JPH1182501A - Bearing device - Google Patents

Bearing device

Info

Publication number
JPH1182501A
JPH1182501A JP23750297A JP23750297A JPH1182501A JP H1182501 A JPH1182501 A JP H1182501A JP 23750297 A JP23750297 A JP 23750297A JP 23750297 A JP23750297 A JP 23750297A JP H1182501 A JPH1182501 A JP H1182501A
Authority
JP
Japan
Prior art keywords
bearing
shaft
electrode
voltage
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23750297A
Other languages
Japanese (ja)
Inventor
Hiroshi Miyazawa
弘 宮沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP23750297A priority Critical patent/JPH1182501A/en
Publication of JPH1182501A publication Critical patent/JPH1182501A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/109Lubricant compositions or properties, e.g. viscosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/10Mounting of suspension elements
    • B60G2204/11Mounting of sensors thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/40Auxiliary suspension parts; Adjustment of suspensions
    • B60G2204/41Elastic mounts, e.g. bushings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/40Auxiliary suspension parts; Adjustment of suspensions
    • B60G2204/418Bearings, e.g. ball or roller bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)
  • Support Of The Bearing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high withstand load in a low cost and suppress a vibration, by providing a shaft, a bearing pivoting the shaft, an ER fluid of which viscosity is changed by impressed voltage, and electrodes and power source impressing the ER fluid with voltage, and arranging the ER fluid in the axial direction near the bearing. SOLUTION: A shaft 2 is rotatively supported by a bearing 3, and a spacer 7 which is a first insulator and a spacer 8 which is a second insulator are provided on the upper side of the bearing 3. Between the spacer 7 and the spacer 8, an electrode 9 is provided and an ER fluid 10 is filled. A first insulating spacer 11 and a second insulating spacer 12 are provided on the lower side of the bearing 3. Between the spacer 11 and the spacer 12, an electrode 13 is provided and the ER fluid 10 is filled. When voltage is impressed on the shaft 2 and the electrodes 9, 13, viscosity of the ER fluid 10 is reversibly changed, and magnitude of load received by the fluid is changed. Thus, the control of voltage enables the control of the weight of the receivable load.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は軸受に関し、滑り軸
受の端面に電気粘性流体(以下、ER流体と略記する)
で軸受を構成し滑り軸受とER流体軸受の組合わせによ
り高精度と高信頼性を実現する軸受装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bearing, and more particularly to an electrorheological fluid (hereinafter abbreviated as ER fluid) on an end face of a sliding bearing.
The present invention relates to a bearing device that realizes high precision and high reliability by a combination of a plain bearing and an ER fluid bearing.

【0002】[0002]

【従来の技術】情報機器に使われる小形モータ用軸受に
は滑り軸受が多く用いられている。この中でも多孔質体
に潤滑油を含侵させた含油軸受は安価であり広く用いら
れている。また、精密な回転が要求されるような例えば
レーザープリンタのポリゴンミラー用モータの軸受には
動圧軸受が使われている。また、コンピュータの外部記
憶装置であるCD−ROMのスピンドルモータは、アク
セス速度向上の要求によりモータの高速回転のため動圧
軸受が使われようとしている。
2. Description of the Related Art Sliding bearings are often used as bearings for small motors used in information equipment. Among these, oil-impregnated bearings in which a porous body is impregnated with lubricating oil are inexpensive and widely used. For example, a dynamic pressure bearing is used as a bearing of a motor for a polygon mirror of a laser printer that requires precise rotation. A spindle motor of a CD-ROM, which is an external storage device of a computer, is about to use a dynamic pressure bearing for a high-speed rotation of the motor in response to a demand for an improvement in access speed.

【0003】[0003]

【発明が解決しようとする課題】しかし、前述の含油軸
受は軸と軸受に隙間をもつ構造のため、この隙間の分軸
が片側に寄せられてスリコギ運動をするため精密な回転
が難しくなる。また、含油軸受は軸と軸受が完全な非接
触状態ではないため軸と軸受の接触により摩耗し精度を
維持し難いという問題がある。例えばCD−ROMのス
ピンドルモータの軸受ではディスクのアンバランスによ
り高速回転時には大きな偏加重が加わり軸受精度を劣化
させるという問題や、振動により読み取り信号を劣化さ
せるという問題があった。この点を改善させるため非接
触状態で回転可能な動圧軸受があるが、動圧軸受は製造
が難しいため高価になる。また、起動停止時は動圧が発
生しないため軸と軸受が接触しすべり軸受と同様に摩耗
により精度の劣化や寿命が短くなるといった問題を有し
ていた。
However, the above-mentioned oil-impregnated bearing has a structure in which there is a gap between the shaft and the bearing, so that the split shaft of this gap is moved to one side to perform a sliding motion, so that precise rotation becomes difficult. In addition, the oil-impregnated bearing has a problem in that the shaft and the bearing are not in a completely non-contact state, and are worn due to contact between the shaft and the bearing, making it difficult to maintain accuracy. For example, in the bearing of a spindle motor of a CD-ROM, there is a problem that a large unbalanced load is applied during high-speed rotation due to imbalance of a disk, thereby deteriorating the bearing accuracy, and a problem of deteriorating a read signal due to vibration. In order to improve this point, there is a hydrodynamic bearing that can rotate in a non-contact state, but the hydrodynamic bearing is difficult to manufacture and therefore expensive. In addition, since no dynamic pressure is generated at the time of starting and stopping, there is a problem that the shaft and the bearing come into contact with each other and the wear deteriorates the accuracy and shortens the service life similarly to the sliding bearing.

【0004】本発明はこのような課題を解決するもの
で、安価で高耐荷重を有し振動を抑制して高精度回転を
得ながら、長寿命化と高信頼性を確保できる軸受を提供
するものである。
The present invention solves such a problem, and provides a bearing which is inexpensive, has a high withstand load, suppresses vibration, obtains high-precision rotation, and has a long life and high reliability. Things.

【0005】[0005]

【課題を解決するための手段】請求項1記載の軸受装置
は、軸と、この軸を回転軸支する軸受と、電圧を印加す
ることにより粘度が変化するER流体と、このER流体
に電圧を印加する電極と電源を有し、ER流体は軸受近
傍の軸方向に配置したことを特徴とする。
According to a first aspect of the present invention, there is provided a bearing device comprising: a shaft; a bearing for supporting the shaft in rotation; an ER fluid whose viscosity changes when a voltage is applied; ER fluid is provided in the axial direction near the bearing.

【0006】上記構成によれば、軸受と電圧を印可する
ことで粘性が変化するER流体を組合わせて軸を軸支す
ることにより、軸受の荷重負荷能力にER流体による荷
重負荷能力が加えられ、負荷能力及び軸受剛性が向上す
る。また、ER流体に電圧を印可することによりER流
体の粘度が上りER流体で軸を支えられることにより、
軸と軸受の接触が低減され摩耗が防止できる。また、E
R流体と軸とのクリアランスが無く、常に軸を支えるこ
とより振動が防止されると同時に高精度な回転が得られ
る。更に、ER流体を軸受の軸方向に配置したことによ
り、軸受軸受に使われている潤滑油がER流体により密
閉され潤滑材の漏れが防止できるという効果を有する。
According to the above construction, the shaft is supported by combining the bearing and the ER fluid whose viscosity changes by applying a voltage, so that the load-loading capability of the bearing is added to the load-loading capability of the bearing. , Load capacity and bearing rigidity are improved. Also, by applying a voltage to the ER fluid, the viscosity of the ER fluid rises and the shaft is supported by the ER fluid,
The contact between the shaft and the bearing is reduced, and wear can be prevented. Also, E
Since there is no clearance between the R fluid and the shaft, vibration is prevented by always supporting the shaft, and high-precision rotation is obtained. Further, by arranging the ER fluid in the axial direction of the bearing, the lubricating oil used in the bearing is sealed by the ER fluid, so that leakage of the lubricant can be prevented.

【0007】請求項2記載の軸受装置は、軸と、この軸
を回転軸支する軸受と、軸受の端面に設けた第1及び第
2の電気絶縁体と、第1及び第2の絶縁体間に挟まれ電
導体から成る電極と、軸と第1及び第2の絶縁体間と電
極に囲まれる空間内に満たされ電圧を印加することによ
り粘度が変化するER流体と、軸と電極間に電圧を印加
する電源を有することを特徴とする。
According to a second aspect of the present invention, there is provided a bearing device comprising: a shaft; a bearing for rotatably supporting the shaft; first and second electric insulators provided on end surfaces of the bearing; and first and second insulators An electrode made of a conductor sandwiched between the ER fluid, an ER fluid filled between a shaft and the first and second insulators and in a space surrounded by the electrode and having a viscosity changed by applying a voltage, and an ER fluid between the shaft and the electrode. A power supply for applying a voltage to the power supply.

【0008】上記構成によれば、請求項1記載の効果と
同等な効果が得られるばかりか軸受の端面に絶縁体に挟
まれた電極を配置してER流体を満たし、軸受のラジア
ル方向に電圧を印可する構造としたことより、より高荷
重と密閉性を向上したものである。
According to the above construction, the same effect as that of the first aspect can be obtained. In addition, an electrode sandwiched between insulators is arranged on the end face of the bearing to fill the ER fluid, and the voltage is applied in the radial direction of the bearing. Is applied, so that a higher load and a sealing property are further improved.

【0009】請求項3記載の軸受装置は、軸と、この軸
を回転軸支する軸受と、軸受の端面に設けた第1、第2
及び第3の電気絶縁体と、第1及び第3の電気絶縁体間
に挟まれ電導体から成る第1の電極と、第2及び第3の
絶縁体間に挟まれ電導体から成る第2の電極と、軸と第
3の絶縁体と第1及び第2の電極に囲まれる空間内に満
たされ電圧を印加することにより粘度が変化するER流
体と、第1の電極と第2の電極間に電圧を印加する電源
を有することを特徴とする。
According to a third aspect of the present invention, there is provided a bearing device comprising: a shaft; a bearing for rotatably supporting the shaft; and first and second shafts provided on end surfaces of the bearing.
And a third electrical insulator, a first electrode composed of a conductor sandwiched between the first and third electrical insulators, and a second electrode composed of a conductor sandwiched between the second and third insulators An ER fluid filled in a space surrounded by the shaft, the third insulator, and the first and second electrodes and having a viscosity changed by applying a voltage; a first electrode and a second electrode A power supply for applying a voltage therebetween.

【0010】上記構成によれば、請求項1記載の効果と
同等な効果が得られるばかりか電極を軸方向に沿って配
置した構成により、回転する軸受に電圧を印可する必要
が無く構成が簡単になる。また、電極構成も簡単になり
生産性に優れるという効果を有する。
According to the above configuration, not only the same effects as those of the first aspect are obtained, but also the configuration in which the electrodes are arranged along the axial direction eliminates the need to apply a voltage to the rotating bearing, thereby simplifying the configuration. become. Further, there is an effect that the electrode configuration is simplified and the productivity is excellent.

【0011】請求項4記載の軸受装置は、軸と、この軸
を回転軸支する軸受と、軸受の端面に設けた第1、第2
及び第3の電気絶縁体と、第1及び第2の電気絶縁体間
に挟まれた第3の電気絶縁体と軸との間にあり軸方向に
伸延される複数の電導体から成る電極と、軸と第3の絶
縁体に囲まれる空間内に満たされた電圧を印加すること
により粘度が変化するER流体と、複数の電極間に電圧
を印加する電源を有することを特徴とする。
According to a fourth aspect of the present invention, there is provided a bearing device comprising: a shaft; a bearing for rotatably supporting the shaft; and first and second shafts provided on end surfaces of the bearing.
An electrode comprising a plurality of conductors extending between the third electrical insulator and the shaft, which are sandwiched between the first and second electrical insulators, and extending in the axial direction; And an ER fluid whose viscosity changes by applying a voltage filled in a space surrounded by the shaft and the third insulator, and a power supply for applying a voltage between the plurality of electrodes.

【0012】上記構成によれば、請求項1及び3記載の
効果と同等な効果が得られるばかりか、回転する軸に沿
って旋回する流動による軸の調芯作用により、高精度回
転が得られる。また、旋回する流動により軸と軸受の摩
擦損失が低減できるという効果を有する。
According to the above configuration, not only effects equivalent to those of the first and third aspects are obtained, but also high-precision rotation is obtained by the centering action of the shaft due to the flow swirling along the rotating shaft. . Further, there is an effect that the friction loss between the shaft and the bearing can be reduced by the swirling flow.

【0013】請求項5記載の軸受装置は、軸受はすべり
軸受であることを特徴とする。
According to a fifth aspect of the present invention, the bearing is a plain bearing.

【0014】上記構成によれば、大きな荷重に耐えられ
ない、また、摩耗して精度が劣化するといった課題を持
つ含油軸受や、起動停止時の軸と軸受の摩耗や潤滑油の
密閉性に課題のある動圧軸受などのすべり軸受と本発明
を組合わせることで、安価でありながら高性能な軸受が
得られるという効果を有する。
According to the above configuration, there are problems in oil-impregnated bearings that cannot withstand a large load and that the accuracy deteriorates due to wear, and in the abrasion of the shaft and the bearing at the time of starting and stopping, and in the sealing property of the lubricating oil. Combining the present invention with a plain bearing such as a dynamic pressure bearing having an effect has an effect that a high-performance bearing can be obtained at low cost.

【0015】請求項6記載の軸受装置は、絶縁体、電
極、ER流体を軸受の両端面に設けたことを特徴とす
る。
According to a sixth aspect of the present invention, an insulator, an electrode, and an ER fluid are provided on both end surfaces of the bearing.

【0016】上記構成によれば、本発明の軸受装置では
軸受の片面に配置しても十分な効果を有するが、更に軸
受の両端面に配置することにより、より大きな効果を有
する。
According to the above construction, the bearing device of the present invention has a sufficient effect even if it is arranged on one side of the bearing, but has a greater effect if it is arranged on both end surfaces of the bearing.

【0017】請求項7記載の軸受装置は、樹脂から成る
絶縁体に貼り合わされた導電性金属箔を所望形状に形成
し、絶縁体を第1の絶縁体、導電性金属箔を第1の電極
又は絶縁体を第2の絶縁体、導電性金属箔を第2の電極
としたことを特徴とする。
According to a seventh aspect of the present invention, a conductive metal foil bonded to an insulator made of a resin is formed in a desired shape, the insulator is a first insulator, and the conductive metal foil is a first electrode. Alternatively, the insulator is a second insulator, and the conductive metal foil is a second electrode.

【0018】上記構成によれば、絶縁体と電極の構成を
簡単にすることにより容易に製造できるという効果を有
する。
According to the above structure, there is an effect that the structure can be easily manufactured by simplifying the structure of the insulator and the electrode.

【0019】請求項8記載の軸受装置は、軸方向に伸延
する複数の電極が第3の絶縁体上に所望形状に形成され
ていることを特徴とする。
According to an eighth aspect of the present invention, in the bearing device, a plurality of electrodes extending in the axial direction are formed in a desired shape on the third insulator.

【0020】上記構成によれば、電極の製造が容易であ
るという効果を有する。
According to the above configuration, there is an effect that manufacture of the electrode is easy.

【0021】請求項9記載の軸受装置は、軸の回転速度
の検出手段を設け、軸受装置の状態変化に応じてER流
体の印加電圧を制御することを特徴とする。
According to a ninth aspect of the present invention, there is provided a bearing device, wherein a means for detecting the rotational speed of the shaft is provided, and the applied voltage of the ER fluid is controlled according to a change in the state of the bearing device.

【0022】上記構成によれば、軸受の状態に応じて最
適な制御が可能となる。
According to the above configuration, optimal control can be performed according to the state of the bearing.

【0023】請求項10記載の軸受装置は、軸の回転速
度の検出はモータの界磁用永久磁石の逆起電圧を用いた
ことを特徴とする。
According to a tenth aspect of the present invention, the detection of the rotational speed of the shaft uses a back electromotive force of a permanent magnet for the field of the motor.

【0024】上記構成によれば、新たなセンサー等の構
成部品を必要とせず安価で容易に製造できるという効果
を有する。
According to the above configuration, there is an effect that the component can be easily manufactured at a low cost without requiring a new component such as a sensor.

【0025】請求項11記載の軸受装置は、モータ起動
指令に同期してER流体に電圧を印加し、モータ起動遅
延手段によりER流体に電圧印加後モータを起動させ、
モータ停止指令には遅延手段によりモータ停止後ER流
体に印可する電圧をオフすることを特徴とする。
In the bearing device according to the present invention, a voltage is applied to the ER fluid in synchronization with the motor start command, and the motor is started by applying a voltage to the ER fluid by the motor start delay means.
The motor stop command is characterized in that the voltage applied to the ER fluid is turned off after the motor is stopped by the delay means.

【0026】上記構成によれば、起動時は軸が回転する
前つまりモータが回転する前にER流体が粘度が高くな
り軸を保持し、逆に停止時はモータが停止した後ER流
体の電圧を切ることにより、軸と軸受は非接触状態で起
動停止となり軸受の摩耗が無く精度が維持でき信頼性が
向上するという効果を有する。
According to the above configuration, the viscosity of the ER fluid becomes high before the shaft rotates, that is, before the motor rotates at the time of start-up, and the ER fluid holds the shaft. By turning off the shaft, the shaft and the bearing are started and stopped in a non-contact state, and there is an effect that the bearing is not worn, accuracy is maintained, and reliability is improved.

【0027】請求項12記載の軸受装置は、絶縁体は樹
脂又はセラミックスから成り、樹脂又はセラミックスを
単独又は金属と組合わせて構成することを特徴とする。
In a twelfth aspect of the present invention, the insulator is made of resin or ceramics, and the resin or ceramics is used alone or in combination with a metal.

【0028】上記構成によれば、安価で精度高く製造で
きるという効果を有する。
According to the above configuration, there is an effect that it can be manufactured at low cost and with high accuracy.

【0029】[0029]

【発明の実施の形態】以下、本発明の一実施例について
詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below in detail.

【0030】(実施例1)図1は本発明のER流体を用
いた軸受の断面図、図2は図1の軸受の上部の拡大図で
あり図1、2を基に説明する。軸2は軸受3により回転
自在に支持され、軸受3の軸方向の両端にはER流体と
ER流体を保持駆動するための機構が配置され軸受体1
を構成している。図中軸受3の上方側には電気的な絶縁
性材料から成る第1の絶縁体であるスペーサー7及び第
2の絶縁体であるスペーサー8の間にはER流体に電圧
を印加するための導電性材料から成る電極9が挟み込ま
れており、スペーサー7及び8と電極9で構成されるコ
の字状の空間と軸2の間にはER流体10が満たされて
いる。もう一方、軸受3の下方側にも上方側と同様に第
1の絶縁体のスペーサー11及び第2の絶縁体のスペー
サー12の間に電極13が挟み込まれ、スペーサー1
1、12及び電極13と軸2で作られる空間にER流体
10が満たされている。
(Embodiment 1) FIG. 1 is a sectional view of a bearing using the ER fluid of the present invention, and FIG. 2 is an enlarged view of an upper portion of the bearing of FIG. 1 and will be described with reference to FIGS. The shaft 2 is rotatably supported by a bearing 3, and an ER fluid and a mechanism for holding and driving the ER fluid are disposed at both axial ends of the bearing 3, and a bearing body 1 is provided.
Is composed. In the figure, a conductive material for applying a voltage to the ER fluid is provided between a spacer 7 as a first insulator and a spacer 8 as a second insulator made of an electrically insulating material above the bearing 3. An electrode 9 made of a conductive material is sandwiched between the U-shaped space formed by the spacers 7 and 8 and the electrode 9 and the shaft 2 and the ER fluid 10 is filled. On the other hand, also on the lower side of the bearing 3, similarly to the upper side, the electrode 13 is interposed between the spacer 11 of the first insulator and the spacer 12 of the second insulator.
An ER fluid 10 is filled in a space formed by the electrodes 1, 12 and the electrode 13 and the shaft 2.

【0031】軸受3及び上側のスペーサー7及び8と下
側のスペーサー11及び12はスリーブ4に挿入固定さ
れ、スリーブ4はモータ(図示せず)のベースプレート
21に支持固定されている。上側のスペーサー7及び8
と下側のスペーサー11及び12は夫々支持板6及び5
によりスラスト方向固定されている。支持板5は下部が
球状となった軸2を受けており、軸の下方向の位置決め
も兼ねている。
The bearing 3, the upper spacers 7 and 8, and the lower spacers 11 and 12 are inserted and fixed in a sleeve 4, and the sleeve 4 is supported and fixed on a base plate 21 of a motor (not shown). Upper spacers 7 and 8
And lower spacers 11 and 12, respectively, are support plates 6 and 5, respectively.
Is fixed in the thrust direction. The support plate 5 receives the shaft 2 having a spherical lower portion, and also serves to position the shaft in the downward direction.

【0032】軸受の外には直流電源20があり、片側の
極は軸2に設けられたスリップリング14とリード線1
7で接続されている。もう一方の極はリード線19と電
極9、リード線18と電極13が接続されている。リー
ド線19は支持板6及びスペーサー8に設けられた穴1
5を通り電極9に接続され、リード線18は支持板5及
びスペーサー12に設けられた穴16を通り電極13に
接続されている。ER流体10は軸2と電極9、13に
より電圧を印加される構成となっている。
A DC power supply 20 is provided outside the bearing, and the pole on one side has a slip ring 14 provided on the shaft 2 and a lead wire 1.
7 are connected. The other pole is connected to the lead wire 19 and the electrode 9, and to the lead wire 18 and the electrode 13. The lead wire 19 is provided in the hole 1 provided in the support plate 6 and the spacer 8.
The lead wire 18 is connected to the electrode 13 through the support plate 5 and the hole 16 provided in the spacer 12. The ER fluid 10 is configured to be applied with a voltage by the shaft 2 and the electrodes 9 and 13.

【0033】スペーサー7及び8には、軸との間に図2
で示すようにクリアランスLがある。クリアランスがマ
イナス(軸受内径よりもスペーサー内径が小さい)の場
合、軸とスペーサーが接触によって摺動抵抗が増加する
ことや、摩耗粉が軸受摺動面に入り軸受寿命やER流体
への混入等の悪影響があることから、クリアランスは0
以上として非接触状態を保つ必要がある。一方、クリア
ランスLが大きすぎれば外部よりゴミなどの異物が混入
したり、ER流体が漏れてしまう。従って、クリアラン
スLは機械的な精度を考慮しつつできる限り小さくする
ことが好ましい。具体的には、すべり軸受の中で代表的
な含油軸受の軸と軸受のクリアランスと同程度の50μ
m以下が好ましく、更に好ましくは精密機器用途と同程
度の30μm以下が、また、更に好ましくは高精度機器
用途と同程度の10μm以下である。
The spacers 7 and 8 have a structure shown in FIG.
There is a clearance L as shown by. If the clearance is minus (the inner diameter of the spacer is smaller than the inner diameter of the bearing), the sliding resistance will increase due to the contact between the shaft and the spacer, and wear powder will enter the bearing sliding surface, causing the bearing life and mixing into the ER fluid. Clearance is 0 due to adverse effects
As described above, it is necessary to maintain a non-contact state. On the other hand, if the clearance L is too large, foreign matter such as dust enters from the outside or the ER fluid leaks. Therefore, it is preferable to make the clearance L as small as possible while considering the mechanical accuracy. Specifically, among the plain bearings, a typical oil-impregnated bearing has a 50 μm, which is about the same as the clearance between the shaft and the bearing.
m or less, more preferably 30 μm or less, which is about the same as precision instrument use, and more preferably 10 μm or less, which is about the same as high precision equipment use.

【0034】本発明に使用されるER流体は、電界を印
加した時にその粘性が瞬間的かつ大きく可逆的に変化す
る流体であり、絶縁油中に電気分極性の粒子を分散させ
た分散系と、均一系に大別される。分散系としてはイオ
ン分極可能な水、酸、アルカリあるいは有機電解質等を
含んだシリカやゼオライト等の無機粒子またはイオン交
換樹脂やセルロース等の有機粒子、水を含まずイオン分
極よりは電子分極を生じ易いカーボンやポリアニン、金
属フタロシアニン等の半導体粒子、表面に絶縁被覆を被
覆した金属粒子や導電性ポリマー粒子、その他異方導電
性や非線形非光学特性を持つ材料からなる粒子等を、電
気絶縁性及び電気絶縁破壊強度が高く化学的に安定で粒
子を安定的に絶縁油に分散させたものである。絶縁油と
しては例えばシリコン系オイル、鉱油、塩化ジフェニー
ル等が使用可能である。一方、均一系としては液晶性、
粒度異方性、強誘電性、高双極子能率等を持つ物質また
は溶液が挙げられるが、好ましくは液晶である。
The ER fluid used in the present invention is a fluid whose viscosity changes instantaneously and largely reversibly when an electric field is applied, and is a dispersion system in which electrically polarizable particles are dispersed in insulating oil. , And homogeneous systems. As a dispersion system, inorganic particles such as silica or zeolite containing ion-polarizable water, acid, alkali, or organic electrolyte, or organic particles such as ion-exchange resin or cellulose, and containing water do not cause ionic polarization but produce electronic polarization rather than ionic polarization. Semiconductor particles such as carbon, polyanine, and metal phthalocyanine, metal particles and conductive polymer particles coated with an insulating coating on the surface, and other particles made of a material having anisotropic conductivity or nonlinear non-optical properties. It has a high electric breakdown strength and is chemically stable, and particles are stably dispersed in insulating oil. As the insulating oil, for example, silicon-based oil, mineral oil, diphenyl chloride and the like can be used. On the other hand, as a homogeneous system,
A substance or a solution having particle size anisotropy, ferroelectricity, high dipole efficiency, and the like can be mentioned, and a liquid crystal is preferable.

【0035】図3は、本発明の軸受の原理を説明する図
であり、ER流体10は左右に配置された電極44の間
に満たされている。電圧オフの状態では図3(a)のよ
うに、流体35中の電気分極性粒子36はランダムに分
散された状態であるが、電圧を図3(b)のように印加
された状態では、電極間44に発生した電界により粒子
36は分極され粒子同士が引き合い電極44間に鎖上に
並び、この粒子鎖が流体35の流れを阻害し流体粘度は
見かけ上増大する。このように、電圧を印加することに
より流体粘度が上がることを利用すれば、流体で受けら
れる荷重の大きさを変えることや、電圧を制御すること
で受けられる荷重量をコントロールすることが可能とな
る。
FIG. 3 is a diagram for explaining the principle of the bearing of the present invention. The ER fluid 10 is filled between the electrodes 44 arranged on the left and right. In a state where the voltage is off, as shown in FIG. 3A, the electrically polarizable particles 36 in the fluid 35 are in a state of being dispersed at random, but in a state where a voltage is applied as shown in FIG. The particles 36 are polarized by the electric field generated between the electrodes 44, and the particles are attracted to each other and are arranged on the chain between the electrodes 44. The particle chains obstruct the flow of the fluid 35, and the fluid viscosity increases apparently. As described above, by utilizing the fact that the fluid viscosity is increased by applying a voltage, it is possible to change the magnitude of the load received by the fluid and to control the amount of load received by controlling the voltage. Become.

【0036】流体で荷重を受ける方法としては、図3
(b)のように電極44を軸と平行に配置した場合、つ
まり図1と同じように片側の電極を軸側に設け、もう一
方を径方向に設けることにより、軸のラジアル方向の力
(図3(b)のR)を受けられる。
FIG. 3 shows a method of receiving a load with a fluid.
When the electrodes 44 are arranged in parallel with the axis as shown in FIG. 1B, that is, by providing one electrode on the axis side and providing the other in the radial direction as in FIG. 1, the force in the radial direction of the axis ( R) in FIG. 3B is received.

【0037】ラジアル方向荷重を受けるため電極はラジ
アル方向の力に対して固定する必要がある。本発明では
スペーサー7、11は略L字形状とし段差部で電極9ま
たは13を受、そしてスペーサー7、11の外形をスリ
ーブ4の内形で受ける構造とすることにより容易に強固
に荷重を受けることができる。
To receive a radial load, the electrodes need to be fixed against radial forces. In the present invention, the spacers 7 and 11 are substantially L-shaped, receive the electrode 9 or 13 at the step, and receive the outer shape of the spacers 7 and 11 by the inner shape of the sleeve 4 to easily and strongly receive the load. be able to.

【0038】スペーサー7、11や8、12は例えば樹
脂やセラミックス等の電気的に絶縁材料を用いれば容易
に精度高く製造することができる。また、一般的に多く
使われている鉄材等の金属材料の表面に樹脂材料で被膜
を形成し、絶縁体とすることもできる。
The spacers 7, 11, 8 and 12 can be easily and accurately manufactured by using an electrically insulating material such as resin or ceramic. In addition, a coating can be formed with a resin material on the surface of a metal material such as an iron material which is generally widely used, so that an insulator can be formed.

【0039】図10は、ER流体の電圧の制御を説明す
るための図であり、モータ28の起動指令31に対しE
R流体のコントローラ30は、指令に同期してオン状態
としER流体の電源20をオンにしER流体の粘度を高
くする。一方、モータのコントローラ29は指令に対し
遅延してモータ28をオンし起動する。また、モータ停
止指令31に対しては、モータコントローラ29は即モ
ータを停止するが、ER流体のコントローラ30は指令
に対して遅延し、モータ28が停止してからER流体の
電源20をオフにする。このようにすることにより、軸
と軸受け非接触の状態で起動と停止が可能となる。
FIG. 10 is a diagram for explaining the control of the voltage of the ER fluid.
The R fluid controller 30 is turned on in synchronization with the command, turns on the ER fluid power supply 20, and increases the viscosity of the ER fluid. On the other hand, the motor controller 29 turns on and starts the motor 28 with a delay in response to the command. In response to the motor stop command 31, the motor controller 29 immediately stops the motor, but the ER fluid controller 30 delays the command and turns off the ER fluid power supply 20 after the motor 28 stops. I do. By doing so, starting and stopping can be performed in a state where the shaft is not in contact with the bearing.

【0040】ER流体は電圧により粘度が変化するか
ら、モータの回転数に応じて電圧を変えればモータの状
況に合わせて軸受の条件が変えられる。界磁に永久磁石
が使われるモータは回転数に応じて逆起電圧が発生する
から、この逆起電圧に応じてER流体への印加電圧を可
変することでモータの回転に応じて軸受の状態を可変で
きる。モータコントローラ29でモータの逆起電圧を検
出し、それに比例した電圧信号をER流体コントローラ
30に送り、ER流体コントローラ30は信号に応じて
電源20の電圧値を制御すればER流体の粘度を制御で
きる。
Since the viscosity of the ER fluid changes depending on the voltage, if the voltage is changed according to the number of rotations of the motor, the condition of the bearing can be changed according to the condition of the motor. A motor that uses a permanent magnet for the field generates a back electromotive voltage according to the number of rotations. By changing the voltage applied to the ER fluid according to the back electromotive voltage, the state of the bearings according to the rotation of the motor Can be changed. The back electromotive voltage of the motor is detected by the motor controller 29, and a voltage signal proportional thereto is sent to the ER fluid controller 30, and the ER fluid controller 30 controls the viscosity of the ER fluid by controlling the voltage value of the power supply 20 according to the signal. it can.

【0041】次に、以上述べた構成の軸受のモータへの
適用の一例について述べる。図9はCD−ROM用スピ
ンドルモータの断面図であり、軸2の先端にはターンテ
ーブル27が装着されており、軸受体1はモータの取付
ベースプレイトと21に固定されている。スリーブ4の
外側にはス、テータコア23がありそこには励磁用のコ
イル24が巻かれている。軸2にはバックヨーク26が
取り付けられステータコア23と対向するようにして永
久磁石15が取り付けられている。軸受下側の電極より
引き出されたリード線18は、ベースプレイト21にあ
けられた穴22を通ってベースプレイト21の上方に回
り、軸受上側の電極より引き出されたリード線19と共
にベースプレイト21上の配線基板32のハンダ34に
より接続される。同様にスリップリングより引き出され
たリード線17もハンダ33により基板に接続される。
Next, an example of application of the bearing having the above configuration to a motor will be described. FIG. 9 is a cross-sectional view of a spindle motor for CD-ROM. A turntable 27 is mounted on the tip of the shaft 2, and the bearing 1 is fixed to a motor mounting base plate 21. Outside the sleeve 4, there is a stator core 23, on which an exciting coil 24 is wound. The back yoke 26 is attached to the shaft 2, and the permanent magnet 15 is attached so as to face the stator core 23. The lead wire 18 drawn out from the electrode on the lower side of the bearing passes above the base plate 21 through a hole 22 formed in the base plate 21 and is on the base plate 21 together with the lead wire 19 drawn out from the electrode on the upper side of the bearing. Are connected by the solder 34 of the wiring board 32. Similarly, the lead wire 17 drawn from the slip ring is also connected to the substrate by the solder 33.

【0042】ER流体10に電圧を印加しER流体の粘
度が見かけ上増大することにより、軸受体1はラジアル
方向の剛性が増し、大きな荷重に耐えることができる。
また、ER流体と軸はクリアランスが無いことから、回
転が安定し高精度な回転が得られ、また、常に軸は支え
られることにより抵振動化が可能となる。また、ER流
体が軸受の両端に位置していることから軸受の潤滑油は
ER流体によってシールドされることになり潤滑油の飛
散防止が図れる。また、モータ起動停止時に軸と軸受は
非接触状態を保つことができるから、摩耗が無く高精度
と長寿命化が図れる。
By applying a voltage to the ER fluid 10 and apparently increasing the viscosity of the ER fluid, the rigidity of the bearing body 1 in the radial direction is increased and the bearing body 1 can withstand a large load.
In addition, since there is no clearance between the ER fluid and the shaft, the rotation is stable and high-precision rotation is obtained, and the shaft is always supported so that vibration can be reduced. Further, since the ER fluid is located at both ends of the bearing, the lubricating oil of the bearing is shielded by the ER fluid, thereby preventing the lubricating oil from scattering. In addition, since the shaft and the bearing can be kept in a non-contact state when the motor is stopped and started, wear can be prevented, and high accuracy and long life can be achieved.

【0043】本発明の実施例に用いた軸受はメタル軸受
や動圧軸受どれにも適応でき、メタル軸受との組合わせ
では軸受けの剛性の向上と高精度回転と長寿命化が大き
なメリットとなる。また、動圧軸受との組合わせでは、
シール性と起動停止時における軸と軸受の金属接触の低
減が可能となる。
The bearing used in the embodiment of the present invention can be applied to any of a metal bearing and a dynamic pressure bearing, and when combined with a metal bearing, the improvement of the rigidity of the bearing, the high precision rotation, and the long life are great advantages. . Also, in combination with a dynamic pressure bearing,
It is possible to reduce the sealing property and the metal contact between the shaft and the bearing at the time of starting and stopping.

【0044】また、本実施例では軸受の両端側にER流
体を設けて説明したが、どちらか片側だけでも良いこと
は言うまでもない。
In this embodiment, the ER fluid is provided at both ends of the bearing. However, it goes without saying that only one of the two ends may be used.

【0045】(実施例2)図4は、第二の実施例を示す
軸受の要部断面図、図5は絶縁体と電極の斜視図であ
り、実施例1の電極部分の新たな構成としたものであ
る。本発明の電極の配置を軸方向に構成し、電極間にE
R流体を入れたものであり、実施例1の原理説明で述べ
た図3(b)のS方向の力を受ける構成である。
(Embodiment 2) FIG. 4 is a sectional view of a main part of a bearing showing a second embodiment, and FIG. 5 is a perspective view of an insulator and an electrode. It was done. The arrangement of the electrodes of the present invention is configured in the axial direction, and E
An R fluid is contained therein, and is configured to receive the force in the S direction of FIG. 3B described in the principle explanation of the first embodiment.

【0046】以下詳細に説明する。図4は軸受部の上方
側の拡大図であり、軸受3の上方には図4に示すように
第1の絶縁体から成るスペーサー7の片面に電極44が
形成され、更にその上方には同様な方法にて第2の絶縁
体から成るスペーサー8の片面に電極44形成され、互
いの電極44を対向させ、電極44間には第3の絶縁体
45を挟み配置し、支持板6を介しスリーブ4に固定さ
れている。そして、スペーサー7上の電極44と、スペ
ーサー8上の電極44と、第3の絶縁体絶縁体45と、
軸2に囲まれた空間にER流体10が満たされている。
The details will be described below. FIG. 4 is an enlarged view of the upper side of the bearing portion. As shown in FIG. 4, an electrode 44 is formed on one surface of a spacer 7 made of a first insulator above the bearing 3, and further above the same. The electrode 44 is formed on one surface of the spacer 8 made of the second insulator by a simple method, the electrodes 44 are opposed to each other, the third insulator 45 is interposed between the electrodes 44, and the support plate 6 is interposed therebetween. It is fixed to the sleeve 4. Then, the electrode 44 on the spacer 7, the electrode 44 on the spacer 8, the third insulator 45,
The space surrounded by the axis 2 is filled with the ER fluid 10.

【0047】次に、絶縁体と電極について図5にもとず
き説明する。絶縁材料から成るスペーサー7の片面には
リング状の電極44が形成されている。スペーサー7の
外周の一部には突起53がある。この突起53上にはリ
ード線を接続するための電極パッド51があり、電極4
4と電極パッド51は電極リード52により接続されて
いる。同様にスペーサー8も、スペーサー8上にも電極
44、電極パッド51、電極リード52が形成されてい
る。スペーサー7上の電極パッド51と電源20は、リ
ード線19により、また、スペーサー8上の電極パッド
51と電源20とはリード線17により接続されてい
る。
Next, the insulator and the electrode will be described with reference to FIG. A ring-shaped electrode 44 is formed on one surface of the spacer 7 made of an insulating material. A projection 53 is provided on a part of the outer periphery of the spacer 7. An electrode pad 51 for connecting a lead wire is provided on the projection 53, and the electrode 4
4 and the electrode pad 51 are connected by an electrode lead 52. Similarly, the spacer 8 also has an electrode 44, an electrode pad 51, and an electrode lead 52 formed on the spacer 8. The electrode pad 51 on the spacer 7 and the power supply 20 are connected by a lead 19, and the electrode pad 51 on the spacer 8 and the power supply 20 are connected by a lead 17.

【0048】絶縁体と電極は、樹脂基板に銅箔が形成さ
れている一般的回路基板を所望形状にパターンをエッチ
ングすることでも得ることができるし、例えばセラミッ
クスに銅等の比抵抗の小さな金属膜を貼り付ける等して
も得ることができる。
The insulator and the electrode can be obtained by etching a pattern on a general circuit board in which a copper foil is formed on a resin board into a desired shape. It can also be obtained by attaching a film or the like.

【0049】スペーサー7及びスペーサー8の一部外形
に突起53を設けたことにより、この突起53をスリー
ブ4に設けられた切込み(図示せず)に合わせ、スペー
サー7及びスペーサー8の外径をスリーブ4の内径を案
内に組込むことにより容易に組立てが可能である。
Since the projections 53 are provided on a part of the outer shape of the spacers 7 and 8, the projections 53 are aligned with the cuts (not shown) provided on the sleeve 4, and the outer diameters of the spacers 7 and 8 are adjusted. By assembling the inner diameter of 4 into the guide, assembly can be easily performed.

【0050】以上、軸受3の上側について説明したが下
側も同様な構成、方法にて軸受を構成する。このような
構成の場合には図3(b)で示すS方向の力を受けるこ
とが可能となる。
As described above, the upper side of the bearing 3 has been described, but the lower side also has a similar configuration and method. In the case of such a configuration, it is possible to receive a force in the S direction shown in FIG.

【0051】(実施例3)図6は、新たな電極構造を説
明するための図であり、軸受を軸方向より見た場合の断
面図である。軸2と、絶縁体45の間には、ER流体1
0が満たされている。絶縁体45の内周には、プラス電
極40とマイナス電極41が軸方向に沿って円周上に4
組み配置されている。電極40、41に電圧を印加する
ことにより、ER流体10の粘度は増大し軸2を支え
る。電極40と電極41を円周に沿って連続的に配置す
ることにより、ER流体の粘度は円周で均一となり軸2
を軸受の中心で支えられる。
(Embodiment 3) FIG. 6 is a view for explaining a new electrode structure, and is a sectional view when the bearing is viewed from the axial direction. An ER fluid 1 is provided between the shaft 2 and the insulator 45.
0 is satisfied. On the inner periphery of the insulator 45, a plus electrode 40 and a minus electrode 41 are arranged on the circumference along the axial direction.
They are arranged in pairs. By applying a voltage to the electrodes 40, 41, the viscosity of the ER fluid 10 increases and supports the shaft 2. By continuously arranging the electrode 40 and the electrode 41 along the circumference, the viscosity of the ER fluid becomes uniform around the circumference and
Supported by the center of the bearing.

【0052】静的、つまり軸が回転しない状態において
も軸は軸受の中心に支えられるが、回転時においても同
様である。詳細に説明する。軸2の回転によってER流
体には、軸2の回転に沿うように流動42が発生し、軸
2を旋回する。旋回する流動42は、軸2の外周部に均
等に力を加えるように流れることから、自動的に旋回流
の中心に保持するような働きとなり軸を自動調芯する軸
受となる。
The shaft is supported by the center of the bearing even when the shaft is stationary, that is, when the shaft does not rotate, but the same applies when the shaft rotates. This will be described in detail. Due to the rotation of the shaft 2, a flow 42 is generated in the ER fluid along the rotation of the shaft 2, and the ER fluid turns the shaft 2. Since the swirling flow 42 flows so as to uniformly apply a force to the outer peripheral portion of the shaft 2, the swirling flow 42 functions to automatically hold the center of the swirling flow, and serves as a bearing that automatically aligns the shaft.

【0053】図7は、本発明の電極構造の一例を示す斜
視図であり、絶縁体45の内径には、上方面から下方面
に延びる電極44が、複数本形成されている。尚、ここ
で言う上方面から下方面は、軸の軸方向である。電極4
4の一端には、電極パッド46が、もう一方の一端に
は、同様に電極パッド47が形成され、リード線との接
続を容易にしている。電極44は図8に示すように電気
比抵抗の小さな金属、例えば銅を連続的に矩形波状に形
成し、折り曲げ線48及び49にて曲げ、絶縁体45の
内形に貼り合わせることで得られる。また、実施例2と
同様な方法にて、樹脂に貼り合わされた銅箔をエッチン
グすることでも同様に得られる。
FIG. 7 is a perspective view showing an example of the electrode structure of the present invention. A plurality of electrodes 44 extending from the upper surface to the lower surface are formed on the inner diameter of the insulator 45. Here, the direction from the upper surface to the lower surface is the axial direction of the shaft. Electrode 4
An electrode pad 46 is formed at one end of 4 and an electrode pad 47 is formed at the other end in the same manner to facilitate connection with a lead wire. The electrode 44 is obtained by continuously forming a metal having a small electric resistivity, for example, copper into a rectangular wave shape as shown in FIG. . Further, it can be obtained similarly by etching the copper foil bonded to the resin in the same manner as in Example 2.

【0054】上述の電極44が形成されて絶縁体45を
実施例2で述べたように軸受3両端面に配置することに
より実施例1及び2と同様の効果を有する。
The same effect as in the first and second embodiments can be obtained by disposing the insulator 45 on the both end surfaces of the bearing 3 as described in the second embodiment with the above-described electrodes 44 formed thereon.

【0055】尚、本実施例では電極の本数を4本で説明
したが、電極数はこれに限られるものではなく、所望に
応じて幾本でもよいことは勿論である。
In this embodiment, the number of electrodes has been described as four. However, the number of electrodes is not limited to this, and may be any number as desired.

【0056】[0056]

【発明の効果】本発明によれば、軸受の端面にER流体
から成る軸受を設けたことにより、軸受剛性が向上し高
耐荷重と抵振動化を有し、軸と軸受は非接触状態となり
軸と軸受の摩耗が低減される。また、軸受からの潤滑油
の飛散防止が図られことから高精度と高信頼性が得られ
るという効果を有する。
According to the present invention, by providing a bearing made of ER fluid on the end face of the bearing, the bearing rigidity is improved, high load resistance and vibration resistance are achieved, and the shaft and the bearing are in a non-contact state. Shaft and bearing wear is reduced. In addition, since lubricating oil is prevented from scattering from the bearing, high accuracy and high reliability can be obtained.

【0057】更に、簡単な構成で生産性に優れ安価であ
るという効果も有する。
Further, there is an effect that the productivity is excellent and the cost is low with a simple configuration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】軸受の断面図。FIG. 1 is a sectional view of a bearing.

【図2】ER流体保持部分の拡大図。FIG. 2 is an enlarged view of an ER fluid holding portion.

【図3】軸受の原理を説明する図。FIG. 3 is a diagram illustrating the principle of a bearing.

【図4】軸受の要部断面図。FIG. 4 is a sectional view of a main part of the bearing.

【図5】絶縁体と電極の斜視図。FIG. 5 is a perspective view of an insulator and electrodes.

【図6】軸受原理を説明するための図。FIG. 6 is a diagram for explaining the principle of a bearing.

【図7】電極構造の一例を示す斜視図。FIG. 7 is a perspective view showing an example of an electrode structure.

【図8】電極の展開図。FIG. 8 is a development view of an electrode.

【図9】スピンドルモータの断面図。FIG. 9 is a sectional view of a spindle motor.

【図10】ER流体の電圧の制御を説明するための図。FIG. 10 is a view for explaining control of the voltage of the ER fluid.

【符号の説明】[Explanation of symbols]

1・・・軸受体 2・・・軸 3・・・軸受 4・・・スリーブ 5、6・・・支持板 7、8、11、12・・・スペーサー 9、13・・・電極 10・・・電気粘性流体 14・・・スリップリング 15、16、22・・・穴 17、18、19・・・リード線 20・・・電源 21・・・ベースプレート 23・・・ステータコア 24・・・コイル 25・・・永久磁石 26・・・バックヨーク 27・・・ターンテーブル 28・・・モータ 29・・・モータコントローラ 30・・・電源コントローラ 32・・・基板 33、34・・・ハンダ 35・・・流体 36・・・電気分極性粒子 40、41、44・・・電極 45・・・絶縁体 46、47・・・電極パッド 48、49・・・折り曲げ線 DESCRIPTION OF SYMBOLS 1 ... Bearing body 2 ... Shaft 3 ... Bearing 4 ... Sleeve 5, 6 ... Support plate 7, 8, 11, 12 ... Spacer 9, 13 ... Electrode 10 ... -Electro-rheological fluid 14-Slip ring 15, 16, 22-Hole 17, 18, 19-Lead wire 20-Power supply 21-Base plate 23-Stator core 24-Coil 25 ... permanent magnet 26 ... back yoke 27 ... turntable 28 ... motor 29 ... motor controller 30 ... power supply controller 32 ... board 33, 34 ... solder 35 ... Fluid 36 ・ ・ ・ Electrically polarizable particles 40,41,44 ・ ・ ・ Electrode 45 ・ ・ ・ Insulator 46,47 ・ ・ ・ Electrode pad 48,49 ・ ・ ・ Bend line

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】軸と、この軸を回転軸支する軸受と、電圧
を印加することにより粘度が変化する電気粘性流体と、
この電気粘性流体に電圧を印加する電極と電源を有し、
電気粘性流体を軸受近傍の軸方向に配置したことを特徴
とする軸受装置。
A shaft, a bearing that supports the shaft in rotation, an electrorheological fluid whose viscosity changes when a voltage is applied thereto,
It has an electrode and a power supply for applying a voltage to this electrorheological fluid,
A bearing device wherein an electrorheological fluid is arranged in an axial direction near a bearing.
【請求項2】軸と、この軸を回転軸支する軸受と、軸受
の端面に設けた第1及び第2の電気絶縁体と、第1及び
第2の絶縁体間に挟まれ電導体から成る電極と、軸と第
1及び第2の絶縁体間と電極に囲まれる空間内に満たさ
れ電圧を印加することにより粘度が変化する電気粘性流
体と、軸と電極間に電圧を印加する電源を有することを
特徴とする軸受装置。
A shaft, a bearing for supporting the shaft in rotation, first and second electrical insulators provided on end faces of the bearing, and a conductor sandwiched between the first and second insulators. An electrode, an electrorheological fluid whose viscosity is changed by applying a voltage between a shaft and the first and second insulators and in a space surrounded by the electrode, and a power supply for applying a voltage between the shaft and the electrode A bearing device comprising:
【請求項3】軸と、この軸を回転軸支する軸受と、軸受
の端面に設けた第1、第2及び第3の電気絶縁体と、第
1及び第3の電気絶縁体間に挟まれ電導体から成る第1
の電極と、第2及び第3の絶縁体間に挟まれ電導体から
成る第2の電極と、軸と第3の絶縁体と第1及び第2の
電極に囲まれる空間内に満たされ電圧を印加することに
より粘度が変化する電気粘性流体と、第1の電極と第2
の電極間に電圧を印加する電源を有することを特徴とす
る軸受装置。
3. A shaft, a bearing for supporting the shaft in rotation, first, second and third electrical insulators provided on the end face of the bearing, and sandwiched between the first and third electrical insulators. The first conductor
, A second electrode composed of a conductor sandwiched between the second and third insulators, and a shaft filled with a voltage filled in a space surrounded by the third insulator and the first and second electrodes. An electrorheological fluid whose viscosity changes by applying a first electrode and a second electrode.
A power supply for applying a voltage between the electrodes.
【請求項4】軸と、この軸を回転軸支する軸受と、軸受
の端面に設けた第1、第2及び第3の電気絶縁体と、第
1及び第2の電気絶縁体間に挟まれた第3の電気絶縁体
と軸との間にあり軸方向に伸延される複数の電導体から
成る電極と、軸と第3の絶縁体に囲まれる空間内に満た
された電圧を印加することにより粘度が変化する電気粘
性流体と、複数の電極間に電圧を印加する電源を有する
ことを特徴とする軸受装置。
4. A shaft, a bearing for supporting the shaft in rotation, first, second, and third electrical insulators provided on end faces of the bearing, and sandwiched between the first and second electrical insulators. An electrode composed of a plurality of conductors extending between the third electrical insulator and the shaft and extending in the axial direction, and applying a voltage filled in a space surrounded by the shaft and the third insulator. A bearing device, comprising: an electrorheological fluid whose viscosity changes by the change, and a power supply for applying a voltage between a plurality of electrodes.
【請求項5】軸受はすべり軸受であることを特徴とする
請求項1、2、3または4記載の軸受装置。
5. The bearing device according to claim 1, wherein the bearing is a plain bearing.
【請求項6】絶縁体、電極、電気粘性流体を軸受の両端
面に設けたことを特徴とする請求項1、2、3または4
記載の軸受装置。
6. The bearing according to claim 1, wherein an insulator, an electrode and an electrorheological fluid are provided on both end faces of the bearing.
The bearing device as described.
【請求項7】樹脂から成る絶縁体に貼り合わされた導電
性金属箔を所望形状に形成し、絶縁体を第1の絶縁体、
導電性金属箔を第1の電極又は絶縁体を第2の絶縁体、
導電性金属箔を第2の電極としたことを特徴とする請求
項3記載の軸受装置。
7. A conductive metal foil bonded to an insulator made of a resin is formed in a desired shape, and the insulator is made of a first insulator,
A conductive metal foil as a first electrode or an insulator as a second insulator,
The bearing device according to claim 3, wherein the conductive metal foil is used as the second electrode.
【請求項8】軸方向に伸延する複数の電極が第3の絶縁
体上に所望形状に形成されていることを特徴とする請求
項4記載の軸受装置。
8. The bearing device according to claim 4, wherein a plurality of electrodes extending in the axial direction are formed in a desired shape on the third insulator.
【請求項9】軸の回転速度の検出手段を設け、軸受装置
の状態変化に応じて電気粘性流体の印加電圧を制御する
ことを特徴とする請求項1、2、3または4記載の軸受
装置。
9. A bearing device according to claim 1, further comprising means for detecting a rotational speed of the shaft, wherein the voltage applied to the electrorheological fluid is controlled in accordance with a change in the state of the bearing device. .
【請求項10】軸の回転速度の検出はモータの界磁用永
久磁石の逆起電圧を用いたことを特徴とする請求項9記
載の軸受装置。
10. The bearing device according to claim 9, wherein the rotation speed of the shaft is detected using a back electromotive voltage of a permanent magnet for a field of a motor.
【請求項11】モータ起動指令に同期して電気粘性流体
に電圧を印加し、モータ起動遅延手段により電気粘性流
体に電圧印加後モータを起動させ、モータ停止指令には
遅延手段によりモータ停止後電気粘性流体に印加する電
圧をオフすることを特徴とする請求項1、2、3または
4記載の軸受装置。
11. A voltage is applied to the electrorheological fluid in synchronization with a motor start command, a motor is started after a voltage is applied to the electrorheological fluid by motor start delay means, and a motor stop command is applied after the motor is stopped by the delay means. 5. The bearing device according to claim 1, wherein the voltage applied to the viscous fluid is turned off.
【請求項12】絶縁体は樹脂又はセラミックスから成
り、樹脂又はセラミックスを単独又は金属と組合わせて
構成することを特徴とする請求項1、2、3、4、6ま
たは7記載の軸受装置。
12. The bearing device according to claim 1, wherein the insulator is made of resin or ceramics, and the resin or ceramics is used alone or in combination with a metal.
JP23750297A 1997-09-02 1997-09-02 Bearing device Withdrawn JPH1182501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23750297A JPH1182501A (en) 1997-09-02 1997-09-02 Bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23750297A JPH1182501A (en) 1997-09-02 1997-09-02 Bearing device

Publications (1)

Publication Number Publication Date
JPH1182501A true JPH1182501A (en) 1999-03-26

Family

ID=17016274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23750297A Withdrawn JPH1182501A (en) 1997-09-02 1997-09-02 Bearing device

Country Status (1)

Country Link
JP (1) JPH1182501A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100379583B1 (en) * 1999-12-30 2003-04-10 한국과학기술연구원 Apparatus for damping vibration of an axle
EP2840267A1 (en) * 2013-08-23 2015-02-25 Siemens Aktiengesellschaft Sliding bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100379583B1 (en) * 1999-12-30 2003-04-10 한국과학기술연구원 Apparatus for damping vibration of an axle
EP2840267A1 (en) * 2013-08-23 2015-02-25 Siemens Aktiengesellschaft Sliding bearing

Similar Documents

Publication Publication Date Title
KR100519811B1 (en) Vibration motor
CN100458195C (en) Bearing unit and motor provided therewith
US20090009020A1 (en) Motor having suction ring
JP5519314B2 (en) Rotating equipment
JPS58142025A (en) Spindle device
JP7028988B2 (en) Rotating device and rotating radar device
JPH1182501A (en) Bearing device
JP3608430B2 (en) Rotating electric machine
JPH01204211A (en) Revolving head device
JP2000213543A (en) Bearing device and spindle motor
US10339968B2 (en) Base unit, spindle motor, and disk drive apparatus
JPS6044620A (en) Dynamic pressure bearing device
JP4664798B2 (en) motor
JPS6098213A (en) Dynamic pressure fluid bearing
JP2020058217A (en) Spindle motor
JP2013164166A (en) Spindle motor using bearing
US8472133B2 (en) Motor and recording disk drive device
WO2000065591A1 (en) Fluid bearing device and magnetic disk device using fluid bearing device
JPH03199714A (en) Bearing device
JP4812600B2 (en) motor
KR100990557B1 (en) Rotating shaft for a ultra slim spindle motor
JP2002054636A (en) Bearing device
JP2024005815A (en) drive device
JP2014158351A (en) Fan motor
JPH04236303A (en) Method and device for measuring gap of dynamic pressure air bearing

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041102