959529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9161124A JP2959529B2 (en) 1997-06-18 1997-06-18 Semiconductor wafer inspection apparatus and inspection method using charged particle beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9161124A JP2959529B2 (en) 1997-06-18 1997-06-18 Semiconductor wafer inspection apparatus and inspection method using charged particle beam

Publications (2)

Publication Number Publication Date
JPH118278A true JPH118278A (en) 1999-01-12
JP2959529B2 JP2959529B2 (en) 1999-10-06

Family

ID=15729067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9161124A Expired - Fee Related JP2959529B2 (en) 1997-06-18 1997-06-18 Semiconductor wafer inspection apparatus and inspection method using charged particle beam

Country Status (1)

Country Link
JP (1) JP2959529B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208579A (en) * 1999-01-08 2000-07-28 Schlumberger Technol Inc Detection of fine structure defects
KR20010065639A (en) * 1999-12-30 2001-07-11 박종섭 Test method for defect contact/via in semiconductor device
US6586952B2 (en) 2000-06-19 2003-07-01 Mari Nozoe Method of inspecting pattern and inspecting instrument
JP2005333161A (en) * 2005-08-05 2005-12-02 Renesas Technology Corp Inspection device using electrically charged particle beam
JP2009092673A (en) * 2008-12-26 2009-04-30 Hitachi Ltd Review sem

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102706914B (en) * 2012-06-29 2015-03-18 北京卫星环境工程研究所 Measurement system and measurement method of secondary electron emission yield of dielectric material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208579A (en) * 1999-01-08 2000-07-28 Schlumberger Technol Inc Detection of fine structure defects
KR20010065639A (en) * 1999-12-30 2001-07-11 박종섭 Test method for defect contact/via in semiconductor device
US6586952B2 (en) 2000-06-19 2003-07-01 Mari Nozoe Method of inspecting pattern and inspecting instrument
US6924482B2 (en) 2000-06-19 2005-08-02 Hitachi, Ltd. Method of inspecting pattern and inspecting instrument
US7375538B2 (en) 2000-06-19 2008-05-20 Hitachi, Ltd. Method of inspecting pattern and inspecting instrument
US7876113B2 (en) 2000-06-19 2011-01-25 Hitachi, Ltd. Method of inspecting pattern and inspecting instrument
JP2005333161A (en) * 2005-08-05 2005-12-02 Renesas Technology Corp Inspection device using electrically charged particle beam
JP2009092673A (en) * 2008-12-26 2009-04-30 Hitachi Ltd Review sem

Also Published As

Publication number Publication date
JP2959529B2 (en) 1999-10-06

Similar Documents

Publication Publication Date Title
US4415851A (en) System for contactless testing of multi-layer ceramics
US7786436B1 (en) FIB based open via analysis and repair
JPH11121561A (en) Method and device for testing semiconductor and integrated circuit constitutional body
JP2007281136A (en) Semiconductor substrate, and substrate inspection method
US7525325B1 (en) System and method for floating-substrate passive voltage contrast
TW201704766A (en) Particle beam heating to identify defects
JPH10318949A (en) Inspection device and semiconductor inspection method
JP2959529B2 (en) Semiconductor wafer inspection apparatus and inspection method using charged particle beam
US20080296496A1 (en) Method and apparatus of wafer surface potential regulation
US6963206B2 (en) System and method of evaluating gate oxide integrity for semiconductor microchips
JP2002026100A (en) Semiconductor substrate and inspection method of electric circuit fabricating process and method for fabricating electric circuit
JPH0325384A (en) Printed circuit board testing method
CN112331573B (en) Electric leakage analysis method of three-dimensional memory and three-dimensional memory
CN107346751B (en) Test structure, forming method thereof and test method
US20030057988A1 (en) Semiconductor device inspecting method using conducting AFM
JP3219147B2 (en) Contact failure location identification method
JPH0563939B2 (en)
JP2000068345A (en) Inspection of contact opening in semiconductor device
JP2011014798A (en) Semiconductor inspection device and semiconductor inspection method
CN102420015B (en) Method of detecting manufacturing defects in memory array and test device thereof
JP2008041757A (en) Device and method for semiconductor inspection
JP2002296314A (en) Contact defect inspecting method for semiconductor device, and device thereof
JP3654434B2 (en) Test contact chain and related debugging method
TWI795838B (en) check system
KR100595137B1 (en) Method for inspecting electric properties of semiconductor device with fib system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees