JPH1177785A - Hydraulic circuit of injection molding machine - Google Patents

Hydraulic circuit of injection molding machine

Info

Publication number
JPH1177785A
JPH1177785A JP9250421A JP25042197A JPH1177785A JP H1177785 A JPH1177785 A JP H1177785A JP 9250421 A JP9250421 A JP 9250421A JP 25042197 A JP25042197 A JP 25042197A JP H1177785 A JPH1177785 A JP H1177785A
Authority
JP
Japan
Prior art keywords
hydraulic
oil
heat exchange
hydraulic pump
injection molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9250421A
Other languages
Japanese (ja)
Other versions
JP3786766B2 (en
Inventor
Norihiro Koda
紀泰 甲田
Takahito Shioiri
隆仁 塩入
Yukihiko Takahashi
幸彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Plastic Industrial Co Ltd
Original Assignee
Nissei Plastic Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Plastic Industrial Co Ltd filed Critical Nissei Plastic Industrial Co Ltd
Priority to JP25042197A priority Critical patent/JP3786766B2/en
Publication of JPH1177785A publication Critical patent/JPH1177785A/en
Application granted granted Critical
Publication of JP3786766B2 publication Critical patent/JP3786766B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/82Hydraulic or pneumatic circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C2045/7271Cooling of drive motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To rapidly ensure the stability at the time of the rising of molding by shortening the temp. rise time of operation oil at the time of start of operation and to enhance the production efficiency by providing a heat exchange part between the operation oil of a hydraulic pump and a drive motor. SOLUTION: When operation is started, a power supply is closed and a servo motor 4s is operated to drive a hydraulic pump 3c. When the set temp. of operation oil O is set to 40 deg.C and temp. at the time of start of operation is set to 20 deg.C, an oil cooler 5 is not operated at an operation initial period and, therefore, the operation oil O circulated through the circuit of a hydraulic drive source 2 is heated by the heat generated in the hydraulic pump 3 and also heated by the heat generated by the servo motor 48. That is, the heat generated by the servo motor 4S is transmitted to an oil sending pipe (heat exchange part 6) wound around the servo motor 4S and the operation oil O flowing through the oil sending pipe is heated by heat exchange.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は油圧駆動源として油
圧ポンプ及びこの油圧ポンプを駆動する駆動モータを備
える射出成形機の油圧回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydraulic circuit for an injection molding machine having a hydraulic pump as a hydraulic drive source and a drive motor for driving the hydraulic pump.

【0002】[0002]

【従来の技術】従来、射出成形機の油圧回路として、油
圧駆動源に固定吐出型油圧ポンプ及びこの油圧ポンプを
駆動するサーボモータを使用し、サーボモータの回転数
を制御することにより当該油圧ポンプの吐出流量と吐出
圧力を制御するようにした油圧回路が知られている。
2. Description of the Related Art Conventionally, as a hydraulic circuit of an injection molding machine, a fixed discharge hydraulic pump and a servomotor for driving the hydraulic pump are used as a hydraulic drive source, and the number of rotations of the servomotor is controlled to control the hydraulic pump. There is known a hydraulic circuit which controls a discharge flow rate and a discharge pressure.

【0003】ところで、この種の油圧回路では循環する
作動油の温度を適温に維持することが、作動油の最適な
粘性を確保し、油圧アクチュエータの円滑な作動を担保
する上で重要である。作動油の適温は通常40℃前後で
あるため、運転初期には油圧ポンプ等で発生する熱を利
用して循環する作動油を加熱するとともに、40℃前後
の設定温度に達したならオイルクーラにより冷却し、運
転継続中は設定温度に維持する制御が行われる。一方、
サーボモータは作動中にコイルの銅損等により発熱する
ため、通常、モータシャフトに付設した冷却ファンによ
る空冷方式の冷却が行われる。
In this type of hydraulic circuit, it is important to maintain the temperature of the circulating hydraulic oil at an appropriate temperature in order to secure the optimum viscosity of the hydraulic oil and ensure smooth operation of the hydraulic actuator. Since the optimal temperature of hydraulic oil is usually around 40 ° C, the circulating hydraulic oil is heated at the beginning of operation using heat generated by a hydraulic pump etc., and when the temperature reaches around 40 ° C, an oil cooler Control is performed to cool and maintain the set temperature during operation. on the other hand,
Since the servomotor generates heat due to copper loss of the coil during operation, cooling by an air cooling system is usually performed by a cooling fan attached to the motor shaft.

【0004】[0004]

【発明が解決しようとする課題】しかし、上述した従来
の油圧回路は、次のような問題点があった。
However, the above-mentioned conventional hydraulic circuit has the following problems.

【0005】第一に、冬季等では作動油温度の低下によ
り、作動油が運転開始から適温になるまでかなりの時間
を要する。図3には従来の油圧回路における運転経過時
間に対する作動油温度とサーボモータ温度の関係を一例
としてTor(作動油温度)とTmr(サーボモータ温
度)により示すが、運転開始時の温度が20℃の場合、
作動油温度Torが適温に達するまでは30分程度の時
間を要し、結局、この間は安定成形を行えないととも
に、生産効率の低下を招く。
First, in winter or the like, it takes a considerable time from the start of operation to a proper temperature of the hydraulic oil due to a decrease in the temperature of the hydraulic oil. FIG. 3 shows, as an example, the relationship between the operating oil temperature and the servo motor temperature with respect to the operation elapsed time in the conventional hydraulic circuit by using Tor (operating oil temperature) and Tmr (servo motor temperature). in the case of,
It takes about 30 minutes for the hydraulic oil temperature Tor to reach an appropriate temperature. During this time, stable molding cannot be performed and production efficiency is reduced.

【0006】第二に、サーボモータは空冷方式により冷
却されるが、成形サイクルの高速化によりサーボモータ
の消費電力が大きくなった場合には、十分に冷却でき
ず、図3に示すTmrのように発熱が大きくなるととも
に、温度ドリフトによる制御誤差を生じやすい。しか
も、冷却ファンによる風により埃等が発生しやすくなる
ため、射出成形機や成形品にとっても好ましいものでは
ない。
Second, the servomotor is cooled by an air cooling method. However, if the power consumption of the servomotor is increased due to an increase in the molding cycle speed, the servomotor cannot be cooled sufficiently, as shown by Tmr in FIG. In addition, heat generation becomes large, and a control error due to a temperature drift is likely to occur. In addition, dust and the like are easily generated by the wind generated by the cooling fan, which is not preferable for an injection molding machine or a molded product.

【0007】本発明はこのような従来の技術に存在する
課題を解決したものであり、運転開始時における作動油
の昇温時間を短縮して成形立上時の安定性を速やかに確
保し、生産効率の向上を図るとともに、駆動モータ(サ
ーボモータ)における冷却ファンの排除と十分な冷却の
確保を同時に実現する射出成形機の油圧回路の提供を目
的とする。
The present invention has been made to solve the problems existing in the prior art, and shortens the time for raising the temperature of the hydraulic oil at the start of operation to quickly secure the stability at the time of starting the molding. It is an object of the present invention to provide a hydraulic circuit of an injection molding machine that improves production efficiency and simultaneously eliminates a cooling fan in a drive motor (servo motor) and ensures sufficient cooling.

【0008】[0008]

【課題を解決するための手段及び実施の形態】本発明
は、油圧駆動源2として油圧ポンプ3及びこの油圧ポン
プ3を駆動する駆動モータ4を備えるとともに、油圧ポ
ンプ3により循環する作動油Oを冷却するオイルクーラ
5を備える射出成形機の油圧回路1を構成するに際し
て、作動油Oと駆動モータ4の間に、作動油Oと駆動モ
ータ4間の熱交換を行う熱交換部6を設けたことを特徴
とする。
The present invention comprises a hydraulic pump 3 as a hydraulic drive source 2 and a drive motor 4 for driving the hydraulic pump 3, and also a hydraulic oil O circulated by the hydraulic pump 3. In configuring the hydraulic circuit 1 of the injection molding machine including the oil cooler 5 for cooling, a heat exchange unit 6 for exchanging heat between the hydraulic oil O and the drive motor 4 is provided between the hydraulic oil O and the drive motor 4. It is characterized by the following.

【0009】この場合、好適な実施の形態により、熱交
換部6は、作動油Oが循環する送油管10を駆動モータ
4の外面に巻付けて構成できるとともに、特に、この形
態では、作動油Oの温度を検出し、検出した温度が設定
値以下のときは作動油Oを熱交換部6に流し、かつ検出
した温度が設定値を越えたときは作動油Oを熱交換部6
をバイパスして流すバイパス機能部11を設けることが
できる。また、熱交換部6は、作動油Oを収容するオイ
ルタンク12と駆動モータ4間の伝熱部位13により構
成することもできる。一方、油圧駆動源2は固定吐出型
油圧ポンプ3c及びこの油圧ポンプ3cを駆動するサー
ボモータ4sにより構成できる。
In this case, according to a preferred embodiment, the heat exchange section 6 can be configured by winding an oil feed pipe 10 through which the hydraulic oil O circulates around the outer surface of the drive motor 4. The temperature of O is detected, and when the detected temperature is equal to or lower than the set value, the hydraulic oil O is caused to flow to the heat exchange unit 6.
A bypass function unit 11 can be provided to bypass and flow. Further, the heat exchange section 6 can be constituted by a heat transfer section 13 between the oil tank 12 containing the hydraulic oil O and the drive motor 4. On the other hand, the hydraulic drive source 2 can be constituted by a fixed discharge hydraulic pump 3c and a servo motor 4s for driving the hydraulic pump 3c.

【0010】これにより、作動油Oと駆動モータ4の間
には熱交換部6が介在するため、射出成形機の運転開始
時に、作動油Oの温度が低い場合には、油圧ポンプ3等
で発生する熱により加熱されることに加え、駆動モータ
4の発熱によっても加熱されるため、作動油Oが適温
(設定温度)に達するまでの昇温時間が短縮される。一
方、作動油Oは適温に達した後、オイルクーラ5によっ
て設定温度となるように冷却制御されるため、駆動モー
タ4は作動油Oによる油冷方式によって冷却される。
As a result, since the heat exchanging section 6 is interposed between the hydraulic oil O and the drive motor 4, when the temperature of the hydraulic oil O is low at the start of the operation of the injection molding machine, the hydraulic pump 3 or the like is used. In addition to being heated by the generated heat, it is also heated by the heat generated by the drive motor 4, so that the time required for the hydraulic oil O to reach an appropriate temperature (set temperature) is reduced. On the other hand, after the working oil O reaches an appropriate temperature, the cooling is controlled by the oil cooler 5 so as to reach the set temperature, so that the drive motor 4 is cooled by the oil cooling method using the working oil O.

【0011】[0011]

【実施例】次に、本発明に係る好適な実施例を挙げ、図
面に基づき詳細に説明する。
Next, preferred embodiments according to the present invention will be described in detail with reference to the drawings.

【0012】まず、第一実施例に係る油圧回路1の構成
について、図1及び図2を参照して説明する。
First, the configuration of the hydraulic circuit 1 according to the first embodiment will be described with reference to FIGS.

【0013】図1中、Mは射出成形機であり、射出装置
M1と型締装置M2を備える。一方、油圧回路1におい
て、21は各種制御弁等を備える油圧パネルであり、こ
の油圧パネル21には射出成形機Mにおける各種油圧ア
クチュエータが接続される。実施例は、油圧パネル21
に接続される油圧アクチュエータとして、射出装置M1
の射出シリンダ22及び型締装置M2の型締シリンダ2
3を例示する。
In FIG. 1, M is an injection molding machine, which includes an injection device M1 and a mold clamping device M2. On the other hand, in the hydraulic circuit 1, reference numeral 21 denotes a hydraulic panel including various control valves and the like, and various hydraulic actuators of the injection molding machine M are connected to the hydraulic panel 21. In the embodiment, the hydraulic panel 21 is used.
Injection device M1 as a hydraulic actuator connected to
Injection cylinder 22 and mold clamping cylinder 2 of mold clamping device M2
3 is illustrated.

【0014】また、2は油圧駆動源であり、固定吐出型
油圧ポンプ3c(油圧ポンプ3)と、この油圧ポンプ3
cを駆動するサーボモータ4s(駆動モータ4)を備え
る。この油圧駆動源2は、サーボモータ4sの回転数を
制御することにより油圧ポンプ3cの吐出流量と吐出圧
力を制御できる。そして、油圧ポンプ3cの吐出ポート
3oは油圧パネル21の供給ポート21iに接続すると
ともに、油圧ポンプ3cの吸入ポート3iはオイルタン
ク24に接続する。これにより、油圧ポンプ3cから吐
出する作動油Oは油圧パネル21の供給ポート21iを
通して射出成形機Mの油圧アクチュエータに供給され
る。
Reference numeral 2 denotes a hydraulic drive source, which includes a fixed discharge hydraulic pump 3c (hydraulic pump 3) and a hydraulic pump 3c.
c is provided with a servomotor 4s (drive motor 4) for driving c. The hydraulic drive source 2 can control the discharge flow rate and discharge pressure of the hydraulic pump 3c by controlling the rotation speed of the servo motor 4s. The discharge port 3o of the hydraulic pump 3c is connected to the supply port 21i of the hydraulic panel 21, and the suction port 3i of the hydraulic pump 3c is connected to the oil tank 24. Thereby, the hydraulic oil O discharged from the hydraulic pump 3c is supplied to the hydraulic actuator of the injection molding machine M through the supply port 21i of the hydraulic panel 21.

【0015】他方、油圧パネル21には射出成形機Mの
油圧アクチュエータから戻される作動油Oを排出する排
出ポート21oを備え、この排出ポート21oは本発明
に従ってサーボモータ4sに付設した熱交換部6を介し
てオイルクーラ5の入口ポート5iに接続する。この場
合、熱交換部6は図2に示すように、油圧パネル21の
排出ポート21oとオイルクーラ5の入口ポート5iを
接続する送油管10を、サーボモータ4sの外面に密着
するように巻付けて構成する。また、オイルクーラ5の
出口ポート5oはオイルタンク24に接続する。なお、
25は油圧ポンプ3cとオイルクーラ5間に接続したケ
ースドレイン(外部ドレイン)、26はサーボモータ4
sのモータシャフトを示す。
On the other hand, the hydraulic panel 21 is provided with a discharge port 21o for discharging the hydraulic oil O returned from the hydraulic actuator of the injection molding machine M. This discharge port 21o is connected to the heat exchange section 6 attached to the servomotor 4s according to the present invention. To the inlet port 5i of the oil cooler 5. In this case, as shown in FIG. 2, the heat exchange unit 6 winds the oil supply pipe 10 connecting the discharge port 21o of the hydraulic panel 21 and the inlet port 5i of the oil cooler 5 so as to be in close contact with the outer surface of the servomotor 4s. It is composed. The outlet port 5o of the oil cooler 5 is connected to the oil tank 24. In addition,
25 is a case drain (external drain) connected between the hydraulic pump 3c and the oil cooler 5, 26 is a servo motor 4
s shows the motor shaft.

【0016】次に、第一実施例に係る油圧回路1の動作
について、図1〜図3を参照して説明する。
Next, the operation of the hydraulic circuit 1 according to the first embodiment will be described with reference to FIGS.

【0017】今、比較的寒い気温環境下で射出成形機M
の運転を開始する場合を想定する。まず、電源の投入に
より、サーボモータ4sが作動して油圧ポンプ3cが駆
動せしめられる。これにより、油圧ポンプ3cには吸入
ポート3iからオイルタンク24の作動油Oが吸入され
るとともに、油圧ポンプ3cの吐出ポート3oから作動
油Oが吐出し、この吐出した作動油Oは油圧パネル21
の供給ポート21iに供給される。一方、射出成形機M
の油圧アクチュエータは停止しているため、油圧パネル
21の供給ポート21iに供給された作動油Oは排出ポ
ート21oから排出(リリーフ)され、熱交換部6を備
える送油管10及びオイルクーラ5を通ってオイルタン
ク24に戻される。
Now, in a relatively cold temperature environment, the injection molding machine M
It is assumed that the operation is started. First, when the power is turned on, the servo motor 4s operates to drive the hydraulic pump 3c. Thus, the hydraulic oil O of the oil tank 24 is sucked into the hydraulic pump 3c from the suction port 3i, and the hydraulic oil O is discharged from the discharge port 3o of the hydraulic pump 3c.
Is supplied to the supply port 21i. On the other hand, the injection molding machine M
Is stopped, the hydraulic oil O supplied to the supply port 21i of the hydraulic panel 21 is discharged (relief) from the discharge port 21o and passes through the oil feed pipe 10 having the heat exchange unit 6 and the oil cooler 5. And returned to the oil tank 24.

【0018】この際、一例として、作動油Oの設定温度
が40℃,運転開始時の温度が20℃であるとした場
合、運転初期にはオイルクーラ5は作動しないため、油
圧駆動源2の回路を循環する作動油Oは、油圧ポンプ3
等で発生する熱により加熱されるとともに、さらに、サ
ーボモータ4sの発熱によっても加熱される。即ち、サ
ーボモータ4sで発生した熱は、当該サーボモータ4s
に巻付けられた送油管10(熱交換部6)に伝達され、
送油管10を流れる作動油Oが熱交換により加熱され
る。図3は運転経過時間に対する作動油温度Toとサー
ボモータ温度Tmの関係を示すが、同図に示すように、
熱交換部6を設けることにより、作動油Oが適温となる
設定温度(40℃)に達するまでの昇温時間が短縮され
る。実施例で示す作動油温度Toの場合、昇温時間は2
0分程度となり、熱交換部6を用いない従来の技術(T
or)に比べて10分程度短縮される。よって、成形立
上時の安定性が速やかに確保され、生産効率の向上が図
られる。
At this time, as an example, assuming that the set temperature of the hydraulic oil O is 40 ° C. and the temperature at the start of the operation is 20 ° C., the oil cooler 5 does not operate at the beginning of the operation. The hydraulic oil O circulating in the circuit is supplied to the hydraulic pump 3
And the like, and also heated by the heat generated by the servo motor 4s. That is, the heat generated by the servo motor 4s
Is transmitted to the oil feed pipe 10 (heat exchange section 6) wound around
The hydraulic oil O flowing through the oil pipe 10 is heated by heat exchange. FIG. 3 shows the relationship between the operating oil temperature To and the servo motor temperature Tm with respect to the operation elapsed time. As shown in FIG.
By providing the heat exchange section 6, the time required for the operating oil O to reach a set temperature (40 ° C.) at which the operating oil O reaches an appropriate temperature is reduced. In the case of the hydraulic oil temperature To shown in the embodiment, the heating time is 2
It takes about 0 minutes, and the conventional technology (T
or) about 10 minutes. Therefore, stability at the time of starting the molding is promptly secured, and the production efficiency is improved.

【0019】一方、作動油温度Toが上昇して設定温度
(40℃)に達した場合には、不図示の温度センサによ
る検出に基づいてオイルクーラ5が作動し、作動油Oが
冷却される。即ち、作動油温度Toが設定温度を維持す
るようにフィードバック制御される。また、設定温度に
維持された作動油Oは熱交換部6を構成する送油管10
を流れるため、今度はサーボモータ4sが熱交換部6に
よる油冷方式により冷却され、図3にTmで示すよう
に、十分かつ安定した冷却が確保されることにより、温
度ドリフトによる制御誤差が低減される。しかも、冷却
ファンが不要になるため、冷却ファンによる埃等の発生
がなくなるとともに、コスト面でも有利になる。
On the other hand, when the operating oil temperature To rises and reaches the set temperature (40 ° C.), the oil cooler 5 operates based on the detection by a temperature sensor (not shown), and the operating oil O is cooled. . That is, feedback control is performed so that the hydraulic oil temperature To maintains the set temperature. Further, the hydraulic oil O maintained at the set temperature is supplied to the oil supply pipe 10 constituting the heat exchange unit 6.
Then, the servomotor 4s is cooled by the oil cooling method using the heat exchange unit 6, and as shown by Tm in FIG. 3, sufficient and stable cooling is ensured, thereby reducing the control error due to temperature drift. Is done. In addition, since a cooling fan is not required, dust and the like are not generated by the cooling fan, and the cost is also advantageous.

【0020】他方、図4及び図5には第二実施例を示
す。なお、図4及び図5における図1及び図2と同一部
分にはそれぞれ同一符号を付し、各部の構成を明確にす
るとともに、その詳細な説明は省略する。
FIGS. 4 and 5 show a second embodiment. 4 and FIG. 5 are denoted by the same reference numerals as those in FIG. 1 and FIG. 2 to clarify the configuration of each part and omit detailed description thereof.

【0021】第二実施例は、熱交換部6を構成するに際
し、作動油Oを収容するオイルタンク12とサーボモー
タ4s(駆動モータ4)間の伝熱部位13により構成し
たものである。即ち、オイルタンク12の側面部12s
にサーボモータ4sを収容する収容凹部31を設け、こ
の収容凹部31にサーボモータ4sを収容した。したが
って、この収容凹部31の壁面が伝熱部位13となる。
第二実施例の場合には、油圧パネル21の排出ポート2
1oとオイルクーラ5が直接送油管10により接続され
る。なお、基本的な動作及び作用は第一実施例と同じで
ある。
In the second embodiment, the heat exchange section 6 is constituted by an oil tank 12 containing hydraulic oil O and a heat transfer portion 13 between the servomotor 4s (drive motor 4). That is, the side portion 12s of the oil tank 12
An accommodation recess 31 for accommodating the servo motor 4s was provided in the housing, and the servo motor 4s was accommodated in the accommodation recess 31. Therefore, the wall surface of the housing recess 31 becomes the heat transfer portion 13.
In the case of the second embodiment, the discharge port 2 of the hydraulic panel 21
The oil cooler 5 is directly connected to the oil cooler 5 by an oil feed pipe 10. The basic operation and operation are the same as in the first embodiment.

【0022】さらに、図6には図1に示した第一実施例
の変更例を示す。この変更例は、熱交換部6に対してバ
イパス機能部11を付設したものである。このバイパス
機能部11は、作動油Oの温度を温度センサ41により
検出し、検出した温度が設定値以下のときは、三方切換
弁42を一方側に切換えて作動油Oを熱交換部6に流す
とともに、検出した温度が設定値を越えたときは、三方
切換弁42を他方側に切換えて作動油Oをバイパス管4
3に流し、熱交換部6をバイパスさせる機能を有する。
このような変更例は、運転立上時にサーボモータによる
作動油の加熱は行われるも、作動油によるサーボモータ
の冷却は行われない。したがって、発熱を伴うも冷却が
不要なサーボモータ、即ち、自然冷却方式のサーボモー
タを用いた場合に適用できる。
FIG. 6 shows a modification of the first embodiment shown in FIG. In this modified example, a bypass function unit 11 is added to the heat exchange unit 6. The bypass function unit 11 detects the temperature of the hydraulic oil O by the temperature sensor 41, and when the detected temperature is equal to or lower than the set value, switches the three-way switching valve 42 to one side to transfer the hydraulic oil O to the heat exchange unit 6. When the detected temperature exceeds the set value, the three-way switching valve 42 is switched to the other side to pass the hydraulic oil O to the bypass pipe 4.
3 and has a function of bypassing the heat exchange unit 6.
In such a modification, the operating oil is heated by the servomotor at the start of operation, but the servomotor is not cooled by the operating oil. Therefore, the present invention can be applied to a case where a servomotor which generates heat but does not require cooling, that is, a servomotor of a natural cooling system is used.

【0023】以上、実施例について詳細に説明したが、
本発明はこのような実施例に限定されるものではなく、
細部の構成,形状等において、本発明の要旨を逸脱しな
い範囲で、任意に変更,追加,削除することができる。
例えば、油圧駆動源2は、固定吐出型油圧ポンプ3c及
びこの油圧ポンプ3cを駆動するサーボモータ4sを備
える場合を示したが、油圧ポンプ3に可変吐出型油圧ポ
ンプを使用し、駆動モータ4に定速回転する一般モータ
を使用する場合であっても同様に適用できる。また、第
二実施例において、サーボモータ4sを耐油処理し、直
接オイルタンク12の中に収容することにより、モータ
シャフト26のみをオイルタンク12の外部に露出させ
る構造であってもよい。
The embodiment has been described in detail above.
The present invention is not limited to such an embodiment,
The configuration, shape, etc. of the details can be arbitrarily changed, added, or deleted without departing from the gist of the present invention.
For example, the case where the hydraulic drive source 2 includes the fixed discharge type hydraulic pump 3c and the servomotor 4s for driving the hydraulic pump 3c has been described, but a variable discharge type hydraulic pump is used for the hydraulic pump 3 and the drive motor 4 is The same applies to the case where a general motor that rotates at a constant speed is used. Further, in the second embodiment, the servo motor 4s may be subjected to oil resistance treatment and may be housed directly in the oil tank 12 so that only the motor shaft 26 is exposed to the outside of the oil tank 12.

【0024】[0024]

【発明の効果】このように、本発明に係る射出成形機の
油圧回路は、油圧ポンプにより循環する作動油と駆動モ
ータの間に、作動油と駆動モータ間の熱交換を行う熱交
換部を設けたため、次のような顕著な効果を奏する。
As described above, the hydraulic circuit of the injection molding machine according to the present invention includes a heat exchange section for exchanging heat between the hydraulic oil and the drive motor between the hydraulic oil circulated by the hydraulic pump and the drive motor. Due to the provision, the following remarkable effects are exhibited.

【0025】 運転初期における作動油の昇温時間を
短縮できるため、成形立上時の安定性を速やかに確保
し、生産効率の向上を図ることができる。
Since the time for raising the temperature of the hydraulic oil in the initial stage of the operation can be shortened, stability at the time of starting the molding can be promptly secured, and the production efficiency can be improved.

【0026】 駆動モータに対する十分かつ安定した
冷却を確保し、温度ドリフトによる制御誤差を低減する
とともに、同時に冷却ファンを不要にできるため、冷却
ファンによる埃等の発生がなくなり、しかも、コスト面
でも有利になる。
[0026] Sufficient and stable cooling of the drive motor is ensured, control errors due to temperature drift are reduced, and at the same time, a cooling fan can be dispensed with, so that dust and the like are not generated by the cooling fan, and the cost is also advantageous. become.

【0027】 別途の追加部品を使用することなく容
易かつ低コストに実施できる。
The operation can be performed easily and at low cost without using any additional components.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一実施例に係る油圧回路のブロック
系統図を含む射出成形機の構成図、
FIG. 1 is a block diagram of an injection molding machine including a block diagram of a hydraulic circuit according to a first embodiment of the present invention;

【図2】同油圧回路に備える熱交換部の一部断面構成
図、
FIG. 2 is a partial cross-sectional configuration diagram of a heat exchange unit provided in the hydraulic circuit,

【図3】同油圧回路における運転経過時間に対する作動
油温度とサーボモータ温度の関係を示す特性図、
FIG. 3 is a characteristic diagram showing a relationship between a hydraulic oil temperature and a servo motor temperature with respect to an operation elapsed time in the hydraulic circuit;

【図4】本発明の第二実施例に係る油圧回路のブロック
系統図、
FIG. 4 is a block diagram of a hydraulic circuit according to a second embodiment of the present invention,

【図5】同油圧回路に備える熱交換部の断面構成図、FIG. 5 is a sectional configuration diagram of a heat exchange unit provided in the hydraulic circuit,

【図6】第一実施例の変更例に係る油圧回路のブロック
系統図、
FIG. 6 is a block diagram of a hydraulic circuit according to a modification of the first embodiment;

【符号の説明】[Explanation of symbols]

1 油圧回路 2 油圧駆動源 3 油圧ポンプ 3c 固定吐出型油圧ポンプ 4 駆動モータ 4s サーボモータ 5 オイルクーラ 6 熱交換部 10 送油管 11 バイパス機能部 12 オイルタンク 13 伝熱部位 O 作動油 DESCRIPTION OF SYMBOLS 1 Hydraulic circuit 2 Hydraulic drive source 3 Hydraulic pump 3c Fixed discharge type hydraulic pump 4 Drive motor 4s Servo motor 5 Oil cooler 6 Heat exchange part 10 Oil supply pipe 11 Bypass function part 12 Oil tank 13 Heat transfer part O Hydraulic oil

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年10月20日[Submission date] October 20, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図6[Correction target item name] Fig. 6

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図6】 FIG. 6

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 油圧駆動源として油圧ポンプ及びこの油
圧ポンプを駆動する駆動モータを備えるとともに、前記
油圧ポンプにより循環する作動油を冷却するオイルクー
ラを備える射出成形機の油圧回路において、前記作動油
と前記駆動モータの間に、前記作動油と前記駆動モータ
間の熱交換を行う熱交換部を設けたことを特徴とする射
出成形機の油圧回路。
1. A hydraulic circuit for an injection molding machine, comprising: a hydraulic pump as a hydraulic drive source; a drive motor for driving the hydraulic pump; and an oil cooler for cooling hydraulic oil circulated by the hydraulic pump. A heat exchange section for exchanging heat between the hydraulic oil and the drive motor is provided between the hydraulic motor and the drive motor.
【請求項2】 前記熱交換部は、前記作動油が循環する
送油管を前記駆動モータの外面に巻付けて構成すること
を特徴とする請求項1記載の射出成形機の油圧回路。
2. The hydraulic circuit for an injection molding machine according to claim 1, wherein the heat exchange unit is configured by winding an oil feed pipe through which the hydraulic oil circulates around an outer surface of the drive motor.
【請求項3】 前記作動油の温度を検出し、検出した温
度が設定値以下のときは前記作動油を前記熱交換部に流
し、かつ検出した温度が設定値を越えたときは前記作動
油を前記熱交換部をバイパスして流すバイパス機能部を
備えることを特徴とする請求項2記載の射出成形機の油
圧回路。
3. The temperature of the hydraulic oil is detected, and when the detected temperature is equal to or lower than a set value, the hydraulic oil is caused to flow through the heat exchange unit. When the detected temperature exceeds a set value, the hydraulic oil is set. 3. A hydraulic circuit for an injection molding machine according to claim 2, further comprising: a bypass function section for causing the heat to flow by bypassing the heat exchange section.
【請求項4】 前記熱交換部は、前記作動油を収容する
オイルタンクと前記駆動モータ間の伝熱部位により構成
することを特徴とする請求項1記載の射出成形機の油圧
回路。
4. A hydraulic circuit for an injection molding machine according to claim 1, wherein said heat exchange section comprises a heat transfer portion between an oil tank containing said hydraulic oil and said drive motor.
【請求項5】 前記油圧駆動源は、固定吐出型油圧ポン
プ及びこの油圧ポンプを駆動するサーボモータを備える
ことを特徴とする請求項1記載の射出成形機の油圧回
路。
5. The hydraulic circuit for an injection molding machine according to claim 1, wherein said hydraulic drive source comprises a fixed discharge hydraulic pump and a servomotor for driving said hydraulic pump.
JP25042197A 1997-09-16 1997-09-16 Hydraulic circuit of injection molding machine Expired - Fee Related JP3786766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25042197A JP3786766B2 (en) 1997-09-16 1997-09-16 Hydraulic circuit of injection molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25042197A JP3786766B2 (en) 1997-09-16 1997-09-16 Hydraulic circuit of injection molding machine

Publications (2)

Publication Number Publication Date
JPH1177785A true JPH1177785A (en) 1999-03-23
JP3786766B2 JP3786766B2 (en) 2006-06-14

Family

ID=17207647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25042197A Expired - Fee Related JP3786766B2 (en) 1997-09-16 1997-09-16 Hydraulic circuit of injection molding machine

Country Status (1)

Country Link
JP (1) JP3786766B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7128549B2 (en) 2002-06-12 2006-10-31 Sumitomo Heavy Industries, Ltd. Cooling mechanism for cooling electric driving part of injection molding machine and cooling method for the same
DE102012000986B3 (en) * 2012-01-22 2013-05-23 Arburg Gmbh + Co Kg Hydraulic device with a tempering device
CN108167278A (en) * 2018-03-05 2018-06-15 肇庆高新区鸿胜模具制造有限公司 Oil cylinder cooling structure
CN109080070A (en) * 2018-08-03 2018-12-25 太仓曌信金属制品有限公司 A kind of high performance plastics injection molding machine and injection molding forming method with cooling device
CN109262946A (en) * 2018-08-02 2019-01-25 太仓求精塑模有限公司 A kind of bloom Shooting Technique of energy-saving and emission-reduction

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7128549B2 (en) 2002-06-12 2006-10-31 Sumitomo Heavy Industries, Ltd. Cooling mechanism for cooling electric driving part of injection molding machine and cooling method for the same
DE102012000986B3 (en) * 2012-01-22 2013-05-23 Arburg Gmbh + Co Kg Hydraulic device with a tempering device
WO2013107648A1 (en) 2012-01-22 2013-07-25 Arburg Gmbh + Co. Kg Hydraulic device having a temperature-control device
CN108167278A (en) * 2018-03-05 2018-06-15 肇庆高新区鸿胜模具制造有限公司 Oil cylinder cooling structure
CN109262946A (en) * 2018-08-02 2019-01-25 太仓求精塑模有限公司 A kind of bloom Shooting Technique of energy-saving and emission-reduction
CN109080070A (en) * 2018-08-03 2018-12-25 太仓曌信金属制品有限公司 A kind of high performance plastics injection molding machine and injection molding forming method with cooling device

Also Published As

Publication number Publication date
JP3786766B2 (en) 2006-06-14

Similar Documents

Publication Publication Date Title
US10054033B2 (en) Cooling apparatus for internal combustion engine
EP1010873B1 (en) Cooling water circulating apparatus
JPS60113017A (en) Operation control method for cooling fan of 2-system cooling type internal-combustion engine
US20160001636A1 (en) Vehicle air conditioning device
CN109578126A (en) High/low temperature dual cycle cooling system for hybrid vehicle
US20170350659A1 (en) Internal combustion engine
JP2004360509A (en) Cooling system for internal combustion engine
JPH1177785A (en) Hydraulic circuit of injection molding machine
JP4193309B2 (en) Cooling device for internal combustion engine
CN112740452B (en) Method for operating a fuel cell system of a motor vehicle
US6951192B2 (en) Method and apparatus for regulating the operating temperature of an internal combustion engine
CN110356210B (en) Temperature control device for vehicle
JP2004316472A (en) Cooling system for internal combustion engine
JP2009274462A (en) Air conditioner
JPH09275664A (en) Motor controlling system
JP3557683B2 (en) Vehicle cooling water temperature control system
JPH0211726B2 (en)
JP2002295253A (en) Cooling system for engine
JP2007002764A (en) Drive control device for water pump and cooling water circulation device
JP3950224B2 (en) Electric vehicle heating control system
JP2019152172A (en) Temperature control device of vehicle
JP2002188443A (en) Cooling device for internal combustion engine
KR100431135B1 (en) Electric Fan Combined With Cooling and Heating Function
JP2646493B2 (en) Auto air conditioner
JPH01155020A (en) Exhaust heat recovering device for engine

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees