JPH03199714A - Bearing device - Google Patents

Bearing device

Info

Publication number
JPH03199714A
JPH03199714A JP1339025A JP33902589A JPH03199714A JP H03199714 A JPH03199714 A JP H03199714A JP 1339025 A JP1339025 A JP 1339025A JP 33902589 A JP33902589 A JP 33902589A JP H03199714 A JPH03199714 A JP H03199714A
Authority
JP
Japan
Prior art keywords
fluid
voltage
viscosity
sliding bearing
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1339025A
Other languages
Japanese (ja)
Inventor
Hisamitsu Mori
森 久光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1339025A priority Critical patent/JPH03199714A/en
Publication of JPH03199714A publication Critical patent/JPH03199714A/en
Priority to US08/140,382 priority patent/US5409892A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/1045Details of supply of the liquid to the bearing
    • F16C33/105Conditioning, e.g. metering, cooling, filtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/109Lubricant compositions or properties, e.g. viscosity

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To change the value of viscosity to an optimum value in accordance with a rotational speed by applying variable voltage to electric viscous fluid with which a clearance between a rotary shaft and a sliding bearing in filled, in the case of the sliding bearing used for a polygon mirror driving motor in a laser beam printer or the like. CONSTITUTION:A cylindrical sliding bearing part 2 is protrusively provided in a housing 1, and a bearing cylinder 3 is fitted into an internal peripheral part of the sliding bearing part 2. A stator 6 is constituted of an iron core 4 on which an armature coil 5 is wound. A part between a rotary shaft 7, in which a groove 7a is formed, and a rotary shaft 3 is filled with ER(Electro Rheological) fluid 13 serving as electric viscous fluid. A control part 20 is connected to an armature 15 by a lead wire 21 and connected to the rotary shaft 7 through conductive magnetic fluid from the lead wire 21. The housing is connected to the control part 20 by a lead wire 22 and grounded. Thus by placing the ER fluid 13 in an electric field, viscosity is changed in accordance with voltage. Any surplus load is eliminated by requlating the voltage by the control part so as to set the viscosity in an optimum value in accordance with a rotational speed.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、すべり軸受部を有した軸受装置に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a bearing device having a sliding bearing portion.

(従来の技術) 例えばレーザビームプリンタ等におけるポリゴンミラー
駆動用モータには、回転軸に動圧発生用の溝が設けられ
たすべり軸受が用いられており、軸受部と回転軸との間
は、オイル潤滑により円滑な回転状態が得られるように
なっている。即ち、周知のように、回転軸は、その回転
により軸受部との間に動圧が発生し、その圧力によりオ
イルが軸受部との間に潤滑剤として作用し、軸受部と接
触することなく円滑な回転状態が保持されるものである
(Prior Art) For example, a motor for driving a polygon mirror in a laser beam printer or the like uses a sliding bearing in which a rotating shaft is provided with a groove for generating dynamic pressure. Oil lubrication ensures smooth rotation. In other words, as is well known, dynamic pressure is generated between the rotating shaft and the bearing due to its rotation, and this pressure causes oil to act as a lubricant between the shaft and the bearing, allowing the shaft to rotate without coming into contact with the bearing. A smooth rotational state is maintained.

(発明が解決しようとする課題) ところで、このようなモータにおいては、例えば印字ス
ピードや解像度等の変更のためポリゴンミラーの回転速
度即ち回転軸の回転速度を変える場合がある。しかしな
がら、このような場合に、上述のような従来構成のモー
タにおいては、回転速度を所定の値よりも大きな値に設
定するときには潤滑剤としてのオイルの粘度がその回転
速度に対して大き過ぎることになり、回転軸の余分な負
荷となって効率を低下させまた発熱を増加させてしまう
不具合があった。一方、回転速度を所定の値よりも小さ
く設定する場合には、上述とは逆に潤滑剤としてのオイ
ルの粘度がその回転速度における必要な値よりも小さな
値となってしまうため、すべり軸受部が十分に機能しな
くなり、回転軸の回転精度が低下してしまう不具合があ
った。
(Problems to be Solved by the Invention) In such a motor, the rotation speed of the polygon mirror, that is, the rotation speed of the rotation shaft, may be changed in order to change the printing speed, resolution, etc., for example. However, in such a case, in a motor with the conventional configuration as described above, when the rotational speed is set to a value larger than a predetermined value, the viscosity of the oil as a lubricant is too large for the rotational speed. This creates an extra load on the rotating shaft, lowering efficiency and increasing heat generation. On the other hand, when the rotational speed is set lower than a predetermined value, the viscosity of the oil as a lubricant becomes smaller than the value required at that rotational speed, contrary to the above, and the sliding bearing There was a problem in which the rotational accuracy of the rotating shaft deteriorated due to the inability to function properly.

つまり、通常、潤滑剤としてのオイルの粘度を回転軸の
所定の回転速度に適応させるようにしているため、回転
軸の回転速度を変更するとオイルの粘度は最適値から外
れてしまい、余分な負荷として作用したり、回転精度の
低下を招くのである。
In other words, the viscosity of oil used as a lubricant is usually adapted to the specified rotational speed of the rotating shaft, so if the rotational speed of the rotating shaft is changed, the viscosity of the oil will deviate from its optimum value, causing an excess load. This may cause the rotational accuracy to deteriorate.

本発明は、上記事情に鑑みてなされたものであり、その
目的は、回転速度を変えた場合でも、回転軸をその回転
数に応じて効率良く且つ安定した回転状態に保持するこ
とができる軸受装置を提供するにある。
The present invention has been made in view of the above circumstances, and its object is to provide a bearing that can efficiently and stably maintain a rotating shaft in accordance with the rotational speed even when the rotational speed is changed. We are here to provide you with the equipment.

[発明の構成] (課題を解決するための手段) 本発明は、回転軸を保持するためのすべり軸受部を有し
た軸受装置を対象とし、前記回転軸とすべり軸受部との
間に充填された電気粘性流体、及びこの電気粘性流体に
可変電圧を印加するための電圧印加手段を設けて構成し
たところに特徴を有する。
[Structure of the Invention] (Means for Solving the Problems) The present invention is directed to a bearing device having a sliding bearing portion for holding a rotating shaft. The present invention is characterized in that it is constructed by providing an electrorheological fluid and a voltage applying means for applying a variable voltage to the electrorheological fluid.

(作用) 本発明の軸受装置によれば、回転軸の回転速度が所定の
値よりも小さく設定されているときには、電圧印加手段
により電圧を印加して電気粘性流体を大きな電場中に置
くことによりその粘度を上昇させ、もってすべり軸受部
による回転軸の回転精度を良好に保持させる。また、回
転軸の回転速度が所定の値よりも大きく設定されている
ときには、電圧印加手段により上記電圧よりも低い電圧
を印加した状態にして電気粘性流体を小さな電場ψに置
くことによりその粘度を低下させ、もってすべり軸受部
が回転軸に対する余分な負荷となることを防止して効率
の低下を防止すると共に、すべり軸受部における発熱を
抑制する。
(Function) According to the bearing device of the present invention, when the rotational speed of the rotating shaft is set lower than a predetermined value, the electrorheological fluid is placed in a large electric field by applying a voltage using the voltage applying means. By increasing its viscosity, the rotation accuracy of the rotating shaft by the sliding bearing portion can be maintained well. In addition, when the rotational speed of the rotating shaft is set higher than a predetermined value, the viscosity of the electrorheological fluid can be reduced by applying a voltage lower than the above voltage using the voltage applying means and placing the electrorheological fluid in a small electric field ψ. This prevents the sliding bearing portion from being an extra load on the rotating shaft, thereby preventing a decrease in efficiency, and suppressing heat generation in the sliding bearing portion.

この場合、電気粘性流体とは、一般にER(P、1ec
Lro Rheological )流体と呼ばれてい
るもので、電場内に置かれるとその電場の大きさに応じ
て粘度が高くなり、その反応は可逆的且つ短時間(数m
秒)でおこる性質を有しているものである。従って、回
転軸の回転速度に応じて印加電圧を変化させれば迅速に
電気粘性流体の粘度を変更できるので、制御性に優れる
ものである。
In this case, the electrorheological fluid generally refers to ER(P, 1ec
When placed in an electric field, its viscosity increases depending on the magnitude of the electric field, and the reaction is reversible and short-lived (several meters).
It has the property of occurring in seconds). Therefore, by changing the applied voltage according to the rotational speed of the rotating shaft, the viscosity of the electrorheological fluid can be quickly changed, resulting in excellent controllability.

(実施例) 以下、本発明をレーザビームプリンタ等に用いられるポ
リゴンミラー駆動用モータの軸受に適用した場合の第1
の実施例について第1図乃至第3図を参照しながら説明
する。
(Example) The following is a first example of the case where the present invention is applied to a bearing of a polygon mirror drive motor used in a laser beam printer, etc.
An embodiment will be described with reference to FIGS. 1 to 3.

まず、モータの全体構成を断面で示す第1図において、
ステータハウジング1は、アルミニウム等の金属により
有底円筒状に形成されたもので、中央部に円筒状のすべ
り軸受部2が突設され、そのすべり軸受部2の内周部に
軸受筒3が嵌着されている。また、ステータハウジング
1の内周壁面には電機子鉄心4が所定の位置に固定され
、その電機子鉄心4には電機子コイル5が巻回されてお
り、もってステータ6が構成されている。上記軸受筒3
にはステンレス等の導電性金属からなる回転軸7が押通
されており、この回転軸7には外周部に動圧発生用のへ
リングボーン溝7aが形成され、端部7bには図示はし
ないが同じく動圧発生用のスパイラル溝が形成されてい
る。また回転軸7にはロータハウジング8及びポリゴン
ミラー9が絶縁スリーブ10を介して固定されている。
First, in Figure 1, which shows the overall configuration of the motor in cross section,
The stator housing 1 is formed of a metal such as aluminum into a cylindrical shape with a bottom, and has a cylindrical sliding bearing part 2 protruding from the center, and a bearing sleeve 3 on the inner circumference of the sliding bearing part 2. It is fitted. Further, an armature core 4 is fixed at a predetermined position on the inner peripheral wall surface of the stator housing 1, and an armature coil 5 is wound around the armature core 4, thereby forming a stator 6. Above bearing tube 3
A rotating shaft 7 made of a conductive metal such as stainless steel is pushed through the rotating shaft 7, and a herringbone groove 7a for generating dynamic pressure is formed on the outer circumference of the rotating shaft 7. Although not included, spiral grooves for generating dynamic pressure are also formed. Further, a rotor housing 8 and a polygon mirror 9 are fixed to the rotating shaft 7 via an insulating sleeve 10.

ロータハウジング8は、円筒状をなし、すべり軸受部2
を覆うようにして配置されているもので、その外周面に
は電機子鉄心4と所定間隔を存した状態でロータマグネ
ット11が取り付けられている。
The rotor housing 8 has a cylindrical shape, and the sliding bearing portion 2
A rotor magnet 11 is attached to the outer peripheral surface of the armature core 4 at a predetermined distance from the armature core 4.

この場合、ロータマグネット11は例えばマンガン・ア
ルミニウム・炭素(Mn−AI−C)系の材料から構成
されるものである。そして、以上によりロータ12が構
成されている。
In this case, the rotor magnet 11 is made of, for example, a manganese-aluminum-carbon (Mn-AI-C) material. The rotor 12 is constructed as described above.

さて、上記した回転軸7と軸受筒3との間には、後述す
る特性を有した電気粘性流体たるER(Elcctro
 Rheological )流体13が充填されてい
る。
Now, between the rotating shaft 7 and the bearing sleeve 3 described above, an electrorheological fluid, ER (Elcctro
Rheological) fluid 13 is filled.

すべり軸受部2の端部2aには絶縁スペーサ14を介し
て非接触導電端子15が設けられている。
A non-contact conductive terminal 15 is provided at the end 2a of the sliding bearing 2 with an insulating spacer 14 interposed therebetween.

この非接触導電端子15は、第2図に拡大して示すよう
に、磁性金属材料からなる電極板16.マグネット17
.磁極板18及び導電性磁性流体1つから構成され、回
転軸7を介して磁気回路Rを形成しており、マグネット
17によりこの磁気回路Rに発生する磁束で導電性磁性
流体19を保持させるようになっている。そして、この
非接触導電端子15には制御部20からステータハウジ
ング1の背面を通して配設されたリード線21に接続さ
れており、そのリード線21から電極板16及び導電性
磁性流体19を介して回転軸7に導通するようになって
いる。尚、この場合、導電性磁性流体19を介して導通
させていることから、回転軸7と非接触導電端子15と
の間には摩擦等の損失発生はない。一方、ステータハウ
ジング1はリード線22により制御部20に接続された
状態でアースされている。これにより、制御部20は、
リード線21及び22の間に電圧を印加することにより
、回転軸7とすべり軸受部2との間に電圧が印加され、
もってER流体13が電場中に置かれることになるので
ある。制御部20は、モータの回転駆動をするために設
けられた電気的構成部分であり、上記した機能に加えて
、所定の電機子電流を与えると共にステータハウジング
1の底面部に設けられた位置検出器23によりロータ1
2の位置を検出する等の制御を行なうようになっている
As shown in an enlarged view in FIG. 2, this non-contact conductive terminal 15 includes an electrode plate 16 made of a magnetic metal material. magnet 17
.. It is composed of a magnetic pole plate 18 and one conductive magnetic fluid, and forms a magnetic circuit R via the rotating shaft 7, and the conductive magnetic fluid 19 is held by the magnetic flux generated in this magnetic circuit R by the magnet 17. It has become. The non-contact conductive terminal 15 is connected from the control unit 20 to a lead wire 21 disposed through the back surface of the stator housing 1, and from the lead wire 21 through the electrode plate 16 and the conductive magnetic fluid 19. It is designed to be electrically connected to the rotating shaft 7. In this case, since conduction is established via the conductive magnetic fluid 19, no loss such as friction occurs between the rotating shaft 7 and the non-contact conductive terminal 15. On the other hand, the stator housing 1 is connected to the control section 20 by a lead wire 22 and is grounded. As a result, the control unit 20
By applying a voltage between the lead wires 21 and 22, a voltage is applied between the rotating shaft 7 and the sliding bearing part 2,
As a result, the ER fluid 13 is placed in an electric field. The control unit 20 is an electrical component provided to rotationally drive the motor, and in addition to the above-mentioned functions, the control unit 20 provides a predetermined armature current and a position detection unit provided on the bottom of the stator housing 1. The rotor 1 is
Controls such as detecting the position of 2 are performed.

次に、本実施例の作用を説明するに、まず、ER流体の
特性について第3図を参照しながら説明する。
Next, in order to explain the operation of this embodiment, first, the characteristics of the ER fluid will be explained with reference to FIG.

即ち、ER流体は、第3図に模式的に示すように、溶媒
(分散媒)中に直径1〜100μmの微粒子(分散質)
Nが存在したものである。いま、電極板A、B間に電圧
が印加されていない状態(同図(a)〉では、電気的に
中性であることにより一般的な流体と同様の振舞いをす
る。そして、同図(b)に示すように、電極A、B間に
直流電圧を印加した状態では、溶媒中の微粒子Nの電荷
が各電極A及びBに引かれて分極状態となり、各微粒子
N同志が引き合って鎖状に繋がった状態になる。これに
より、電極AとBとの間には剪断応力に対してこれを阻
むように力が働き、実質的に電極間の粘度が上昇したこ
とになるのである。また、このような変化は電圧印加時
点から数m秒の隠でおこるので、略同時に起こっている
と見なせる。さらに、このような粘度の変化の度合いは
印加する電圧の大きさに略比例することが分かつており
、従って、印加電圧の大きさを制御することにより所望
の粘度を設定することができるものである。
That is, as schematically shown in FIG. 3, the ER fluid contains fine particles (dispersoids) with a diameter of 1 to 100 μm in a solvent (dispersion medium).
N existed. Now, in the state where no voltage is applied between electrode plates A and B (see figure (a)), the fluid behaves like a general fluid because it is electrically neutral. As shown in b), when a DC voltage is applied between electrodes A and B, the charge of fine particles N in the solvent is attracted to each electrode A and B, resulting in a polarized state, and each fine particle N is attracted to each other and becomes a chain. As a result, a force acts between electrodes A and B to counteract shear stress, and the viscosity between the electrodes essentially increases. Since such changes occur several milliseconds after the voltage is applied, they can be considered to occur almost simultaneously.Furthermore, the degree of such changes in viscosity is approximately proportional to the magnitude of the applied voltage. Therefore, a desired viscosity can be set by controlling the magnitude of the applied voltage.

さて、本実施例のモータにおいては、制御部20の制御
により、周知の制御方法により回転軸7が回転駆動され
る。このとき、回転軸7の回転速度が低速側に設定され
ている場合には、回転軸7の回転により発生する動圧の
大きさが小さいので、リード線21.22間に電圧v1
を印加する。これにより、ER流体13が電場中に置か
れることになってER流体13の粘度が高くなるので、
回転軸7は軸受筒3とER流体13とにより安定した回
転状態に保持される。一方、回転速度が高速側に設定さ
れている場合には、回転軸7の回転により発生する動圧
は大きく、ER流体13の粘度は低くても十分安定に回
転状態に保持できる。逆に、粘度が高い場合には回転軸
7の回転力を低下させる負荷となり、回転の効率を低下
させることになる。従って、この場合には、ER流体1
3に印加する電圧をVlよりも低い電圧V2 (V2く
V+)として、粘度を低下させるのである。これにより
、回転軸7は回転の効率を低下させることなく保持され
る。
Now, in the motor of this embodiment, the rotating shaft 7 is driven to rotate under the control of the control section 20 using a well-known control method. At this time, if the rotational speed of the rotating shaft 7 is set to the low speed side, the magnitude of the dynamic pressure generated by the rotation of the rotating shaft 7 is small, so the voltage v1 between the lead wires 21 and 22 is
Apply. As a result, the ER fluid 13 is placed in an electric field, and the viscosity of the ER fluid 13 increases.
The rotating shaft 7 is maintained in a stable rotating state by the bearing sleeve 3 and the ER fluid 13. On the other hand, when the rotational speed is set on the high speed side, the dynamic pressure generated by the rotation of the rotating shaft 7 is large, and even if the viscosity of the ER fluid 13 is low, the rotating state can be maintained in a sufficiently stable manner. On the other hand, if the viscosity is high, it becomes a load that reduces the rotational force of the rotating shaft 7, reducing the efficiency of rotation. Therefore, in this case, ER fluid 1
The viscosity is lowered by setting the voltage applied to V2 to V2 (V2 - V+), which is lower than Vl. Thereby, the rotating shaft 7 is held without reducing the efficiency of rotation.

このような本実施例によれば、ER流体13の粘度を制
御部20からの印加電圧を変更することにより可変とな
るので、回転軸7の回転速度に応じてその都度最適な粘
度に設定でき、回転軸7が安定な回転状態に保持できる
と共に、回転軸7に対する余分な負荷として作用するこ
とがなくその効率を低下させることがなくなる。
According to this embodiment, the viscosity of the ER fluid 13 is made variable by changing the applied voltage from the control unit 20, so the viscosity can be set to the optimum viscosity each time according to the rotational speed of the rotating shaft 7. In addition, the rotating shaft 7 can be maintained in a stable rotating state, and there is no need to act as an extra load on the rotating shaft 7, thereby preventing a reduction in its efficiency.

第4図は本発明の第2の実施例を示すもので、第1の実
施例と穴なるところは、すべり軸受部2をステータハウ
ジング1に絶縁部材24を介して固定している点と、ロ
ータ12の絶縁スリーブ10をなくシ、ロータハウジン
グ8及びポリゴンミラー9を回転軸7に直接固定でいる
点で、電気的には、リード線21をアースし、制御部2
0によりリード線22に電圧を印加するようにしたとこ
ろである。
FIG. 4 shows a second embodiment of the present invention, which differs from the first embodiment in that the sliding bearing portion 2 is fixed to the stator housing 1 via an insulating member 24, and Since the insulating sleeve 10 of the rotor 12 is eliminated and the rotor housing 8 and polygon mirror 9 are directly fixed to the rotating shaft 7, electrically, the lead wire 21 is grounded and the control unit 2
0, a voltage is applied to the lead wire 22.

このような構成によれば、第1の実施例に対し、印加さ
れる電圧の極性が逆となることを除いて同様の作用効果
を得ることができる。
With this configuration, the same effects as in the first embodiment can be obtained except that the polarity of the applied voltage is reversed.

尚、上記各実施例においては、電気粘性流体としてER
流体13を用いた場合について述べたが、これに限らず
、溶媒中に界面活性剤が添加されたER流体を用いても
良い。
In each of the above embodiments, ER is used as the electrorheological fluid.
Although the case where the fluid 13 is used has been described, the present invention is not limited to this, and an ER fluid in which a surfactant is added to a solvent may be used.

また、上記各実施例においては、ER流体13に印加す
る電圧を2段階として説明したが、これに限らず、電圧
を印加しない場合も含めて回転軸の回転速度に応じてさ
らに複数段階の電圧を印加するようにしても良いし、或
は印加電圧と粘度との関係から最適な粘度設定のために
連続的に与えるようにしても良い。
Further, in each of the above embodiments, the voltage applied to the ER fluid 13 has been explained as being in two stages, but the voltage is not limited to this, and the voltage can be applied in multiple stages according to the rotational speed of the rotating shaft, including the case where no voltage is applied. Alternatively, it may be applied continuously in order to set the optimum viscosity based on the relationship between the applied voltage and the viscosity.

さらに、上記各実施例においては、回転軸7に動圧発生
用のへリングボーン満7a、スパイラル7J7bを設け
た構成としたが、これに限らず、軸受筒3側に設ける構
成のものでも良いし、或は動圧発生用の溝を設けない構
成のすべり軸受に適用しても良い。
Further, in each of the above embodiments, the rotary shaft 7 is provided with a herringbone 7a and a spiral 7J7b for generating dynamic pressure, but the structure is not limited to this and may be provided on the bearing sleeve 3 side. Alternatively, the present invention may be applied to a sliding bearing having no groove for generating dynamic pressure.

そして、上記各実施例は、本発明をポリゴンミラー駆動
用モータに適用した場合について述べたが、これに限ら
ず、例えばVTRのシリンダ駆動用モータ等のすべり軸
受部を有する軸受装置全般に適用できるものである。
In each of the above embodiments, the present invention is applied to a motor for driving a polygon mirror, but the present invention is not limited to this, but can be applied to general bearing devices having a sliding bearing, such as a motor for driving a cylinder of a VTR. It is something.

[発明の効果] 以上説明したように、本発明の軸受装置によれば、回転
軸とすべり軸受部との間に電気粘性流体を充填し、この
電気粘性流体に電圧印加手段により可変電圧を印加する
構成としたので、回転軸の回転速度に応じて電気粘性流
体の粘度を最適な値に設定することができ、回転軸の回
転状態を精度よく安定に保持できると共に、高速回転に
おいても余分な負荷となることなく効率良く回転状態を
保持できるという優れた効果を奏する。
[Effects of the Invention] As explained above, according to the bearing device of the present invention, an electrorheological fluid is filled between the rotating shaft and the sliding bearing portion, and a variable voltage is applied to the electrorheological fluid by the voltage applying means. With this configuration, the viscosity of the electrorheological fluid can be set to an optimal value according to the rotational speed of the rotating shaft, and the rotational state of the rotating shaft can be maintained accurately and stably. It has the excellent effect of being able to efficiently maintain a rotating state without becoming a load.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は本発明の第1の実施例を示し、第1
図は全体構成の縦断側面図、第2図は非接触導電端子の
部分拡大図、第3図(a)乃至(c)はER流体の特性
を説明するための模式図であり、第4図は本発明の第2
の実施例を示す第1図相当図である。 図面中、1はステータハウジング、2はすべり軸受部、
3は軸受筒、6はステータ、7は回転軸、12はロータ
、13はER流体(電気粘性流体)、15は非接触導電
端子、20は制御部(電圧印加手段)である。
1 to 3 show a first embodiment of the present invention.
2 is a partially enlarged view of a non-contact conductive terminal, FIGS. 3(a) to 3(c) are schematic diagrams for explaining the characteristics of the ER fluid, and FIG. 4 is a longitudinal side view of the overall configuration. is the second aspect of the present invention
FIG. 2 is a diagram corresponding to FIG. 1 showing an embodiment of the present invention. In the drawing, 1 is a stator housing, 2 is a sliding bearing part,
3 is a bearing cylinder, 6 is a stator, 7 is a rotating shaft, 12 is a rotor, 13 is an ER fluid (electrorheological fluid), 15 is a non-contact conductive terminal, and 20 is a control unit (voltage application means).

Claims (1)

【特許請求の範囲】[Claims] 1、回転軸を保持するためのすべり軸受部を有したもの
において、前記回転軸とすべり軸受部との間に充填され
た電気粘性流体と、この電気粘性流体に可変電圧を印加
するための電圧印加手段とを具備してなる軸受装置。
1. In a device having a sliding bearing for holding a rotating shaft, an electrorheological fluid filled between the rotating shaft and the sliding bearing, and a voltage for applying a variable voltage to the electrorheological fluid. A bearing device comprising applying means.
JP1339025A 1988-06-02 1989-12-27 Bearing device Pending JPH03199714A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1339025A JPH03199714A (en) 1989-12-27 1989-12-27 Bearing device
US08/140,382 US5409892A (en) 1988-06-02 1993-10-21 Method of maufacturing superconductor of ceramics superconductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1339025A JPH03199714A (en) 1989-12-27 1989-12-27 Bearing device

Publications (1)

Publication Number Publication Date
JPH03199714A true JPH03199714A (en) 1991-08-30

Family

ID=18323560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1339025A Pending JPH03199714A (en) 1988-06-02 1989-12-27 Bearing device

Country Status (1)

Country Link
JP (1) JPH03199714A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5533813A (en) * 1994-02-28 1996-07-09 Fuji Xerox Co., Ltd. Dynamic air pressure bearing
WO2011138174A1 (en) * 2010-05-04 2011-11-10 Siemens Aktiengesellschaft Device for rotatably mounting a shaft, in particular for use in a steam turbine
EP3109469A1 (en) * 2015-06-23 2016-12-28 Delphi International Operations Luxembourg S.à r.l. Bearing assembly for a fluid pump

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5533813A (en) * 1994-02-28 1996-07-09 Fuji Xerox Co., Ltd. Dynamic air pressure bearing
WO2011138174A1 (en) * 2010-05-04 2011-11-10 Siemens Aktiengesellschaft Device for rotatably mounting a shaft, in particular for use in a steam turbine
EP3109469A1 (en) * 2015-06-23 2016-12-28 Delphi International Operations Luxembourg S.à r.l. Bearing assembly for a fluid pump

Similar Documents

Publication Publication Date Title
EP0441970B1 (en) Reluctance type motor
US4538081A (en) Electric motor with hydrodynamic pressure and magnetic thrust bearings
JPH03256546A (en) Spindle motor
US6498411B2 (en) Bearing apparatus
EP0980991A1 (en) Magneto-rheological torsional vibration damper
US20070241628A1 (en) Permanent magnet dynamoelectric machine with axially displaceable permanent magnet rotor assembly
KR19990023669A (en) clutch
US6940193B2 (en) Spindle motor with an electro-conductive connection between the bearing system and the baseplate or flange
KR102112045B1 (en) High Temperature Superconducting Rotating Machine with Active Contacless Dual Excitation Device Using Radial and Axial-Flux Swithcing and it's Performance Evaluation Device
JPH03199714A (en) Bearing device
CN100466418C (en) Micro-motor and apparatus using the same motor
US5087852A (en) Direct current traveling wave motor
JP4120573B2 (en) Variable air gap type permanent magnet motor
CN111677789A (en) Electromagnetic friction and centrifugal extrusion magnetorheological soft starting device
JPH10131967A (en) Bearing and motor
KR20180117231A (en) Brake of Magneto-rheological Fluid
JPS6360247B2 (en)
KR100233010B1 (en) Bearing system using magnetic material
JPH08135697A (en) Torque control device for rotary shaft
US5751087A (en) Armature winding offset angle excited and speed controlled rectifier type electric machine
JP4110605B2 (en) motor
EP1935550A1 (en) Driving unit of a welding gun
JPH11285220A (en) Small-sized dc motor
JP3503794B2 (en) motor
JPH08121478A (en) Bearing device