JPS6098213A - Dynamic pressure fluid bearing - Google Patents

Dynamic pressure fluid bearing

Info

Publication number
JPS6098213A
JPS6098213A JP20644483A JP20644483A JPS6098213A JP S6098213 A JPS6098213 A JP S6098213A JP 20644483 A JP20644483 A JP 20644483A JP 20644483 A JP20644483 A JP 20644483A JP S6098213 A JPS6098213 A JP S6098213A
Authority
JP
Japan
Prior art keywords
bearing
ceramic
dynamic pressure
thrust
pressure fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20644483A
Other languages
Japanese (ja)
Inventor
Masaki Nakaoka
正喜 中岡
Teruo Komatsu
小松 照夫
Shinji Goto
信治 後藤
Takeshi Matsunaga
剛 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP20644483A priority Critical patent/JPS6098213A/en
Publication of JPS6098213A publication Critical patent/JPS6098213A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/043Sliding surface consisting mainly of ceramics, cermets or hard carbon, e.g. diamond like carbon [DLC]

Abstract

PURPOSE:To enable checking of a bearing for clearance, by a method wherein a ceramic, by which a part of a dynamic pressure bearing is formed, is caused to have electrical conductivity. CONSTITUTION:Ceramic, which is applied on a thrust pad 6 and a shaft end 3, is prepared such that 25% or more in a weight ratio of metallic powder such as tungsten is contained in ceramic such as alumina, and as a result, volume specific resistance is 10<7> or less, and the ceramic has electrical conductivity. Generally, other part is formed by a SUS or S material, and taking sliding properties into consideration, Cr plating = tack treatment is applied thereon. This enables a bearing to be checked by energization for both a radial and a thrust direction by means of and oscillograph, and enables earlier and more reliable checking for the presence of noxious metallic fine powder in relative to the size of a clearance and contact of burr caused by a flaw, compared with aural observation.

Description

【発明の詳細な説明】 本発明は動圧流体軸受に関するもので、特に例、tば、
レーザービームプリンターに用いられる多面鏡(ポリゴ
ン)駆動用のモーター、その他VTR用のモーター、磁
気ディスク用のモーター等の高速回転する高精度モータ
ーに使用される動圧流体軸受に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hydrodynamic bearing, and in particular, examples include:
The present invention relates to hydrodynamic bearings used in high-speed rotating high-precision motors such as polygon drive motors used in laser beam printers, VTR motors, and magnetic disk motors.

従来、この種の装置においては高速回転時のすぐれた軸
受性能及び低トルク、低回転ムラ防止等のため空気等の
気体を媒体とした動圧流体軸受が用いられている。ここ
で、まず、このような動圧流体軸受を用いたモーターの
例としてポリゴン駆動用モーターについて第1図に示す
Conventionally, in this type of device, a hydrodynamic bearing using a gas such as air as a medium has been used for excellent bearing performance during high-speed rotation, low torque, and prevention of low rotational unevenness. First, FIG. 1 shows a polygon drive motor as an example of a motor using such a hydrodynamic bearing.

第1図はその断面図である。第1図に示された駆動モー
ターは空気を媒体とした動圧軸受を用いたスリーブ回転
タイプのモーター機構で外筒1に固定された軸2にはへ
リボーン状の溝5及びスパイラル状の溝4が刻まれてお
シ、またこの軸2は半径スキマが3〜10μ程度になる
様に回転するスリーブ5でおおわれている。
FIG. 1 is a sectional view thereof. The drive motor shown in Fig. 1 is a sleeve rotation type motor mechanism using a dynamic pressure bearing using air as a medium, and a shaft 2 fixed to an outer cylinder 1 has a herribone-shaped groove 5 and a spiral groove. This shaft 2 is covered with a rotating sleeve 5 so that the radius gap is about 3 to 10 μm.

そしてこのスリーブ上端には停止時に軸端と接触するス
ラスト受け6が圧入され、そのスラスト受けの中央にけ
絞シ効果によシスラスト方向に圧力を発生させ回転部分
を所定の高さに浮上させる絞シ孔7がおいている。
A thrust receiver 6 that comes into contact with the shaft end when the sleeve is stopped is press-fitted into the upper end of the sleeve, and the center of the thrust receiver generates pressure in the systhrust direction by a choke effect to raise the rotating part to a predetermined height. There is a hole 7.

また、このスリーブ5にはポリゴン8、ローターとして
のマグネット9回転体のバランスを取るバランスリング
10が取シつけられ、マクネット9に対向して外筒には
ステータコイル11、ホール素子12、バランスリング
の白黒のパターンを読み取9PLL制御の為のタック信
号を得る反射型上ンナ13が取シつけられ、全体として
PLL制御のDOホールモーターを構成している。
Further, a balance ring 10 is attached to the sleeve 5 to balance the polygon 8 and the magnet 9 as a rotor. A reflection type upper ring 13 is installed to read the black and white pattern of the ring and obtain a tack signal for PLL control, and the whole constitutes a PLL controlled DO Hall motor.

ここで、ステータコイル11に電流が流れるとスリーブ
5が回転し空気が前記の溝によシ矢l:014の様に流
入しスパイラル溝4及びヘリボーン溝3、上部絞シ孔7
によシラシアル、スラスト方向に空気膜による圧力が発
生し軸とスリーブは接触することなしに回転し、PLL
制御で一定回転数に制御されて回転しつづけることにな
る。
Here, when current flows through the stator coil 11, the sleeve 5 rotates, and air flows into the grooves as shown in arrow 1:014.
Pressure is generated by the air film in the lateral and thrust direction, and the shaft and sleeve rotate without contacting each other, causing the PLL
It is controlled to a constant rotation speed and continues to rotate.

ここで、この様なタテ型の構成で動圧軸受として重要な
要素はスラスト受けるである。軸外周の溝とスリーブ内
面がラジアル方向の剛性を持つラジアル軸受部であるの
に対しこのスラスト受け6は絞シ孔7と、スパイラル溝
4による気体のポンピング作用によシスラスト剛性を持
つスラスト軸受部として働く。そして低速時は圧力が低
いため軸端部との間で接触回転するためこの軸受の寿命
を決定する重要な部品である。
Here, in such a vertical configuration, the important element for a dynamic pressure bearing is the thrust bearing. While the groove on the outer periphery of the shaft and the inner surface of the sleeve form a radial bearing portion that has rigidity in the radial direction, this thrust receiver 6 is a thrust bearing portion that has sys-thrust rigidity due to the gas pumping action of the throttle hole 7 and the spiral groove 4. Work as. At low speeds, the pressure is low, so the bearing rotates in contact with the shaft end, so it is an important component that determines the life of the bearing.

その為ここではその接触抵抗を少なくする様にパンスト
受けの端面は曲率の大きな球状をしておシまたその材質
も金属同志の接触でにかじシ焼付き、トルクの増加があ
る為、アルミナ、窒化ケイ素等のセラミックのムク又は
コーティングがなされておシ、゛また相手側軸又は釉端
も同様にセラミック又はセラミックコーティングがなさ
れ、耐マモウ性、耐久性の向上を計っている。その結果
スラスト負荷が5ooy程度であれば5万回程度の起動
停止によってもそのトルク変化、マモウ量は実用的に問
題ないレベルに収まって^る。
Therefore, in order to reduce the contact resistance, the end surface of the pantyhose holder is made into a spherical shape with a large curvature, and the material is also alumina, since metal-to-metal contact can cause galling and increase torque. It is coated or coated with ceramic such as silicon nitride, and the mating shaft or glazed end is also coated with ceramic or ceramic coating in order to improve its resistance and durability. As a result, if the thrust load is about 5ooy, the torque change and amount of torque will remain at a level that does not cause any practical problems even after about 50,000 starts and stops.

第2図は、軸回転型の動力流体軸受を利用したモータの
断面図で、第1図と同様DCボールモータ構成であシ、
同じ機能部には同番号を付してその説明を省略しである
。そしてこのモータの場合は軸15にマグネット9、バ
ランスリング10.ポリゴン8が固定され、また、上下
2ケ所にその外周にヘリボーン溝1<S、18が刻まれ
、その面と外筒に固定された軸受17,19円面が小さ
なスキマ(2〜5μ)を介して向い合ってお多軸が回転
することで発生する空気膜の圧力によって非接触でラジ
アル方向を支持し・スラスト方向は、上軸受19の上面
と下面にスパイラル溝が刻まれた軸に固定されたスラス
ト板20との間にを気膜が形成され、その溝にょ多発生
する圧力で支える様になっている。
Figure 2 is a cross-sectional view of a motor using a shaft-rotating power fluid bearing, which has the same DC ball motor configuration as Figure 1.
The same functional parts are given the same numbers and their explanations are omitted. In the case of this motor, the shaft 15 has a magnet 9, a balance ring 10. A polygon 8 is fixed, and herringbone grooves 1<S, 18 are carved on its outer periphery at two places, upper and lower, and a small gap (2 to 5μ) is formed between the surface and the circular surface of bearings 17 and 19 fixed to the outer cylinder. The radial direction is supported without contact by the pressure of the air film generated when the multiple shafts rotate facing each other through the shaft.The thrust direction is fixed to the shaft with spiral grooves carved on the top and bottom surfaces of the upper bearing 19. A gas film is formed between the thrust plate 20 and the groove, and is supported by the pressure generated in the groove.

この場合も、第1図と同様にモータがタテ型で用いられ
る場合、スラスト板2oの耐久性が軸受の性能寿命に大
きく影響するため、スラスト板20、上軸受19がアル
ミナ等のセラミック又はセラミックコーティングされて
いる。ま以上の説明にも示さnた通シ、動圧軸受は。
In this case as well, when the motor is used vertically as in Figure 1, the durability of the thrust plate 2o greatly affects the performance life of the bearing, so the thrust plate 20 and the upper bearing 19 are Coated. The through-hole and dynamic pressure bearings shown in the above explanation are as follows.

定常時、固定側と回転側の間に微少なスキマ(2〜10
μ程度)を保持しながら非接触で回転することに特徴が
あシ、その棚受性能(回転精度、ムラ、トルク等)もそ
れに由来している。
During normal operation, there is a slight gap (2 to 10 mm) between the fixed side and the rotating side.
It is characterized by its non-contact rotation while maintaining a rotational speed of about μ), and its shelf support performance (rotation accuracy, unevenness, torque, etc.) also derives from this.

このスキマの保証は軸受の焼付きという軸受にとっては
致命的なトラブルを防止する上で非常に重要である。そ
の為組立に際してもそのスキマ(て微粉が入らない様に
、また軸受面にキズ等がない様に、またつかない様に細
心の注意がはられれておシ、またモータ自身シーリング
等の考N1クエーンエアーを密封するンよど一度組立て
られれば問題を起こさない様に構成、組立てられる。し
かし、この組立直後の状態を確認する有効な手段がない
ため、従来はスラスト方向に回転部分を少し浮かせ(1
ソリえば第1図のモータでは、スリーブ5を少し浮かせ
て、スラスト受け6の絞)孔7を閉じる)で手で回して
接触音を耳で確認する方法とか、或はモータとして組上
げた後従々に回転数を上げていき異音の発生、振動を観
察するという方法がとられていたが、ともに作業者のカ
ンに左右され、作業性が悪く殖産などにはとても向かな
論ものであった。
Ensuring this clearance is extremely important to prevent bearing seizure, which is a fatal problem for bearings. Therefore, during assembly, great care must be taken to ensure that fine powder does not enter the gap, and that there are no scratches on the bearing surface. The structure and assembly are such that once the Quen Air is sealed, no problems will occur once it is assembled.However, there is no effective way to check the condition immediately after assembly, so conventionally the rotating part was raised slightly in the thrust direction (1
If it warps, in the motor shown in Figure 1, you can raise the sleeve 5 a little, close the throttle hole 7 of the thrust receiver 6, and turn it by hand to hear the contact sound, or you can check the contact sound by ear. The method used was to increase the rotation speed and observe the occurrence of abnormal noises and vibrations, but both methods were dependent on the operator's intuition, and the workability was poor, making them extremely unsuitable for breeding. Ta.

そこで、本発明は以上の諸欠点に@みて改良された新規
な動圧流体軸受を提供することを目的とするものである
Therefore, an object of the present invention is to provide a new hydrodynamic bearing that is improved in view of the above-mentioned drawbacks.

本発明の別の目的は動圧軸受部のセラミックに導電性を
持たせて、軸受部の固定側と回転側の導通性のチェック
を行なうことができるようにした動圧流体軸受−を提供
することである。
Another object of the present invention is to provide a hydrodynamic bearing in which the ceramic of the hydrodynamic bearing part is made electrically conductive so that continuity between the stationary side and the rotating side of the bearing part can be checked. That's true.

即ち、上記目的を達成できる本発明の主要な構成は相対
運動をする面の間に介在する流体に回転によシ圧力を発
生させて回転部材を支承する軸受の一部又は全部にセラ
ミックを用いた動圧流体軸受で、該セラミックに導電性
を持たせたことを特徴とした動圧流体軸受である。
That is, the main structure of the present invention that can achieve the above object is that ceramic is used for part or all of the bearing that supports the rotating member by generating pressure due to rotation in the fluid interposed between the surfaces that move relative to each other. This is a dynamic pressure fluid bearing characterized by making the ceramic conductive.

以下、本発明の具体的実施例について図に従って詳細に
説明する。nσ述の第1図及び第2図において、スラス
ト受け6、スラスト板20、軸端6、軸受19等に用い
られるセラミックはアルミナ等のセラミック内にタング
ステン等の金属粉を重量比で25係以上含ませてあ)、
この結果、体積固有抵抗は107以下となシ、導電性を
持ち、また一般にその他の部分は5UI3fiはS材で
作られておシ、また摺動性を考えて、Orメツキーダツ
クス処理等がほどこされている為ラジアル方間、スラス
ト方向の両方に対してオシロによる導通チェックが可能
となりスキマの大きさに対し有:gな金属性の微粉存在
、キズによるカエリの接触等が耳で観察するのに比べ早
く、確人に行なえる様になる。また、定常回転時の固定
1)IQと回転側が接触する様な有否な振動(ホワール
、エアー)\ンマー4)の確認も可能になる。また、浮
上シの確認は、特に1訂1図の様な回転スリーブタイプ
の場合に1ま釉とスIJ−プ内面の関係がうまくいって
いない場合は当然ある所定の回転数での浮上シがないた
め軸受全体の総合性能のチェックにもなシ、また所定回
転数での浮上シは起動停止の回数を保柾することにつな
がる。
Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings. In Figures 1 and 2 described in nσ, the ceramic used for the thrust receiver 6, thrust plate 20, shaft end 6, bearing 19, etc. is a ceramic such as alumina containing metal powder such as tungsten at a weight ratio of 25 or more. Please include)
As a result, the volume resistivity is 107 or less, and it has electrical conductivity.In general, other parts of 5UI3fi are made of S material, and in consideration of sliding properties, they are treated with Ormetsukidax treatment, etc. Because of this, it is possible to check continuity using an oscilloscope in both the radial direction and the thrust direction. You will be able to do it faster and more confidently. Also, it becomes possible to check the presence or absence of vibrations (whirl, air) and vibrations (whirl, air) \marker 4) where the fixed 1) IQ and rotating side come into contact during steady rotation. In addition, it is necessary to check the floating shield, especially in the case of a rotating sleeve type as shown in Figure 1 of the 1st edition, if the relationship between the glaze and the inner surface of the IJ-spring is not good, it is natural that the floating shield will be checked at a certain rotation speed. Since there is no bearing, it is not possible to check the overall performance of the entire bearing, and floating at a predetermined rotation speed leads to limiting the number of starts and stops.

ただ、一般にセラミックに金属粉等を混入させるとその
耐マモク性は少し低下するが実用Vベル(数万回の起動
停止)を考えれば十分である。そしてまた、不発明の主
旨からいえばセラミック部分に導電性を持たせることに
あ)、それ自体で導電性を持つ様なセラミック材料、辺
]えばチタニア系、7オルステテタン系の材料を用いて
焼結すれば表面にチタン層が出来る為2藻電性を持たせ
ることが出来る。
However, in general, when metal powder or the like is mixed into ceramic, its anti-magnetic resistance decreases a little, but it is sufficient for practical V-bells (starting and stopping tens of thousands of times). Furthermore, from the point of non-invention, it is necessary to make the ceramic part conductive, and it is also possible to make the ceramic part conductive by firing it using a ceramic material that itself has conductivity, such as titania-based or 7-orstethetan-based material. When it is bonded, a titanium layer is formed on the surface, which makes it possible to give it dielectric properties.

また、モータ構成も第1図及び第2図に限られるわけで
はなく溝を持″)動圧軸受ではなく、テイルテイ/グパ
ツド、フォイルタイプの動圧軸受でも、また磁気軸受と
の7%(ブリット°タイプの構成であっても、その動圧
軸受部に用いられているセラミック部を4電性にし、非
接触の確認が出来る。
In addition, the motor configuration is not limited to those shown in Figures 1 and 2, but instead of a hydrodynamic bearing with grooves, a tail-tay/gupade or foil-type hydrodynamic bearing may be used, or a 7% (grooved) hydrodynamic bearing with a magnetic bearing may be used. Even with a ° type configuration, the ceramic part used in the dynamic pressure bearing part is made quadrielectric, allowing for non-contact confirmation.

以上説明した様に本発明の構成によれば軸受のスキマを
導通性をチェックすることによシ容
As explained above, according to the configuration of the present invention, the gap in the bearing can be removed by checking the conductivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の実施伊1を示した断面図で
ある。 図において3は軸端、6はスラスト受をす、19は軸受
、20はスラスト板である。
FIGS. 1 and 2 are cross-sectional views showing a first embodiment of the present invention. In the figure, 3 is a shaft end, 6 is a thrust bearing, 19 is a bearing, and 20 is a thrust plate.

Claims (1)

【特許請求の範囲】 (1)相対運動をする面の間に介在する流体に回転によ
ル圧力を発生させて回転部材を支承する軸受の一部又は
全部にセラミックを用いた動圧流体軸受におAて、該セ
ラミックに導電性を持たせたことを特徴とした動圧流体
軸受。 (2)該化2ミックが重量比25チ以上の金属粉を含む
アルミナ(AJ203)である特許請求の範囲第1項記
載の動圧流体軸受。 (6)該セラミックが材質自体に導電性があるチタンア
系又は7オルステチタン系のセラミックである特許請求
の範囲第1項記載の動圧流体軸受。
[Claims] (1) A dynamic pressure fluid bearing that uses ceramic for part or all of the bearing that supports a rotating member by generating pressure due to rotation in a fluid interposed between surfaces that move relative to each other. In A, there is provided a hydrodynamic bearing characterized in that the ceramic has electrical conductivity. (2) The dynamic pressure fluid bearing according to claim 1, wherein the chemical compound is alumina (AJ203) containing metal powder with a weight ratio of 25 inches or more. (6) The dynamic pressure fluid bearing according to claim 1, wherein the ceramic is a titanium-a-based or 7-orstetitanium-based ceramic whose material itself is electrically conductive.
JP20644483A 1983-11-02 1983-11-02 Dynamic pressure fluid bearing Pending JPS6098213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20644483A JPS6098213A (en) 1983-11-02 1983-11-02 Dynamic pressure fluid bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20644483A JPS6098213A (en) 1983-11-02 1983-11-02 Dynamic pressure fluid bearing

Publications (1)

Publication Number Publication Date
JPS6098213A true JPS6098213A (en) 1985-06-01

Family

ID=16523473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20644483A Pending JPS6098213A (en) 1983-11-02 1983-11-02 Dynamic pressure fluid bearing

Country Status (1)

Country Link
JP (1) JPS6098213A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61236917A (en) * 1985-04-10 1986-10-22 Ebara Corp Bearing apparatus
JPH01288611A (en) * 1988-05-13 1989-11-20 Matsushita Electric Ind Co Ltd Dynamic pressure-type gas bearing device
EP0392500A2 (en) * 1989-04-12 1990-10-17 Ebara Corporation Spindle motor
JPH05187436A (en) * 1992-07-30 1993-07-27 Ebara Corp Gas dynamic pressure bearing
GB2369511B (en) * 2000-11-17 2003-09-03 Samsung Kwangju Electronics Co Mobile robot
KR20040041456A (en) * 2002-11-11 2004-05-17 삼성전기주식회사 Air dynamic bearing, spinddle motor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61236917A (en) * 1985-04-10 1986-10-22 Ebara Corp Bearing apparatus
JPH01288611A (en) * 1988-05-13 1989-11-20 Matsushita Electric Ind Co Ltd Dynamic pressure-type gas bearing device
EP0392500A2 (en) * 1989-04-12 1990-10-17 Ebara Corporation Spindle motor
JPH05187436A (en) * 1992-07-30 1993-07-27 Ebara Corp Gas dynamic pressure bearing
GB2369511B (en) * 2000-11-17 2003-09-03 Samsung Kwangju Electronics Co Mobile robot
KR20040041456A (en) * 2002-11-11 2004-05-17 삼성전기주식회사 Air dynamic bearing, spinddle motor

Similar Documents

Publication Publication Date Title
US4652149A (en) Dynamic pressure fluid bearing
EP0410293B1 (en) Spindle motor
US5142173A (en) Bearing structure
US5289067A (en) Bearing device
US6664687B2 (en) Motor having single cone fluid dynamic bearing balanced with shaft end magnetic attraction
JP5636181B2 (en) Disk drive
JP4639833B2 (en) Spindle motor and recording disk drive apparatus provided with the spindle motor
JP3894648B2 (en) Hydrodynamic bearing device
US5210665A (en) Floppy disk apparatus having an improved disk rotating mechanism
US7008109B2 (en) Dynamic pressure bearing device
US20030174917A1 (en) Dynamic pressure fluid bearing device
JPS6098213A (en) Dynamic pressure fluid bearing
JPS60241518A (en) Dynamic pressure spindle unit
JP3983435B2 (en) Hydrodynamic bearing unit
JPH11280755A (en) Fluid bearing device and spindle motor using the same
JP3984449B2 (en) Fluid dynamic bearing, spindle motor using the same, and disk drive using the spindle motor
JP3782918B2 (en) Hydrodynamic bearing unit
JP2007116796A (en) Motor
EP0597479A2 (en) Magnetic disk drive spindle motor
JP2003028149A (en) Spindle motor
JPH1031188A (en) Polygon scanner
JPH0737233A (en) Rotary drum device
JPS6343021A (en) Fluid bearing cylinder device
JP2004028266A (en) Dynamic-pressure bearing, spindle motor equipped therewith, and disk drive using spindle motor
JPH03128649A (en) Spindle motor