JPH117960A - Electrode for alkaline secondary battery and manufacture thereof - Google Patents

Electrode for alkaline secondary battery and manufacture thereof

Info

Publication number
JPH117960A
JPH117960A JP9157132A JP15713297A JPH117960A JP H117960 A JPH117960 A JP H117960A JP 9157132 A JP9157132 A JP 9157132A JP 15713297 A JP15713297 A JP 15713297A JP H117960 A JPH117960 A JP H117960A
Authority
JP
Japan
Prior art keywords
powder
electrode
nickel alloy
active material
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9157132A
Other languages
Japanese (ja)
Other versions
JP4025863B2 (en
Inventor
Hiroshi Yoshinaga
弘 吉永
Yoshiro Niimi
義朗 新見
Tetsuo Sakai
哲男 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Fukuda Metal Foil and Powder Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP15713297A priority Critical patent/JP4025863B2/en
Publication of JPH117960A publication Critical patent/JPH117960A/en
Application granted granted Critical
Publication of JP4025863B2 publication Critical patent/JP4025863B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an electrode, which achieves the maximum discharge capacity with the small number of cycle and which has a large maximum charge capacity, at a low cost by mixing a specified quantity of scale-like nickel alloy powder in the powder, which includes the battery active material, and fixing this mixture powder to a collector, and pressing it for molding. SOLUTION: As a powder for electrode, the mixture powder, which includes the scale-like nickel alloy powder at 5-30 pts.wt. to the powder, which includes the electrode active material, at 100 pts.wt. is used. The scale-like nickel alloy powder, which has the mean granular diameter at about 5-20 μm and the mean thickness at 0.9 μm or less in usual, is desirably used. The scaly nickel alloy powder, which has a peculiar shape having a large aspect ratio, is arranged with a large orientation. Namely, in the case of press molding the scale-like nickel alloy powder, the scale-like nickel alloy powder is arranged vertically relative to the pressing direction and in layer. As a nickel alloy, binary alloy such as Ni-Co group, Ni-Cu group, Ni-Al group and Ni-B group and ternary alloy such as a Ni-Cu-P group is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ電池(N
i−Cd蓄電池、Ni−Zn蓄電池、Ni−金属水素化
物蓄電池等)の正極、負極或いは集電体に用いられる電
極及びその製造方法に関する。
TECHNICAL FIELD The present invention relates to an alkaline battery (N
The present invention relates to an electrode used for a positive electrode, a negative electrode, or a current collector of an i-Cd storage battery, a Ni-Zn storage battery, a Ni-metal hydride storage battery, and a method of manufacturing the same.

【0002】[0002]

【従来技術】最近、携帯機器であるノート型パソコン、
携帯電話、PHS、VTRカメラ等の大々的な普及に伴
い、これらの機器に使われる電源として高性能で環境に
優しい二次電池が求められている。これに関連し、安全
で公害物質を含まない電気自動車用二次電池も地球規模
で必要とされている。そして、このような要求に適合す
る電池として、アルカリ二次電池に属するNi−金属水
素化物電池が注目を集めている。
2. Description of the Related Art Recently, notebook computers, which are portable devices,
With the widespread use of mobile phones, PHS, VTR cameras and the like, high performance and environmentally friendly secondary batteries are required as power supplies for these devices. In this connection, there is a need on a global scale for secondary batteries for electric vehicles that are safe and contain no pollutants. As a battery that meets such requirements, a Ni-metal hydride battery belonging to an alkaline secondary battery has attracted attention.

【0003】ニッケル−金属水素化物電池は、正極に水
酸化ニッケル極、負極としては可逆的に水素を吸蔵・放
出する水素吸蔵合金粉末を充填した水素極を用い、電解
液としてはアルカリ水溶液を用い、液を保持しかつ通液
性のある電気絶縁性の不織布からなるセパレータを介し
て両極をサンドイッチ状に重ね合わせた構造を有する。
A nickel-metal hydride battery uses a nickel hydroxide electrode as a positive electrode, a hydrogen electrode filled with a hydrogen storage alloy powder for reversibly storing and releasing hydrogen as a negative electrode, and an alkaline aqueous solution as an electrolyte. And a structure in which both electrodes are sandwiched one on top of the other via a separator made of an electrically insulating non-woven fabric that holds the liquid and has liquid permeability.

【0004】このタイプの電池に組み込まれる上記電極
は、従来より次のようにして作製されている。まず各々
の電池活物質(以下、単に「活物質」ともいう)粉末に
ニッケル粉末、コバルト粉末等の導電性粉末を混合した
後、カルボキシメチルセルロース樹脂(CMC樹脂)及
び水を配合し、これらを混練して水溶性活物質塗料を調
製する。次いで、四フッ化エチレン樹脂(PTFE樹
脂)等の結着剤とともに上記活物質塗料を三次元多孔質
の発泡ニッケルシート集電体に充填する。最後に、これ
らを充填した集電体において、大気中又は真空中で水分
を除去した後、圧延処理して所定の厚みに制御したもの
を最終的に電極として得る。
[0004] The above-mentioned electrodes to be incorporated in this type of battery are conventionally manufactured as follows. First, a conductive powder such as a nickel powder and a cobalt powder is mixed with each battery active material (hereinafter, also simply referred to as “active material”) powder, and then a carboxymethyl cellulose resin (CMC resin) and water are blended and kneaded. To prepare a water-soluble active material paint. Next, the active material paint is filled in a three-dimensional porous foamed nickel sheet current collector together with a binder such as a tetrafluoroethylene resin (PTFE resin). Finally, in the current collector filled with these, after removing water in the air or in a vacuum, a current collector which is rolled and controlled to a predetermined thickness is finally obtained as an electrode.

【0005】[0005]

【発明が解決しようとする課題】ところで、このNi−
金属水素化物電池は、電極に用いる電極用粉末によって
放電容量がある程度決まる。そして、それらを組み合わ
せて作製された電池において、その本来の特性を発揮さ
せるためには、電極の内部抵抗をできるだけ低くするこ
とが望ましいとされている。
By the way, this Ni-
The discharge capacity of a metal hydride battery is determined to some extent by the electrode powder used for the electrode. It is said that it is desirable to lower the internal resistance of the electrode as much as possible in order to exhibit the original characteristics of a battery manufactured by combining them.

【0006】正極で用いられる水酸化ニッケル粉末は、
金属と異なり導電性がほとんどない。このため、正極の
内部抵抗を低くするために、一般的には水酸化ニッケル
粉末に導電性粉末としてカルボニルニッケル粉末とコバ
ルト粉末を所定量混合し、この混合粉末を発泡ニッケル
シート集電体に充填して作製されている。負極において
も同様に導電性粉末を用いて作製されている。
The nickel hydroxide powder used for the positive electrode is
Unlike metal, there is almost no conductivity. Therefore, in order to lower the internal resistance of the positive electrode, generally, a predetermined amount of carbonyl nickel powder and cobalt powder are mixed as conductive powder with nickel hydroxide powder, and this mixed powder is filled in a foamed nickel sheet current collector. It is manufactured. Similarly, the negative electrode is manufactured using a conductive powder.

【0007】しかしながら、上記方法では電極作製の工
程数が多く、また品質管理も煩雑である。そればかりで
なく、このように導電性粉末を多く使用すればそれだけ
電極中の活物質含有割合が相対的に減少し、その電極を
用いて作製された電池においては満足のいく容量密度を
確保することができなくなる。
However, in the above method, the number of steps for producing the electrode is large, and quality control is complicated. Not only that, if the conductive powder is used in such a large amount, the content of the active material in the electrode is relatively reduced, and a satisfactory capacity density is secured in a battery manufactured using the electrode. You will not be able to do it.

【0008】このため、比較的容易に作製でき、しかも
活物質をより多く充填できる電極の開発が求められてい
る。また、その一方では、機器類の軽量化・小型化に伴
って、薄いタイプの電極が必要とされている。
For this reason, there is a need for the development of an electrode which can be produced relatively easily and which can be filled with more active material. On the other hand, as devices become lighter and smaller, thinner electrodes are required.

【0009】このような電極を製造する方法として、水
素吸蔵合金粉末と片状Cu粉末を混合し、その混合粉末
をプレス成型することによって、電極の断面構造におい
て片状Cu粉末を電極面に平行又はほぼ平行に連続的に
配向させ、マイクロ集電体を形成させる方法がある(特
開平7−307154号)。この方法によれば、水素吸
蔵合金からなる電極の内部抵抗を低くでき、電池の放電
容量を向上させることができる。
As a method of manufacturing such an electrode, the hydrogen storage alloy powder and the flaky Cu powder are mixed, and the mixed powder is press-molded so that the flaky Cu powder is parallel to the electrode surface in the sectional structure of the electrode. Alternatively, there is a method of forming a micro current collector by continuously orienting the micro current collector substantially in parallel (Japanese Patent Laid-Open No. 7-307154). According to this method, the internal resistance of the electrode made of the hydrogen storage alloy can be reduced, and the discharge capacity of the battery can be improved.

【0010】しかしながら、上記方法においても、放電
容量の高い電池を簡単にかつ安価で製造するという点で
は未だ改善する余地がある。
However, even with the above method, there is still room for improvement in terms of easily and inexpensively manufacturing a battery having a high discharge capacity.

【0011】従って、本発明は、低コストで優れた放電
容量を与える電極を提供することを主な目的とする。
Accordingly, it is a main object of the present invention to provide an electrode which provides excellent discharge capacity at low cost.

【0012】[0012]

【課題を解決するための手段】本発明者は、従来技術の
問題に鑑みて鋭意研究を重ねた結果、特定の合金粉末を
電池活物質と併用して電極を作製することにより、上記
目的を達成できることを見出し、本発明を完成するに至
った。
Means for Solving the Problems As a result of intensive studies in view of the problems of the prior art, the present inventor has achieved the above object by producing an electrode by using a specific alloy powder together with a battery active material. They have found that this can be achieved and have completed the present invention.

【0013】すなわち、本発明は、下記のアルカリ二次
電池用電極及びその製造方法に係るものである。
That is, the present invention relates to the following electrode for an alkaline secondary battery and a method for producing the same.

【0014】1.電極用粉末として、電池活物質を含む
粉末100重量部に対して鱗片状ニッケル合金粉末5〜
30重量部を含有する混合粉末を用いることを特徴とす
るアルカリ二次電池用電極。
1. As the electrode powder, flaky nickel alloy powder 5 to 100 parts by weight of the powder containing the battery active material
An electrode for an alkaline secondary battery, wherein a mixed powder containing 30 parts by weight is used.

【0015】2.電池活物質を含む粉末100重量部に
鱗片状ニッケル合金粉末5〜30重量部を混合し、この
混合粉末を集電体に固着して、次いで加圧成型すること
を特徴とするアルカリ二次電池用電極の製造方法。
2. An alkaline secondary battery characterized by mixing 5 to 30 parts by weight of flaky nickel alloy powder with 100 parts by weight of a powder containing a battery active material, fixing the mixed powder to a current collector, and then pressing and molding. Method of manufacturing electrodes.

【0016】[0016]

【発明の実施の形態】本発明のアルカリ二次電池用電極
は、電極用粉末として、電池活物質を含む粉末100重
量部に対して鱗片状ニッケル合金粉末10〜30重量部
を含有する混合粉末を用いることを特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION The electrode for an alkaline secondary battery according to the present invention is a mixed powder containing 10 to 30 parts by weight of a flaky nickel alloy powder with respect to 100 parts by weight of a powder containing a battery active material. Is used.

【0017】鱗片状ニッケル合金粉末の形状としては、
鱗片状、片状、偏平状等の形状、すなわち長径(粒径)
が長く、厚みが薄いものであれば特に制限されない。本
発明では、特に平均粒径が通常5〜20μm程度であっ
て、厚さの平均が通常0.9μm以下であることが好ま
しい。鱗片状ニッケル合金粉末は、大きなアスペクト比
(長径/厚み)を有する特異形状のゆえに大きな配向性
をもって配列する。すなわち、鱗片状ニッケル合金粉末
は、これを加圧成型した場合、加圧方向に対して垂直に
かつ層状に配向する。
The shape of the flaky nickel alloy powder is as follows:
Scaly, flaky, flat, etc. shapes, ie long diameter (particle size)
Is not particularly limited as long as it is long and thin. In the present invention, it is particularly preferable that the average particle diameter is usually about 5 to 20 μm and the average thickness is usually 0.9 μm or less. The flaky nickel alloy powder is arranged with a large orientation because of a unique shape having a large aspect ratio (major axis / thickness). That is, when the flaky nickel alloy powder is molded under pressure, the flaky nickel alloy powder is oriented perpendicularly to the pressing direction and in a layered manner.

【0018】鱗片状粉末は、等方的な球状粉末等に比べ
て電極内において形状異方性をより容易に付与できるの
で、連続的な面又は点接触が可能となる。すなわち、鱗
片状ニッケル合金粉末において、連続的な接触配向を確
保することができる。その結果、同じ配合率であって
も、鱗片状粉末の方が接触配向がより良好となり、導電
性に優れたネットワークが形成されて放電容量等の向上
を図ることができる。
The scale-like powder can more easily impart shape anisotropy in the electrode as compared with isotropic spherical powder or the like, so that continuous surface or point contact is possible. That is, continuous contact orientation can be ensured in the flaky nickel alloy powder. As a result, even with the same compounding ratio, the flaky powder has better contact orientation, a network having excellent conductivity is formed, and the discharge capacity and the like can be improved.

【0019】平均粒径が5μm未満の場合、鱗片状ニッ
ケル合金粉末が活物質である水素吸蔵合金粉末、水酸化
ニッケル粉末等より小さくなることがある。この場合に
は、鱗片状ニッケル合金粉末の一つの粒子が複数の活物
質粉末粒子にまたがって接触できなくなり、またがって
接触するためには多くの鱗片状ニッケル合金粉末粒子が
必要となる。その結果として、接点数の増加により接触
抵抗が大きくなり、それに伴い電極の内部抵抗の増加を
招くおそれがある。一方、平均粒径が20μmを上回る
場合には、混合時に活物質粉末との形状又はサイズの違
いによって偏析したり、或いは折れ曲がったものが丸く
凝集することにより、連続的な接触配向を十分に確保で
きなくなる。
When the average particle size is less than 5 μm, the flaky nickel alloy powder may be smaller than the active material such as the hydrogen storage alloy powder and the nickel hydroxide powder. In this case, one particle of the flaky nickel alloy powder cannot contact over a plurality of active material powder particles, and a large number of flaky nickel alloy powder particles are required to make contact over the active material powder particles. As a result, the contact resistance increases due to the increase in the number of contacts, which may lead to an increase in the internal resistance of the electrode. On the other hand, if the average particle size exceeds 20 μm, segregation due to the difference in shape or size from the active material powder during mixing, or a bent product is roundly aggregated, thereby ensuring sufficient continuous contact orientation. become unable.

【0020】鱗片状ニッケル合金粉末の合金の種類とし
ては、所望の導電性等が確保できる限りは特に制限され
ず、例えば公知のニッケル合金を用いることができる。
この中でも、第二成分としてニッケルの展延性を改善す
る元素を含むニッケル合金を用いることが好ましい。こ
のような成分としては、例えばCo、Cu、Al、B、
P等が挙げられる。これらは1種又は2種以上で用いる
ことができる。このようなニッケル合金としては、例え
ばNi−Co系、Ni−Cu系、Ni−Al系、Ni−
B系等の2元合金、Ni−Cu−P系等の3元合金が挙
げられ、これらも単独又は2種以上の混合粉末として使
用できる。これらの中でも、特にNi−Co系、Ni−
Cu系等を用いることが望ましい。
The kind of the alloy of the flaky nickel alloy powder is not particularly limited as long as the desired conductivity and the like can be secured, and for example, a known nickel alloy can be used.
Among them, it is preferable to use a nickel alloy containing an element that improves the ductility of nickel as the second component. Such components include, for example, Co, Cu, Al, B,
P and the like. These can be used alone or in combination of two or more. Such nickel alloys include, for example, Ni-Co, Ni-Cu, Ni-Al, Ni-
Binary alloys such as B-based alloys and ternary alloys such as Ni-Cu-P-based alloys can be used, and these can be used alone or as a mixed powder of two or more kinds. Among these, Ni-Co type, Ni-
It is desirable to use a Cu type or the like.

【0021】上記のニッケル合金中の第二成分の含有量
は、第二成分の種類等に応じて適宜変更すれば良く、一
般には50重量%以下、特に2〜20重量%の範囲内と
することが好ましい。
The content of the second component in the above nickel alloy may be appropriately changed according to the kind of the second component and the like, and is generally 50% by weight or less, particularly in the range of 2 to 20% by weight. Is preferred.

【0022】例えば、上記ニッケル合金がNi−Co系
である場合には、Co成分は通常2〜50重量%程度、
特に3〜20重量%とすることが好ましい。また、Ni
−Cu系である場合には、Cu成分は通常2〜50重量
%程度、特に5〜20重量%とすることが好ましい。い
ずれの場合も2重量%未満では、その添加効果が少なく
なるおそれがある。正極においては、Co成分は、充放
電した時に一部溶解析出してCo(OH)2を経て導電
性のβ−CoOOHに変化し、これが正極活物質の周囲
を被覆して微視的な導電性ネットワークを形成する結
果、ニッケル正極の放電容量の向上に寄与する。一方、
負極においては、CoやCuは、充放電に際して溶出し
て、電極内に金属状として析出し、微視的な導電性ネッ
トワークを形成して、合金負極の放電容量の向上に寄与
する。すなわち、上記範囲の含有量では、特に連続的な
接触配向が良好となり、大きな放電容量が得られるの
で、特性的にも経済的にも有利である。同様に、Ni−
Al系の場合には、Al成分は通常2〜50重量%程
度、特に5〜20重量%とすることが好ましい。
For example, when the nickel alloy is of a Ni—Co type, the Co component is usually about 2 to 50% by weight,
In particular, the content is preferably 3 to 20% by weight. Also, Ni
In the case of -Cu-based, the Cu content is usually preferably about 2 to 50% by weight, particularly preferably 5 to 20% by weight. In any case, if it is less than 2% by weight, the effect of the addition may be reduced. In the positive electrode, the Co component partially dissolves and precipitates when charged / discharged and changes to conductive β-CoOOH via Co (OH) 2 , which coats the periphery of the positive electrode active material to form a microscopic conductive material. As a result of forming the conductive network, it contributes to improvement of the discharge capacity of the nickel positive electrode. on the other hand,
In the negative electrode, Co and Cu elute during charge and discharge, precipitate as metal in the electrode, form a microscopic conductive network, and contribute to improving the discharge capacity of the alloy negative electrode. That is, when the content is within the above range, continuous contact orientation becomes particularly good, and a large discharge capacity is obtained, which is advantageous in terms of characteristics and economy. Similarly, Ni-
In the case of an Al-based material, the content of the Al component is usually preferably about 2 to 50% by weight, particularly preferably 5 to 20% by weight.

【0023】鱗片状ニッケル合金粉末の添加量は、使用
する活物質・ニッケル合金の種類等に応じて適宜決定で
き、通常は電池活物質を含む粉末100重量部に対して
5〜30重量部程度とすれば良い。
The amount of the flaky nickel alloy powder to be added can be appropriately determined according to the type of the active material and the nickel alloy to be used, and is usually about 5 to 30 parts by weight based on 100 parts by weight of the powder containing the battery active material. It is good.

【0024】例えば、負極に水素吸蔵合金を用いる場合
は、通常5〜30重量部、好ましくは5〜15重量部と
すれば良い。5重量部未満の場合は、鱗片状ニッケル合
金粉末の連続的な接触配向の形成が不十分となり、電極
の内部抵抗の改善が期待できない。従って、このような
場合には、放電容量とサイクル特性の向上も少なく、特
性もバラつくおそれがある。30重量部を超えて添加し
た場合には、添加に伴う顕著な接触抵抗の改善が認めら
れないばかりか、かえって活物質の周囲を鱗片状ニッケ
ル合金粉末が取りまくことにより水素ガスの円滑な吸蔵
・放出が妨げられるため、最大放電容量の増大及び最大
放電容量に到達するまでのサイクル数の減少効果も達成
できない。しかも、電極中の活物質の相対量が減少し、
十分な電池の容量、密度等を確保できなくなる。
For example, when a hydrogen storage alloy is used for the negative electrode, the amount is usually 5 to 30 parts by weight, preferably 5 to 15 parts by weight. If the amount is less than 5 parts by weight, the formation of continuous contact orientation of the flaky nickel alloy powder becomes insufficient, and improvement in the internal resistance of the electrode cannot be expected. Therefore, in such a case, there is little improvement in the discharge capacity and cycle characteristics, and the characteristics may vary. When the addition exceeds 30 parts by weight, not only the remarkable improvement of the contact resistance due to the addition is not observed, but also the smooth absorption and storage of hydrogen gas by the flaky nickel alloy powder surrounding the active material. Since release is hindered, the effect of increasing the maximum discharge capacity and reducing the number of cycles until the maximum discharge capacity is reached cannot be achieved. Moreover, the relative amount of active material in the electrode decreases,
Sufficient battery capacity, density, etc. cannot be secured.

【0025】また、例えば、正極として水酸化ニッケル
粉末を用いる場合、水酸化ニッケル粉末自体には導電性
がないに等しいため、より多くの鱗片状ニッケル合金粉
末の添加が必要となる。従って、この場合にも通常10
〜30重量部程度の範囲とすることが特性的も経済的に
も適当である。
For example, when nickel hydroxide powder is used as the positive electrode, the nickel hydroxide powder itself has no conductivity, so that it is necessary to add more flaky nickel alloy powder. Therefore, also in this case, usually 10
The range of about 30 parts by weight is suitable both in terms of characteristics and economy.

【0026】本発明の電池活物質を含む粉末は、電池活
物質粉末の他に、本発明の効果を損なわない範囲内で公
知のアルカリ二次電池用電極で用いられている成分等を
含有していても良い。電池活物質としては、特に制限さ
れず、作製する電池の種類等に応じて適宜選択すれば良
い。すなわち、本発明では、鱗片状ニッケル合金粉末を
いずれの電池活物質とも組み合わせて用いることが可能
である。例えば、Ni−金属水素化物電池を作製する場
合は、正極として水酸化ニッケル粉末、負極として水素
吸蔵合金粉末をそのまま電池活物質として用いることが
できる。
The powder containing the battery active material of the present invention contains, in addition to the battery active material powder, components and the like used in known electrodes for alkaline secondary batteries as long as the effects of the present invention are not impaired. May be. The battery active material is not particularly limited, and may be appropriately selected according to the type of battery to be manufactured and the like. That is, in the present invention, the flaky nickel alloy powder can be used in combination with any battery active material. For example, when producing a Ni-metal hydride battery, nickel hydroxide powder can be used as a positive electrode and hydrogen storage alloy powder can be used as a negative electrode as a battery active material.

【0027】正極の活物質として水酸化ニッケルを用い
る場合は、例えば平均粒径10〜40μmで組成式Ni
(OH)2で示される粉末、Zn、Co等を含有するN
i(OH)2粉末等が使用できる。この場合、Zn、C
o等を含有するNi(OH)2粉末においては、Zn、
Co等がNi(OH)2中に固溶しているもの、或いは
その表面に付着しているもの等をすべて包含する。Z
n、Co等の含有量は、通常2〜10重量%程度とすれ
ば良い。
When nickel hydroxide is used as the active material of the positive electrode, for example, the average particle size is 10 to 40 μm and the composition formula Ni
Powder containing (OH) 2 , N containing Zn, Co, etc.
i (OH) 2 powder or the like can be used. In this case, Zn, C
In a Ni (OH) 2 powder containing o or the like, Zn,
Co and the like are all included in a solid solution in Ni (OH) 2 or attached to the surface. Z
The content of n, Co, etc. may be usually about 2 to 10% by weight.

【0028】また、負極の活物質として水素吸蔵合金を
用いる場合は、水素の吸蔵・放出が行えるものであれば
合金の種類は特に限定されない。例えば、LaNi5
系合金、MmNi5(Mmは、希土類元素の混合物であ
るミッシュメタルを意味する)系合金等のAB5型の組
成式で示される合金、Ti−Mn−Ni系合金、Ti
−Cr−Ni系合金、Zr−Mn−Ni系合金、Ti−
Fe−Ni系合金、Ti−Ni系合金等のAB型合金、
Zr(Mn,Ni)2系合金、Zr(V,Ni)2系合
金、Ti(Mn,Ni)2系合金等のAB2型の組成式で
示されるラーベス相合金、Mg2Ni系合金、Ti2
i系合金等のA2Bの組成式で示される合金、V−T
i−Ni系合金等のNiを含有するbcc型V基合金等
が挙げられる。さらには、これらの合金の改良型、或い
は水素と接触して金属水素化合物を形成するものであれ
ば良い。これらの水素吸蔵合金の中では、ニッケルのほ
かに、さらに希土類元素、チタン、ジルコニウム、マグ
ネシウム、コバルト、銅、マンガン、鉄、アルミニウ
ム、バナジウム及びクロムの少なくとも1種を含むもの
が好ましい。
When a hydrogen storage alloy is used as the active material of the negative electrode, the type of alloy is not particularly limited as long as it can store and release hydrogen. For example, LaNi 5
System alloy, MmNi 5 (Mm is a mixture in which misch means a metal of the rare earth element) alloy represented by the system AB 5 type composition formula such as alloys, Ti-Mn-Ni alloy, Ti
-Cr-Ni alloy, Zr-Mn-Ni alloy, Ti-
AB-type alloys such as Fe-Ni-based alloys and Ti-Ni-based alloys,
A Laves phase alloy represented by an AB 2 type composition formula, such as a Zr (Mn, Ni) 2 alloy, a Zr (V, Ni) 2 alloy, a Ti (Mn, Ni) 2 alloy, a Mg 2 Ni alloy, Ti 2 N
alloys represented by the composition formula of A 2 B, such as i-based alloys, VT
A bcc-type V-based alloy containing Ni, such as an i-Ni-based alloy, may be used. Furthermore, any improved type of these alloys or those which form a metal hydride on contact with hydrogen may be used. Among these hydrogen storage alloys, those containing at least one of rare earth elements, titanium, zirconium, magnesium, cobalt, copper, manganese, iron, aluminum, vanadium and chromium in addition to nickel are preferable.

【0029】これらの水素吸蔵合金粉末においては、通
常は平均粒径5〜70μm程度、好ましくは10〜30
μmに調整して用いる。上記範囲内であれば、それを電
池に組み込んだ場合、十分な電池特性が得られ、しかも
鱗片状ニッケル合金粉末を効率良く分散させることがで
きる。
In these hydrogen storage alloy powders, the average particle size is usually about 5 to 70 μm, preferably 10 to 30 μm.
Adjust to use μm. When it is within the above range, when it is incorporated in a battery, sufficient battery characteristics can be obtained, and the flaky nickel alloy powder can be efficiently dispersed.

【0030】本発明では、上記鱗片状ニッケル合金粉末
の一部又は全部に、必要に応じて熱処理を施しても良
い。熱処理温度は、通常300〜900℃程度、好まし
くは400〜700℃とすれば良い。この熱処理によっ
て特に鱗片状ニッケル合金粉末の低歪み化を図ることが
できる。低歪み化された鱗片状ニッケル合金粉末におけ
るダイナミック硬度は通常300DH以下、好ましくは
250DH以下となる。熱処理する時間は熱処理温度等
に応じて適宜設定すれば良い。熱処理雰囲気はアルゴン
ガス、窒素ガス、ヘリウムガス等の不活性ガス雰囲気と
することが好ましい。
In the present invention, a part or all of the flaky nickel alloy powder may be subjected to a heat treatment as required. The heat treatment temperature is usually about 300 to 900 ° C., preferably 400 to 700 ° C. This heat treatment can particularly reduce the strain of the flaky nickel alloy powder. The dynamic hardness of the scale-reduced flaky nickel alloy powder is usually 300 DH or less, preferably 250 DH or less. The time for the heat treatment may be appropriately set according to the heat treatment temperature or the like. The heat treatment atmosphere is preferably an inert gas atmosphere such as an argon gas, a nitrogen gas, and a helium gas.

【0031】他の電極用粉末の成分としては、例えば、
必要に応じてCMC樹脂、PTFE樹脂等の樹脂成分、
或いは公知の導電助剤、酸化防止剤、防錆剤等を配合す
ることもできる。配合量は、鱗片状ニッケル合金粉末の
種類等に応じて適宜設定すれば良い。
As other components of the electrode powder, for example,
If necessary, resin components such as CMC resin and PTFE resin,
Alternatively, known conductive assistants, antioxidants, rust preventives, and the like can be added. The compounding amount may be appropriately set according to the type of the flaky nickel alloy powder and the like.

【0032】次に、これらの各成分の混合を行う。混合
方法は、公知の方法に従えば良く、一般に粉末冶金の分
野で用いられる混合機、例えばライカイ機、ボールミ
ル、振動ミル、アトライター等を使用して混合すること
ができる。脆くて硬い水素吸蔵合金粉末とこれよりは軟
らかい他の成分とをライカイ機等を用いて混合すれば水
素吸蔵合金粉末をさらに微細に粉砕することができる。
特に、前記の導電性ネットワークを効率良く形成させる
ためには、混合粉末に剪断応力を与えることができるメ
カノフュージョンタイプの混合機を用いることが好まし
い。これにより、重なりあったり、凝集した粉末を一個
一個に効率良く分散させることができる結果、活物質粉
末等の積み重なりの数を少なくすることができる。メカ
ノフュージョンタイプの混合機の操作条件は、特に限定
されるものではないが、通常は回転数300〜900r
pm程度で混合時間120〜5分程度とすれば良い。
Next, these components are mixed. The mixing method may be in accordance with a known method, and mixing can be performed using a mixer generally used in the field of powder metallurgy, for example, a raikai machine, a ball mill, a vibration mill, an attritor, or the like. If the brittle and hard hydrogen storage alloy powder and other softer components are mixed using a raikai machine or the like, the hydrogen storage alloy powder can be further finely pulverized.
In particular, in order to efficiently form the conductive network, it is preferable to use a mechanofusion type mixer capable of applying a shear stress to the mixed powder. As a result, the overlapping or agglomerated powder can be efficiently dispersed one by one, so that the number of stacked active material powders or the like can be reduced. The operating conditions of the mechanofusion type mixer are not particularly limited, but are usually 300 to 900 rpm.
The mixing time may be about 120 to 5 minutes at about pm.

【0033】また、本発明において、活物質及び鱗片状
ニッケル合金粉末に加えてさらに樹脂成分を配合する場
合には、一般に塗料分野で使われる混合機を用いること
ができる。このような混合機としては、例えば双腕ニー
ダ、湿式ボールミル、湿式アトライター等を挙げること
ができる。混合操作中においては、特に重なり合った
り、凝集する活物質粉末、鱗片状ニッケル合金粉末、樹
脂成分等を1個ずつの粒子に効率良く分散させる必要が
あるが、これらの混合機を用いることにより効果的に分
散させることができる。特に、PTFE樹脂を用いる場
合は、圧力と剪断応力を加えるとガム状になり、活物質
と鱗片状ニッケル合金粉末とを強固に保持できることか
ら、比較的容易に薄いシート状の電極を得ることができ
る。このため、PTFE樹脂を配合する場合には、高粘
度タイプの混合物を混練できる2本ロールミル(例え
ば、(株)井上製作所製の市販品を用いることができ
る)が特に好ましい。2本ロールミルは、互いに反対方
向に異なる周速で回転する2つのロール面の間隙を原材
料が通過する際に粒子及び流体に強力な圧力と剪断応力
を加え、分散と混合を効率良く行うことができる。2本
ロールミルにおける回転数は、特に限定されるものでは
ないが、通常は1〜100rpm程度、混合は二つのロ
ール面の間隙を通過する回数で表して100〜10回程
度通過すれば良い。
In the present invention, when a resin component is further added in addition to the active material and the flaky nickel alloy powder, a mixer generally used in the field of paint can be used. Examples of such a mixer include a double arm kneader, a wet ball mill, a wet attritor, and the like. During the mixing operation, it is necessary to efficiently disperse the active material powder, the flaky nickel alloy powder, the resin component, and the like, which are particularly overlapped or agglomerated, into particles one by one. Can be dispersed. In particular, when a PTFE resin is used, it becomes gum-like when pressure and shear stress are applied, and since the active material and the flaky nickel alloy powder can be firmly held, it is relatively easy to obtain a thin sheet-like electrode. it can. Therefore, when a PTFE resin is compounded, a two-roll mill (for example, a commercially available product manufactured by Inoue Seisakusho Co., Ltd. can be used) that can knead a high-viscosity type mixture is particularly preferable. The two-roll mill applies strong pressure and shear stress to particles and fluids when raw material passes through the gap between two roll surfaces rotating at different peripheral speeds in opposite directions to each other so that dispersion and mixing can be performed efficiently. it can. The number of rotations in the two-roll mill is not particularly limited, but is usually about 1 to 100 rpm, and mixing may be performed about 100 to 10 times in terms of the number of times of passing through the gap between the two roll surfaces.

【0034】なお、混合する際は、電極用粉末の酸化を
防止する必要がある場合はアルゴンガス、窒素ガス等の
非酸化性雰囲気中で混合することが好ましい。但し、酸
化防止剤、防錆剤等を使用する場合は、空気中(大気
中)で混合することもできる。
When it is necessary to prevent oxidation of the electrode powder, the mixing is preferably performed in a non-oxidizing atmosphere such as argon gas or nitrogen gas. However, when an antioxidant, a rust preventive or the like is used, they can be mixed in the air (in the atmosphere).

【0035】次いで、得られた混合粉末をローラ等で圧
縮しながら集電体に固着した後、集電体とともに加圧成
型して一体化したシート状の電極とする。この過程にお
いて、鱗片状ニッケル合金粉末と活物質粉末は加圧によ
って集電体に強固に接合する。なお、集電体としては、
公知のものが使用でき、例えば2次元構造のニッケル、
銅等のエキスパンドメタル、穿孔鋼板にニッケルメッキ
を施したもの、ニッケル金網等を用いることができる。
また、上記のローラ圧縮に際しては、必要であれば所定
の電極形状に対応する形状をした金型内に必要量の一部
の混合粉末をローラ圧縮しながら充填した後、集電体を
載せ、さらに残りの混合粉末をローラ圧縮しながら充填
することも可能である。
Next, the obtained mixed powder is fixed to a current collector while being compressed by a roller or the like, and then pressure-formed together with the current collector to form an integrated sheet-shaped electrode. In this process, the flaky nickel alloy powder and the active material powder are firmly joined to the current collector by pressing. In addition, as a current collector,
Known materials can be used, for example, nickel having a two-dimensional structure,
Expanded metal such as copper, perforated steel sheet plated with nickel, nickel wire mesh, or the like can be used.
Further, at the time of the roller compression, if necessary, after filling the required amount of a part of the mixed powder while compressing the roller into a mold having a shape corresponding to a predetermined electrode shape, and then mounting the current collector, Further, the remaining mixed powder can be filled while being compressed by a roller.

【0036】続いて、金型内に充填された混合粉末をシ
ート状に加圧成型する。加圧成型における圧力は、電極
用粉末の組成等に応じて適宜変更すれば良い。例えば、
水素吸蔵合金粉末からなる負極を作製する場合は、通常
1000〜5000kgf/cm2程度とすれば良い。一般
に、鱗片状粉末は、成型による圧力依存性が少ないので
5000kgf/cm2を超える加圧による効果は比較的少な
い。一方、水酸化ニッケルからなる正極を作製する場合
は、水酸化ニッケル粉末自身での結着性が乏しいため、
通常2000〜8000kgf/cm2程度とすれば良い。但
し、PTFE樹脂等の結着剤を添加した場合は、ローラ
圧縮による剪断応力で樹脂が繊維化するため、比較的低
い圧力でも柔軟性のある薄い電極シートが得られる。従
って、このような場合は、200〜1000kgf/cm2
すれば良い。加圧成型により、鱗片状ニッケル合金粉末
が連続的に接触配向し、活物質から効率良く集電できる
状態となる。その結果、内部抵抗が低減化された電極を
得ることができる。
Subsequently, the mixed powder filled in the mold is pressed into a sheet. The pressure in the pressure molding may be appropriately changed according to the composition of the electrode powder and the like. For example,
When a negative electrode made of a hydrogen storage alloy powder is produced, it may be usually about 1000 to 5000 kgf / cm 2 . In general, flaky powder has little pressure dependency due to molding, and therefore, the effect of pressurization exceeding 5000 kgf / cm 2 is relatively small. On the other hand, when producing a positive electrode made of nickel hydroxide, since the binding property of the nickel hydroxide powder itself is poor,
Usually, it may be set to about 2000 to 8000 kgf / cm 2 . However, when a binder such as PTFE resin is added, the resin is fiberized by shearing stress due to roller compression, so that a flexible thin electrode sheet can be obtained even at a relatively low pressure. Therefore, in such a case, the pressure may be set to 200 to 1000 kgf / cm 2 . By the pressure molding, the flaky nickel alloy powder is continuously in contact and oriented, so that the current can be efficiently collected from the active material. As a result, an electrode with reduced internal resistance can be obtained.

【0037】[0037]

【作用】本発明者は、さらなる放電容量等の向上を図る
ために電極の内部抵抗の改善を図ることを目的として、
導電性粉末としてのニッケル粉末その他の金属粉末等と
混合した粉末或いはニッケルを主体とする合金粉末を加
圧して簡単に電極を作製する方法を種々検討している過
程において、ニッケルの展延性を改善する金属又は電池
に組み込み充放電するとイオンが溶け出す金属とニッケ
ルとからなる鱗片状ニッケル合金粉末を電池活物質に配
合して用いる場合には、粉末の偏析もなく、加圧成型し
たときに活物質と強固に接合して接触抵抗が改善される
こと、また溶け出したイオンによりさらに微視的な導電
性ネットワークが形成されることを知見した。その結果
として、電池の内部抵抗が改善でき、放電容量が大きく
なり、また最大放電容量に達するサイクル数が少なく、
しかも加工し易い等の効果があることも見出し、本発明
を完成した。
The present inventor aims at improving the internal resistance of the electrode in order to further improve the discharge capacity and the like.
Improve the extensibility of nickel in the process of variously examining methods to easily produce electrodes by pressing powder mixed with nickel powder or other metal powder as conductive powder or alloy powder mainly composed of nickel When a flaky nickel alloy powder composed of nickel and a metal from which ions dissolve when charged and discharged when incorporated into a battery or a battery is used in the battery active material, there is no segregation of the powder and the powder is activated when pressed. It has been found that the contact resistance is improved by firmly bonding with the substance, and that a more microscopic conductive network is formed by the dissolved ions. As a result, the internal resistance of the battery can be improved, the discharge capacity increases, and the number of cycles to reach the maximum discharge capacity is small,
In addition, they have found that they have effects such as easy processing, and have completed the present invention.

【0038】[0038]

【発明の効果】本発明によれば、電池活物質に鱗片状ニ
ッケル合金粉末を添加し、得られた混合粉末を加圧成型
するので、粉末の偏析もなく、比較的簡単に電極を作製
できる。そして、この電極を組み込んだ電池において
は、電池の放電容量が著しく向上し、また最大放電容量
に達するサイクル数の低減化を図ることができる。
According to the present invention, the flaky nickel alloy powder is added to the battery active material, and the resulting mixed powder is molded under pressure. Therefore, the electrodes can be produced relatively easily without segregation of the powder. . In a battery incorporating this electrode, the discharge capacity of the battery is significantly improved, and the number of cycles reaching the maximum discharge capacity can be reduced.

【0039】[0039]

【実施例】以下、実施例及び比較例に基づき、本発明の
特徴とするところをより詳細に説明する。
Hereinafter, the features of the present invention will be described in more detail based on examples and comparative examples.

【0040】実施例1〜12 (1)正極用混合粉末の調製及び正極の作製 正極には、水酸化ニッケル粉末(平均粒径10μm)1
00gに鱗片状Ni−5重量%Co合金粉末(平均粒径
10μm、厚さ0.5μm)を表1に示すように10重
量%から30重量%まで変化させてメカノフュージョン
装置で400rpmの条件下10分間混合し、混合粉末
をそれぞれ得た。
Examples 1 to 12 (1) Preparation of mixed powder for positive electrode and preparation of positive electrode Nickel hydroxide powder (average particle size: 10 μm)
The scale-like Ni-5% by weight Co alloy powder (average particle diameter 10 μm, thickness 0.5 μm) was changed from 10% by weight to 30% by weight as shown in Table 1 to 400 g with a mechanofusion device at 400 rpm. Mixing was performed for 10 minutes to obtain mixed powders.

【0041】次に、最初に金型に各混合粉末1.0gを
ローラ圧縮しながら充填し、続いて集電体であるニッケ
ルエキスパンドメタルを載せ、最後に残りの混合粉末
1.0gをローラ圧縮しながら充填した。
Next, the mold was first filled with 1.0 g of each mixed powder while being roller-compressed, and then a nickel expanded metal as a current collector was placed thereon. Finally, 1.0 g of the remaining mixed powder was roller-compressed. While filling.

【0042】次いで、加圧力5000kgf/cm2で30mm
×40mm(厚さ0.9mm)のシートを作成した。得ら
れたシートにニッケルのリード板を接合し、セパレータ
として親水化処理ポリプロピレン製の不織布で包んだ。
このシートを正極とした(実施例1及び2)。また、P
TFE樹脂を3重量%加え、加圧力1000kgf/cm2
した以外は、実施例2と同様にして正極を作製した(実
施例3)。
Next, at a pressing force of 5000 kgf / cm 2 ,
A sheet having a size of 40 mm (thickness 0.9 mm) was prepared. A nickel lead plate was bonded to the obtained sheet, and the sheet was wrapped with a hydrophilic non-woven polypropylene fabric as a separator.
This sheet was used as a positive electrode (Examples 1 and 2). Also, P
A positive electrode was produced in the same manner as in Example 2 except that 3% by weight of TFE resin was added and the pressure was set to 1000 kgf / cm 2 (Example 3).

【0043】なお、比較のため、上記鱗片状Ni−5重
量%Co合金粉末の代わりに鱗片状Ni粉末(平均粒径
10μm、厚さ0.5μm)を用いた以外は実施例2と
同様にして正極を作製した(比較例1)。
For comparison, the same procedure as in Example 2 was carried out except that flaky Ni powder (average particle size: 10 μm, thickness: 0.5 μm) was used instead of the flaky Ni-5 wt% Co alloy powder. To produce a positive electrode (Comparative Example 1).

【0044】(2)負極用混合粉末の調製及び負極の作
製 37μm以下に粉砕した水素吸蔵合金粉末(LaNi
3.4Co1.2Al0.4)100gに鱗片状Ni−5重量%
Co合金粉末(平均粒径12μm、厚さ0.8μm)を
表2〜表4に示すように5重量%から15重量%まで変
化させてメカノフュージョン装置で500rpmの条件
下10分間混合した。
(2) Preparation of Mixed Powder for Negative Electrode and Preparation of Negative Electrode Hydrogen storage alloy powder (LaNi
3.4 Co 1.2 Al 0.4 ) 100 g of scaly Ni-5% by weight
The Co alloy powder (average particle size: 12 μm, thickness: 0.8 μm) was changed from 5% by weight to 15% by weight as shown in Tables 2 to 4 and mixed by a mechanofusion device at 500 rpm for 10 minutes.

【0045】次に、最初に金型に混合粉末1.0gをロ
ーラ圧縮しながら充填して、続いて集電体である銅メッ
キしたニッケルエキスパンドメタルを載せ、最後に残り
の混合粉末1.0gをローラ圧縮しながら充填した。
Next, first, 1.0 g of the mixed powder was filled in a mold while being roller-compressed, and then a copper-plated nickel expanded metal as a current collector was placed thereon. Was filled with roller compression.

【0046】次いで、加圧力3000kgf/cm2で30mm
×40mm(厚さ0.6mm)のシートを作成した。得ら
れたシートにニッケルのリード板を接合し、セパレータ
として親水化処理ポリプロピレン製の不織布で包んだ。
このシートを負極とした(実施例4〜6及び実施例8〜
11)。また、PTFE樹脂を3重量%加え、加圧力1
000kgf/cm2とした以外は、実施例6と同様にして負
極を作製した(実施例7)。さらに、鱗片状Ni−5重
量%Co合金粉末をアルゴン中600℃で30分間熱処
理したものを用いて実施例6と同様にして負極を作製し
た(実施例12)。
Then, at a pressure of 3000 kgf / cm 2 ,
A sheet having a size of × 40 mm (thickness: 0.6 mm) was prepared. A nickel lead plate was bonded to the obtained sheet, and the sheet was wrapped with a hydrophilic non-woven polypropylene fabric as a separator.
This sheet was used as a negative electrode (Examples 4 to 6 and Examples 8 to
11). In addition, PTFE resin was added at 3% by weight,
A negative electrode was produced in the same manner as in Example 6, except that the pressure was changed to 000 kgf / cm 2 (Example 7). Further, a negative electrode was produced in the same manner as in Example 6 using a flaky Ni-5 wt% Co alloy powder heat-treated in argon at 600 ° C. for 30 minutes (Example 12).

【0047】なお、比較のため、上記鱗片状Ni−5重
量%Co合金粉末の代わりに鱗片状Ni粉末(平均粒径
10μm、厚さ0.8μm)を用いた以外は実施例6と
同様にして負極を作製した(比較例2)。同様に、上記
鱗片状Ni−5重量%Co合金粉末の代わりに粒状Ni
粉末(平均粒径10μm)を用いた以外は実施例8と同
様にして負極を作製した(比較例3)。
For comparison, the same procedure as in Example 6 was carried out except that flaky Ni powder (average particle size: 10 μm, thickness: 0.8 μm) was used instead of the flaky Ni-5 wt% Co alloy powder. To produce a negative electrode (Comparative Example 2). Similarly, instead of the flaky Ni-5% by weight Co alloy powder, granular Ni
A negative electrode was produced in the same manner as in Example 8 except that powder (average particle size: 10 μm) was used (Comparative Example 3).

【0048】試験例1 (1)開放型電池の組立 上記の実施例及び比較例で作製した電極を用いて電池を
組み立てた。
Test Example 1 (1) Assembly of Open Battery A battery was assembled using the electrodes produced in the above Examples and Comparative Examples.

【0049】セパレータで包んだ正極と負極は、各々の
電極に対して十分に容量の大きい既製の対極を用いてサ
ンドイッチ状に挟み、6Mの水酸化カリウム溶液を電解
液とする開放型電池を組み立てた。この開放型電池を2
0℃の恒温槽に設置した。
The positive electrode and the negative electrode wrapped by the separator are sandwiched between the electrodes using a ready-made counter electrode having a sufficiently large capacity with respect to each electrode, and an open-type battery using a 6 M potassium hydroxide solution as an electrolyte is assembled. Was. This open type battery
It was set in a thermostat at 0 ° C.

【0050】(2)電池の充放電サイクル試験 正極をテストする場合は、充電電流29mA/gで10
時間充電し、0.5時間休止した後、放電電流58mA
/gで電圧が0.8Vに低下するまで行い、また負極を
テストする場合は、充電電流100mA/gで4時間充
電し、0.5時間休止した後、放電電流100mA/g
で電圧が0.8Vに低下するまで放電するというサイク
ルで充放電を繰り返す実験を行い、それぞれの最大放電
容量と最大放電容量に達するまでのサイクル数を測定し
た。その結果を表1〜4に示す。
(2) Battery charge / discharge cycle test When testing the positive electrode, a charge current of 29 mA / g was used for 10 minutes.
After charging for 0.5 hours and resting for 0.5 hour, the discharge current is 58 mA
/ G until the voltage drops to 0.8 V, and when testing the negative electrode, charge for 4 hours at a charging current of 100 mA / g, pause for 0.5 hour, and then discharge for 100 mA / g.
An experiment was repeated in which charging and discharging were repeated in a cycle of discharging until the voltage dropped to 0.8 V, and the maximum discharge capacity and the number of cycles until reaching the maximum discharge capacity were measured. The results are shown in Tables 1 to 4.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【表2】 [Table 2]

【0053】[0053]

【表3】 [Table 3]

【0054】[0054]

【表4】 [Table 4]

【0055】表1から、正極について、水酸化ニッケル
に鱗片状Ni−5重量%Co合金粉末を添加した場合
(実施例2)の方が、鱗片状Ni粉末を添加した場合
(比較例1)に比べて、最大放電容量に達するサイクル
数が少なく、また最大放電容量も大きいことがわかる。
From Table 1, it can be seen that, for the positive electrode, the case where flaky Ni-5% by weight Co alloy powder was added to nickel hydroxide (Example 2) was the case where the flaky Ni powder was added (Comparative Example 1). It can be seen that the number of cycles to reach the maximum discharge capacity is smaller and the maximum discharge capacity is larger than that of.

【0056】表2及び表3から、負極についても、水素
吸蔵合金粉末に鱗片状Ni−5重量%Co合金粉末を添
加した場合(実施例6)の方が、鱗片状Ni粉末を添加
した場合(比較例2)に比べて、最大放電容量に達する
サイクル数が少なく、また最大放電容量も大きいことが
わかる。
As can be seen from Tables 2 and 3, for the negative electrode, the case where the scaly Ni-5 wt% Co alloy powder was added to the hydrogen storage alloy powder (Example 6) was the case where the scaly Ni powder was added. It can be seen that the number of cycles to reach the maximum discharge capacity is smaller and the maximum discharge capacity is larger than in (Comparative Example 2).

【0057】さらに、表3から明らかなように、水素吸
蔵合金粉末に対して添加した種々の鱗片状ニッケル合金
粉末においては、その粒子形状が粒状のもの(比較例
3)に比較して、最大放電容量に達するまでのサイクル
数が少なく、最大放電容量も大きい。
Further, as is apparent from Table 3, the various flaky nickel alloy powders added to the hydrogen storage alloy powder had a maximum particle size as compared with the granular one (Comparative Example 3). The number of cycles to reach the discharge capacity is small and the maximum discharge capacity is large.

【0058】表2及び表4の結果から、熱処理した鱗片
状ニッケル合金粉末を用いる場合(実施例12)は、熱
処理しない場合(実施例6)に比べてさらに大きな最大
放電容量を示すことがわかる。
From the results shown in Tables 2 and 4, it can be seen that when the heat-treated flaky nickel alloy powder is used (Example 12), the maximum discharge capacity is larger than when no heat treatment is performed (Example 6). .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新見 義朗 滋賀県大津市一里山1−1−1−303 (72)発明者 境 哲男 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Yoshiro Niimi 1-1-303 Ichiriyama, Otsu City, Shiga Prefecture (72) Inventor Tetsuo Sakai 1-81-31 Midorigaoka, Ikeda-shi, Osaka Industrial Technology Institute Osaka Institute of Technology

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】電極用粉末として、電池活物質を含む粉末
100重量部に対して鱗片状ニッケル合金粉末5〜30
重量部を含有する混合粉末を用いることを特徴とするア
ルカリ二次電池用電極。
The present invention relates to an electrode powder, wherein a scale-like nickel alloy powder of 5 to 30 parts per 100 parts by weight of a powder containing a battery active material is used.
An electrode for an alkaline secondary battery, wherein a mixed powder containing parts by weight is used.
【請求項2】鱗片状ニッケル合金粉末が、平均粒径5〜
20μmであって、厚さの平均が0.9μm以下である
請求項1記載のアルカリ二次電池用電極。
2. A flaky nickel alloy powder having an average particle size of 5 to 5.
The electrode for an alkaline secondary battery according to claim 1, wherein the electrode has a thickness of 20 µm and an average thickness of 0.9 µm or less.
【請求項3】鱗片状ニッケル合金粉末が、Co、Cu、
Al、B及びPの少なくとも1種を50重量%以下の範
囲で含有するニッケル合金の粉末である請求項1記載の
アルカリ二次電池用電極。
3. A flaky nickel alloy powder comprising Co, Cu,
2. The electrode for an alkaline secondary battery according to claim 1, wherein the electrode is a nickel alloy powder containing at least one of Al, B and P in a range of 50% by weight or less.
【請求項4】鱗片状ニッケル合金粉末の一部又は全部
が、300〜900℃で熱処理されたものである請求項
1乃至3のいずれかに記載のアルカリ二次電池用電極。
4. The electrode for an alkaline secondary battery according to claim 1, wherein part or all of the flaky nickel alloy powder is heat-treated at 300 to 900 ° C.
【請求項5】電池活物質が、コバルト及び亜鉛の少なく
とも1種を2〜10重量%含有する水酸化ニッケルであ
る請求項1乃至4のいずれかに記載のアルカリ二次電池
用電極。
5. The electrode for an alkaline secondary battery according to claim 1, wherein the battery active material is nickel hydroxide containing 2 to 10% by weight of at least one of cobalt and zinc.
【請求項6】電池活物質が、ニッケルを含有する水素吸
蔵合金であって、さらに当該水素吸蔵合金が希土類元
素、チタン、ジルコニウム、マグネシウム、コバルト、
銅、マンガン、鉄、アルミニウム、バナジウム及びクロ
ムの少なくとも1種を含む請求項1乃至4のいずれかに
記載のアルカリ二次電池用電極。
6. The battery active material is a hydrogen storage alloy containing nickel, and the hydrogen storage alloy is a rare earth element, titanium, zirconium, magnesium, cobalt,
The electrode for an alkaline secondary battery according to any one of claims 1 to 4, comprising at least one of copper, manganese, iron, aluminum, vanadium, and chromium.
【請求項7】電池活物質を含む粉末100重量部に鱗片
状ニッケル合金粉末5〜30重量部を混合し、この混合
粉末を集電体に固着して、次いで加圧成型することを特
徴とするアルカリ二次電池用電極の製造方法。
7. A method according to claim 1, wherein 5 to 30 parts by weight of the flaky nickel alloy powder is mixed with 100 parts by weight of the powder containing the battery active material, and this mixed powder is fixed to a current collector and then molded under pressure. Of producing an electrode for an alkaline secondary battery.
【請求項8】請求項1乃至6のいずれかに記載の電極の
うち、電池活物質として少なくとも水酸化ニッケルを用
いたものを正極とし、電池活物質として少なくとも水素
吸蔵合金を用いたものを負極としたニッケル−金属水素
化物電池。
8. An electrode according to claim 1, wherein at least nickel hydroxide is used as a battery active material as a positive electrode, and at least a hydrogen absorbing alloy is used as a battery active material as a negative electrode. Nickel-metal hydride battery.
JP15713297A 1997-06-13 1997-06-13 Electrode for alkaline secondary battery and method for producing the same Expired - Lifetime JP4025863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15713297A JP4025863B2 (en) 1997-06-13 1997-06-13 Electrode for alkaline secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15713297A JP4025863B2 (en) 1997-06-13 1997-06-13 Electrode for alkaline secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JPH117960A true JPH117960A (en) 1999-01-12
JP4025863B2 JP4025863B2 (en) 2007-12-26

Family

ID=15642911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15713297A Expired - Lifetime JP4025863B2 (en) 1997-06-13 1997-06-13 Electrode for alkaline secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP4025863B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003026046A1 (en) * 2001-09-17 2003-03-27 Kawasaki Jukogyo Kabushiki Kaisha Active material for cell and its manufacturing method
JP4723737B2 (en) * 2001-02-28 2011-07-13 株式会社東芝 Positive electrode for nickel / hydrogen secondary battery, nickel / hydrogen secondary battery using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4723737B2 (en) * 2001-02-28 2011-07-13 株式会社東芝 Positive electrode for nickel / hydrogen secondary battery, nickel / hydrogen secondary battery using the same
WO2003026046A1 (en) * 2001-09-17 2003-03-27 Kawasaki Jukogyo Kabushiki Kaisha Active material for cell and its manufacturing method

Also Published As

Publication number Publication date
JP4025863B2 (en) 2007-12-26

Similar Documents

Publication Publication Date Title
TW567633B (en) Electrode material for rechargeable lithium battery, electrode structural body comprising said electrode material, rechargeable lithium battery having said electrode structural body, process for the production of said electrode structural body
JP3265652B2 (en) Manufacturing method of alkaline storage battery and its hydrogen storage alloy
JP2024023286A (en) Method for manufacturing hydrogen storage material
JP3300373B2 (en) Hydrogen storage alloy, method for producing hydrogen storage alloy, hydrogen storage alloy electrode, method for producing hydrogen storage alloy electrode, and battery
JP4025863B2 (en) Electrode for alkaline secondary battery and method for producing the same
JP3577531B2 (en) Electrode for alkaline secondary battery and method for producing the same
JP3861788B2 (en) Hydrogen storage alloy powder, hydrogen storage alloy electrode and nickel metal hydride storage battery using the same.
JP4304430B2 (en) Hydrogen storage alloy and electrode using the same
JP4437338B2 (en) Positive electrode for alkaline storage battery
JP2001176507A (en) SURFACE IMPROVEMENT METHOD OF HYDROGEN STORAGE ALLOY FOR Ni/MH SECONDARY BATTERY UTILIZING FLAT METAL
JP2972919B2 (en) Method for producing hydrogen storage alloy powder for storage battery and hydrogen storage electrode
JP2719542B2 (en) Hydrogen storage alloy powder for battery electrode and method for producing hydrogen storage electrode
JPH10259436A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
US5728277A (en) Hydrogen occlusion electrode
JP2726976B2 (en) Hydrogen storage electrode and method for producing the same
JPH10265875A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JP3370071B2 (en) Hydrogen storage alloy electrode and nickel-metal hydride storage battery using this electrode
JP4706163B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery using the same
JPH08236107A (en) Hydrogen storage alloy electrode and manufacture thereof
JP2005105356A (en) Hydrogen storage alloy, hydrogen storage alloy electrode, and hermetically sealed-type nickel hydrogen storage battery
JP3414148B2 (en) Hydrogen storage alloy powder and hydrogen storage electrode for Ni-H secondary battery
JPH10259445A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JP2969871B2 (en) Method for producing hydrogen storage electrode
JPH10172546A (en) Hydrogen storage alloy powder and electrode for battery
JPH10102174A (en) Hydrogen storage alloy, its production, and nickel-hydrogen secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040413

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040413

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20040413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term