JP3786766B2 - Hydraulic circuit of injection molding machine - Google Patents

Hydraulic circuit of injection molding machine Download PDF

Info

Publication number
JP3786766B2
JP3786766B2 JP25042197A JP25042197A JP3786766B2 JP 3786766 B2 JP3786766 B2 JP 3786766B2 JP 25042197 A JP25042197 A JP 25042197A JP 25042197 A JP25042197 A JP 25042197A JP 3786766 B2 JP3786766 B2 JP 3786766B2
Authority
JP
Japan
Prior art keywords
hydraulic
oil
hydraulic oil
servo motor
injection molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25042197A
Other languages
Japanese (ja)
Other versions
JPH1177785A (en
Inventor
紀泰 甲田
隆仁 塩入
幸彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Plastic Industrial Co Ltd
Original Assignee
Nissei Plastic Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Plastic Industrial Co Ltd filed Critical Nissei Plastic Industrial Co Ltd
Priority to JP25042197A priority Critical patent/JP3786766B2/en
Publication of JPH1177785A publication Critical patent/JPH1177785A/en
Application granted granted Critical
Publication of JP3786766B2 publication Critical patent/JP3786766B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/82Hydraulic or pneumatic circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C2045/7271Cooling of drive motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は油圧駆動源として固定吐出型油圧ポンプ及びこの油圧ポンプを駆動するサーボモータを備える射出成形機の油圧回路に関する。
【0002】
【従来の技術】
従来、射出成形機の油圧回路として、油圧駆動源に固定吐出型油圧ポンプ及びこの油圧ポンプを駆動するサーボモータを使用し、サーボモータの回転数を制御することにより当該油圧ポンプの吐出流量と吐出圧力を制御するようにした油圧回路が知られている。
【0003】
ところで、この種の油圧回路では循環する作動油の温度を適温に維持することが、作動油の最適な粘性を確保し、油圧アクチュエータの円滑な作動を担保する上で重要である。作動油の適温は通常40℃前後であるため、運転初期には油圧ポンプ等で発生する熱を利用して循環する作動油を加熱するとともに、40℃前後の設定温度に達したならオイルクーラにより冷却し、運転継続中は設定温度に維持する制御が行われる。一方、サーボモータは作動中にコイルの銅損等により発熱するため、通常、モータシャフトに付設した冷却ファンによる空冷方式の冷却が行われる。
【0004】
【発明が解決しようとする課題】
しかし、上述した従来の油圧回路は、次のような問題点があった。
【0005】
第一に、冬季等では作動油温度の低下により、作動油が運転開始から適温になるまでかなりの時間を要する。図3には従来の油圧回路における運転経過時間に対する作動油温度とサーボモータ温度の関係を一例としてTor(作動油温度)とTmr(サーボモータ温度)により示すが、運転開始時の温度が20℃の場合、作動油温度Torが適温に達するまでは30分程度の時間を要し、結局、この間は安定成形を行えないとともに、生産効率の低下を招く。
【0006】
第二に、サーボモータは空冷方式により冷却されるが、成形サイクルの高速化によりサーボモータの消費電力が大きくなった場合には、十分に冷却できず、図3に示すTmrのように発熱が大きくなるとともに、温度ドリフトによる制御誤差を生じやすい。しかも、冷却ファンによる風により埃等が発生しやすくなるため、射出成形機や成形品にとっても好ましいものではない。
【0007】
本発明はこのような従来の技術に存在する課題を解決したものであり、運転開始時における作動油の昇温時間を短縮して成形立上時の安定性を速やかに確保し、生産効率の向上を図るとともに、サーボモータにおける冷却ファンの排除と十分な冷却の確保を同時に実現する射出成形機の油圧回路の提供を目的とする。
【0008】
【課題を解決するための手段及び実施の形態】
本発明は、油圧駆動源2として固定吐出型油圧ポンプ3c及びこの油圧ポンプ3cを駆動するサーボモータ4sを備えるとともに、油圧ポンプ3cにより循環する作動油Oを冷却するオイルクーラ5を備える射出成形機の油圧回路1を構成するに際して、作動油Oとサーボモータ4sの間で熱交換を行うことにより、サーボモータ4sの発熱により作動油Oを加熱し、かつ作動油Oによりサーボモータ4sを冷却する熱交換部6を設けたことを特徴とする。
【0009】
この場合、好適な実施の形態により、熱交換部6は、作動油Oが循環する送油管10をサーボモータ4sの外面に巻付けて構成できるとともに、特に、この形態では、作動油Oの温度を検出し、検出した温度が設定値以下のときは作動油Oを熱交換部6に流し、かつ検出した温度が設定値を越えたときは作動油Oを熱交換部6をバイパスして流すバイパス機能部11を設けることができる。また、熱交換部6は、作動油Oを収容するオイルタンク12とサーボモータ4s間の伝熱部位13により構成することもできる。
【0010】
これにより、作動油Oとサーボモータ4sの間には熱交換部6が介在するため、射出成形機の運転開始時に、作動油Oの温度が低い場合には、固定吐出型油圧ポンプ3cで発生する熱により加熱されることに加え、サーボモータ4sの発熱によっても加熱されるため、作動油Oが適温(設定温度)に達するまでの昇温時間が短縮される。一方、作動油Oは適温に達した後、オイルクーラ5によって設定温度となるように冷却制御されるため、サーボモータ4sは作動油Oによる油冷方式によって冷却される。
【0011】
【実施例】
次に、本発明に係る好適な実施例を挙げ、図面に基づき詳細に説明する。
【0012】
まず、第一実施例に係る油圧回路1の構成について、図1及び図2を参照して説明する。
【0013】
図1中、Mは射出成形機であり、射出装置M1と型締装置M2を備える。一方、油圧回路1において、21は各種制御弁等を備える油圧パネルであり、この油圧パネル21には射出成形機Mにおける各種油圧アクチュエータが接続される。実施例は、油圧パネル21に接続される油圧アクチュエータとして、射出装置M1の射出シリンダ22及び型締装置M2の型締シリンダ23を例示する。
【0014】
また、2は油圧駆動源であり、油圧ポンプ3を構成する固定吐出型油圧ポンプ3cと、この油圧ポンプ3cを駆動する駆動モータ4を構成するサーボモータ4sを備える。この油圧駆動源2は、サーボモータ4sの回転数を制御することにより油圧ポンプ3cの吐出流量と吐出圧力を制御できる。そして、油圧ポンプ3cの吐出ポート3oは油圧パネル21の供給ポート21iに接続するとともに、油圧ポンプ3cの吸入ポート3iはオイルタンク24に接続する。これにより、油圧ポンプ3cから吐出する作動油Oは油圧パネル21の供給ポート21iを通して射出成形機Mの油圧アクチュエータに供給される。
【0015】
他方、油圧パネル21には射出成形機Mの油圧アクチュエータから戻される作動油Oを排出する排出ポート21oを備え、この排出ポート21oは本発明に従ってサーボモータ4sに付設した熱交換部6を介してオイルクーラ5の入口ポート5iに接続する。この場合、熱交換部6は図2に示すように、油圧パネル21の排出ポート21oとオイルクーラ5の入口ポート5iを接続する送油管10を、サーボモータ4sの外面に密着するように巻付けて構成する。また、オイルクーラ5の出口ポート5oはオイルタンク24に接続する。なお、25は油圧ポンプ3cとオイルクーラ5間に接続したケースドレイン(外部ドレイン)、26はサーボモータ4sのモータシャフトを示す。
【0016】
次に、第一実施例に係る油圧回路1の動作について、図1〜図3を参照して説明する。
【0017】
今、比較的寒い気温環境下で射出成形機Mの運転を開始する場合を想定する。まず、電源の投入により、サーボモータ4sが作動して油圧ポンプ3cが駆動せしめられる。これにより、油圧ポンプ3cには吸入ポート3iからオイルタンク24の作動油Oが吸入されるとともに、油圧ポンプ3cの吐出ポート3oから作動油Oが吐出し、この吐出した作動油Oは油圧パネル21の供給ポート21iに供給される。一方、射出成形機Mの油圧アクチュエータは停止しているため、油圧パネル21の供給ポート21iに供給された作動油Oは排出ポート21oから排出(リリーフ)され、熱交換部6を備える送油管10及びオイルクーラ5を通ってオイルタンク24に戻される。
【0018】
この際、一例として、作動油Oの設定温度が40℃,運転開始時の温度が20℃であるとした場合、運転初期にはオイルクーラ5は作動しないため、油圧駆動源2の回路を循環する作動油Oは、油圧ポンプ3等で発生する熱により加熱されるとともに、さらに、サーボモータ4sの発熱によっても加熱される。即ち、サーボモータ4sで発生した熱は、当該サーボモータ4sに巻付けられた送油管10(熱交換部6)に伝達され、送油管10を流れる作動油Oが熱交換により加熱される。図3は運転経過時間に対する作動油温度Toとサーボモータ温度Tmの関係を示すが、同図に示すように、熱交換部6を設けることにより、作動油Oが適温となる設定温度(40℃)に達するまでの昇温時間が短縮される。実施例で示す作動油温度Toの場合、昇温時間は20分程度となり、熱交換部6を用いない従来の技術(Tor)に比べて10分程度短縮される。よって、成形立上時の安定性が速やかに確保され、生産効率の向上が図られる。
【0019】
一方、作動油温度Toが上昇して設定温度(40℃)に達した場合には、不図示の温度センサによる検出に基づいてオイルクーラ5が作動し、作動油Oが冷却される。即ち、作動油温度Toが設定温度を維持するようにフィードバック制御される。また、設定温度に維持された作動油Oは熱交換部6を構成する送油管10を流れるため、今度はサーボモータ4sが熱交換部6による油冷方式により冷却され、図3にTmで示すように、十分かつ安定した冷却が確保されることにより、温度ドリフトによる制御誤差が低減される。しかも、冷却ファンが不要になるため、冷却ファンによる埃等の発生がなくなるとともに、コスト面でも有利になる。
【0020】
他方、図4及び図5には第二実施例を示す。なお、図4及び図5における図1及び図2と同一部分にはそれぞれ同一符号を付し、各部の構成を明確にするとともに、その詳細な説明は省略する。
【0021】
第二実施例は、熱交換部6を構成するに際し、作動油Oを収容するオイルタンク12とサーボモータ4s間の伝熱部位13により構成したものである。即ち、オイルタンク12の側面部12sにサーボモータ4sを収容する収容凹部31を設け、この収容凹部31にサーボモータ4sを収容した。したがって、この収容凹部31の壁面が伝熱部位13となる。第二実施例の場合には、油圧パネル21の排出ポート21oとオイルクーラ5が直接送油管10により接続される。なお、基本的な動作及び作用は第一実施例と同じである。
【0022】
さらに、図6には図1に示した第一実施例の変更例を示す。この変更例は、熱交換部6に対してバイパス機能部11を付設したものである。このバイパス機能部11は、作動油Oの温度を温度センサ41により検出し、検出した温度が設定値以下のときは、三方切換弁42を一方側に切換えて作動油Oを熱交換部6に流すとともに、検出した温度が設定値を越えたときは、三方切換弁42を他方側に切換えて作動油Oをバイパス管43に流し、熱交換部6をバイパスさせる機能を有する。このような変更例は、運転立上時にサーボモータによる作動油の加熱は行われるも、作動油によるサーボモータの冷却は行われない。したがって、発熱を伴うも冷却が不要なサーボモータ、即ち、自然冷却方式のサーボモータを用いた場合に適用できる。
【0023】
以上、実施例について詳細に説明したが、本発明はこのような実施例に限定されるものではなく、細部の構成,形状等において、本発明の要旨を逸脱しない範囲で、任意に変更,追加,削除することができる。例えば、第二実施例において、サーボモータ4sを耐油処理し、直接オイルタンク12の中に収容することにより、モータシャフト26のみをオイルタンク12の外部に露出させる構造であってもよい。
【0024】
【発明の効果】
このように、本発明に係る射出成形機の油圧回路は、固定吐出型油圧ポンプにより循環する作動油とサーボモータの間で熱交換を行うことにより、サーボモータの発熱により作動油を加熱し、かつ作動油によりサーボモータを冷却する熱交換部を設けたため、次のような顕著な効果を奏する。
【0025】
▲1▼ 運転初期における作動油の昇温時間を短縮できるため、成形立上時の安定性を速やかに確保し、生産効率の向上を図ることができる。
【0026】
▲2▼ サーボモータに対する十分かつ安定した冷却を確保し、温度ドリフトによる制御誤差を低減するとともに、同時に冷却ファンを不要にできるため、冷却ファンによる埃等の発生がなくなり、しかも、コスト面でも有利になる。
【0027】
▲3▼ 別途の追加部品を使用することなく容易かつ低コストに実施できる。
【図面の簡単な説明】
【図1】本発明の第一実施例に係る油圧回路のブロック系統図を含む射出成形機の構成図、
【図2】同油圧回路に備える熱交換部の一部断面構成図、
【図3】同油圧回路における運転経過時間に対する作動油温度とサーボモータ温度の関係を示す特性図、
【図4】本発明の第二実施例に係る油圧回路のブロック系統図、
【図5】同油圧回路に備える熱交換部の断面構成図、
【図6】第一実施例の変更例に係る油圧回路のブロック系統図、
【符号の説明】
1 油圧回路
2 油圧駆動源
3c 固定吐出型油圧ポンプ
4s サーボモータ
5 オイルクーラ
6 熱交換部
10 送油管
11 バイパス機能部
12 オイルタンク
13 伝熱部位
O 作動油
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydraulic circuit of an injection molding machine provided with a fixed discharge hydraulic pump as a hydraulic drive source and a servo motor for driving the hydraulic pump.
[0002]
[Prior art]
Conventionally, as a hydraulic circuit of an injection molding machine, a fixed discharge hydraulic pump and a servo motor that drives the hydraulic pump are used as a hydraulic drive source, and the discharge flow rate and discharge of the hydraulic pump are controlled by controlling the rotation speed of the servo motor. A hydraulic circuit that controls the pressure is known.
[0003]
By the way, in this type of hydraulic circuit, maintaining the temperature of the circulating hydraulic fluid at an appropriate temperature is important for ensuring the optimum viscosity of the hydraulic fluid and ensuring the smooth operation of the hydraulic actuator. Since the optimum temperature of hydraulic oil is usually around 40 ° C, the circulating hydraulic oil is heated using heat generated by a hydraulic pump or the like at the initial stage of operation, and if the set temperature reaches around 40 ° C, the oil cooler Control is performed to cool and maintain the set temperature during operation. On the other hand, since the servo motor generates heat due to copper loss of the coil during operation, cooling with an air cooling method is usually performed by a cooling fan attached to the motor shaft.
[0004]
[Problems to be solved by the invention]
However, the conventional hydraulic circuit described above has the following problems.
[0005]
First, due to a decrease in hydraulic oil temperature in winter and the like, it takes a considerable time for the hydraulic oil to reach an appropriate temperature from the start of operation. FIG. 3 shows, as an example, the relationship between the hydraulic oil temperature and the servo motor temperature with respect to the operation elapsed time in the conventional hydraulic circuit by Tor (hydraulic oil temperature) and Tmr (servo motor temperature). In this case, it takes about 30 minutes for the hydraulic oil temperature Tor to reach an appropriate temperature. As a result, stable molding cannot be performed during this period, and production efficiency is reduced.
[0006]
Secondly, the servo motor is cooled by the air cooling method. However, when the power consumption of the servo motor becomes large due to the speeding up of the molding cycle, the servo motor cannot be cooled sufficiently and heat is generated as shown by Tmr in FIG. As it becomes larger, control errors due to temperature drift are likely to occur. In addition, since dust and the like are easily generated by the wind from the cooling fan, it is not preferable for an injection molding machine or a molded product.
[0007]
The present invention solves such problems existing in the prior art, shortens the temperature rise time of the hydraulic oil at the start of operation, and quickly secures stability at the start of molding, thereby improving production efficiency. The purpose of the present invention is to provide a hydraulic circuit for an injection molding machine that simultaneously achieves improvement and eliminates a cooling fan in a servo motor and ensures sufficient cooling.
[0008]
[Means for Solving the Problems and Embodiments]
The present invention includes a fixed discharge hydraulic pump 3c as a hydraulic drive source 2 and a servo motor 4s that drives the hydraulic pump 3c, and an injection molding machine that includes an oil cooler 5 that cools the hydraulic oil O circulated by the hydraulic pump 3c. When the hydraulic circuit 1 is configured, heat exchange is performed between the hydraulic oil O and the servo motor 4s, whereby the hydraulic oil O is heated by the heat generated by the servo motor 4s and the servo motor 4s is cooled by the hydraulic oil O. The heat exchange part 6 is provided.
[0009]
In this case, according to a preferred embodiment, the heat exchanging section 6 can be configured by winding the oil feed pipe 10 through which the hydraulic oil O circulates around the outer surface of the servo motor 4s. In particular, in this embodiment, the temperature of the hydraulic oil O When the detected temperature is equal to or lower than the set value, the hydraulic oil O is allowed to flow through the heat exchanging unit 6, and when the detected temperature exceeds the set value, the hydraulic oil O is bypassed through the heat exchanging unit 6. A bypass function unit 11 can be provided. Moreover, the heat exchange part 6 can also be comprised by the heat-transfer site | part 13 between the oil tank 12 which accommodates the hydraulic oil O, and the servomotor 4s.
[0010]
As a result, the heat exchanging unit 6 is interposed between the hydraulic oil O and the servo motor 4s. Therefore, when the temperature of the hydraulic oil O is low at the start of operation of the injection molding machine, it is generated by the fixed discharge hydraulic pump 3c. In addition to being heated by the generated heat, the servomotor 4s is also heated by the heat generated, so that the temperature rise time until the hydraulic oil O reaches an appropriate temperature (set temperature) is shortened. On the other hand, after the hydraulic oil O reaches an appropriate temperature, the oil cooler 5 controls the cooling so that the hydraulic oil O reaches a set temperature, so that the servo motor 4s is cooled by an oil cooling system using the hydraulic oil O.
[0011]
【Example】
Next, preferred embodiments according to the present invention will be given and described in detail with reference to the drawings.
[0012]
First, the configuration of the hydraulic circuit 1 according to the first embodiment will be described with reference to FIGS. 1 and 2.
[0013]
In FIG. 1, M is an injection molding machine and includes an injection device M1 and a mold clamping device M2. On the other hand, in the hydraulic circuit 1, reference numeral 21 denotes a hydraulic panel including various control valves and the like, and various hydraulic actuators in the injection molding machine M are connected to the hydraulic panel 21. The embodiment exemplifies the injection cylinder 22 of the injection device M1 and the mold clamping cylinder 23 of the mold clamping device M2 as hydraulic actuators connected to the hydraulic panel 21.
[0014]
Reference numeral 2 denotes a hydraulic drive source, which includes a fixed discharge hydraulic pump 3c that constitutes the hydraulic pump 3, and a servo motor 4s that constitutes a drive motor 4 that drives the hydraulic pump 3c. The hydraulic drive source 2 can control the discharge flow rate and the discharge pressure of the hydraulic pump 3c by controlling the rotation speed of the servo motor 4s. The discharge port 3 o of the hydraulic pump 3 c is connected to the supply port 21 i of the hydraulic panel 21, and the suction port 3 i of the hydraulic pump 3 c is connected to the oil tank 24. Accordingly, the hydraulic oil O discharged from the hydraulic pump 3 c is supplied to the hydraulic actuator of the injection molding machine M through the supply port 21 i of the hydraulic panel 21.
[0015]
On the other hand, the hydraulic panel 21 is provided with a discharge port 21o for discharging the hydraulic oil O returned from the hydraulic actuator of the injection molding machine M. The discharge port 21o is connected via the heat exchanging unit 6 attached to the servo motor 4s according to the present invention. Connect to the inlet port 5i of the oil cooler 5. In this case, as shown in FIG. 2, the heat exchange unit 6 winds the oil feeding pipe 10 connecting the discharge port 21o of the hydraulic panel 21 and the inlet port 5i of the oil cooler 5 so as to be in close contact with the outer surface of the servo motor 4s. Configure. The outlet port 5o of the oil cooler 5 is connected to the oil tank 24. Reference numeral 25 denotes a case drain (external drain) connected between the hydraulic pump 3c and the oil cooler 5, and 26 denotes a motor shaft of the servo motor 4s.
[0016]
Next, the operation of the hydraulic circuit 1 according to the first embodiment will be described with reference to FIGS.
[0017]
Assume that the operation of the injection molding machine M is started under a relatively cold temperature environment. First, when the power is turned on, the servo motor 4s is operated to drive the hydraulic pump 3c. As a result, the hydraulic oil 3 in the oil tank 24 is drawn into the hydraulic pump 3c from the suction port 3i, and the hydraulic oil O is discharged from the discharge port 3o of the hydraulic pump 3c. To the supply port 21i. On the other hand, since the hydraulic actuator of the injection molding machine M is stopped, the hydraulic oil O supplied to the supply port 21i of the hydraulic panel 21 is discharged (relieved) from the discharge port 21o, and the oil supply pipe 10 including the heat exchange unit 6 is provided. And returned to the oil tank 24 through the oil cooler 5.
[0018]
At this time, as an example, when the set temperature of the hydraulic oil O is 40 ° C. and the temperature at the start of operation is 20 ° C., the oil cooler 5 does not operate in the initial stage of operation, so the circuit of the hydraulic drive source 2 is circulated. The hydraulic oil O to be heated is heated by heat generated by the hydraulic pump 3 and the like, and further heated by heat generated by the servo motor 4s. That is, the heat generated by the servo motor 4s is transmitted to the oil feeding pipe 10 (heat exchange section 6) wound around the servo motor 4s, and the hydraulic oil O flowing through the oil feeding pipe 10 is heated by heat exchange. FIG. 3 shows the relationship between the hydraulic oil temperature To and the servo motor temperature Tm with respect to the elapsed operation time. As shown in FIG. 3, by providing the heat exchange unit 6, the set temperature (40 ° C.) at which the hydraulic oil O becomes an appropriate temperature. The temperature rise time until reaching) is shortened. In the case of the hydraulic oil temperature To shown in the embodiment, the temperature rising time is about 20 minutes, which is about 10 minutes shorter than the conventional technique (Tor) that does not use the heat exchange unit 6. Therefore, the stability at the time of starting the molding is ensured promptly, and the production efficiency is improved.
[0019]
On the other hand, when the hydraulic oil temperature To rises and reaches a set temperature (40 ° C.), the oil cooler 5 operates based on detection by a temperature sensor (not shown), and the hydraulic oil O is cooled. That is, feedback control is performed so that the hydraulic oil temperature To maintains the set temperature. Further, since the hydraulic oil O maintained at the set temperature flows through the oil feed pipe 10 constituting the heat exchanging unit 6, the servo motor 4s is cooled by the oil cooling method by the heat exchanging unit 6 and is indicated by Tm in FIG. Thus, by ensuring sufficient and stable cooling, a control error due to temperature drift is reduced. In addition, since no cooling fan is required, dust and the like are not generated by the cooling fan, which is advantageous in terms of cost.
[0020]
4 and 5 show a second embodiment. 4 and FIG. 5 that are the same as those in FIG. 1 and FIG. 2 are assigned the same reference numerals to clarify the configuration of each part, and a detailed description thereof is omitted.
[0021]
In the second embodiment, when the heat exchanging unit 6 is configured, it is configured by the heat transfer portion 13 between the oil tank 12 containing the hydraulic oil O and the servo motor 4s. That is, an accommodation recess 31 for accommodating the servo motor 4 s is provided in the side surface portion 12 s of the oil tank 12, and the servo motor 4 s is accommodated in the accommodation recess 31. Therefore, the wall surface of the accommodation recess 31 becomes the heat transfer portion 13. In the case of the second embodiment, the discharge port 21 o of the hydraulic panel 21 and the oil cooler 5 are directly connected by the oil feeding pipe 10. The basic operation and action are the same as in the first embodiment.
[0022]
FIG. 6 shows a modification of the first embodiment shown in FIG. In this modified example, a bypass function unit 11 is added to the heat exchange unit 6. The bypass function unit 11 detects the temperature of the hydraulic oil O by the temperature sensor 41, and when the detected temperature is equal to or lower than the set value, the three-way switching valve 42 is switched to one side to transfer the hydraulic oil O to the heat exchange unit 6. When the detected temperature exceeds the set value, the three-way switching valve 42 is switched to the other side to flow the hydraulic oil O to the bypass pipe 43 and to bypass the heat exchange unit 6. In such a modified example, the hydraulic oil is heated by the servomotor when the operation is started, but the servomotor is not cooled by the hydraulic oil. Therefore, the present invention can be applied to the case where a servo motor that generates heat but does not require cooling, that is, a naturally-cooled servo motor is used.
[0023]
Although the embodiments have been described in detail above, the present invention is not limited to such embodiments, and the configuration and shape of the details are arbitrarily changed and added without departing from the spirit of the present invention. , Can be deleted. For example, in the second embodiment, the servo motor 4s may be oil-resistant and directly housed in the oil tank 12, so that only the motor shaft 26 is exposed to the outside of the oil tank 12.
[0024]
【The invention's effect】
Thus, the hydraulic circuit of the injection molding machine according to the present invention heats the hydraulic oil by the heat generated by the servo motor by exchanging heat between the hydraulic oil circulated by the fixed discharge hydraulic pump and the servo motor, And since the heat exchange part which cools a servomotor with hydraulic fluid was provided, there exist the following remarkable effects.
[0025]
(1) Since the temperature rise time of the hydraulic oil in the initial stage of operation can be shortened, the stability at the start of molding can be secured quickly and the production efficiency can be improved.
[0026]
(2) Ensuring sufficient and stable cooling for the servo motor, reducing control errors due to temperature drift, and eliminating the need for a cooling fan at the same time. become.
[0027]
(3) It can be carried out easily and at low cost without using additional parts.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an injection molding machine including a block system diagram of a hydraulic circuit according to a first embodiment of the present invention;
FIG. 2 is a partial cross-sectional configuration diagram of a heat exchange unit provided in the hydraulic circuit;
FIG. 3 is a characteristic diagram showing the relationship between hydraulic oil temperature and servo motor temperature with respect to elapsed operation time in the hydraulic circuit;
FIG. 4 is a block system diagram of a hydraulic circuit according to a second embodiment of the present invention;
FIG. 5 is a cross-sectional configuration diagram of a heat exchange unit provided in the hydraulic circuit;
FIG. 6 is a block system diagram of a hydraulic circuit according to a modified example of the first embodiment;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Hydraulic circuit 2 Hydraulic drive source 3c Fixed discharge type hydraulic pump 4s Servo motor 5 Oil cooler 6 Heat exchange part 10 Oil supply pipe 11 Bypass function part 12 Oil tank 13 Heat transfer site O Hydraulic oil

Claims (4)

油圧駆動源として固定吐出型油圧ポンプ及びこの油圧ポンプを駆動するサーボモータを備えるとともに、前記油圧ポンプにより循環する作動油を冷却するオイルクーラを備える射出成形機の油圧回路において、前記作動油と前記サーボモータの間で熱交換を行うことにより、前記サーボモータの発熱により前記作動油を加熱し、かつ前記作動油により前記サーボモータを冷却する熱交換部を設けたことを特徴とする射出成形機の油圧回路。  In a hydraulic circuit of an injection molding machine, which includes a fixed discharge hydraulic pump as a hydraulic drive source and a servo motor that drives the hydraulic pump, and an oil cooler that cools the hydraulic oil circulated by the hydraulic pump. An injection molding machine comprising a heat exchanging unit that heats the hydraulic oil by heat generated by the servomotor and cools the servomotor by the hydraulic oil by exchanging heat between the servomotors. Hydraulic circuit. 前記熱交換部は、前記作動油が循環する送油管を前記サーボモータの外面に巻付けて構成することを特徴とする請求項1記載の射出成形機の油圧回路。  2. The hydraulic circuit of an injection molding machine according to claim 1, wherein the heat exchanging unit is configured by winding an oil feeding pipe through which the hydraulic oil circulates around an outer surface of the servo motor. 前記作動油の温度を検出し、検出した温度が設定値以下のときは前記作動油を前記熱交換部に流し、かつ検出した温度が設定値を越えたときは前記作動油を前記熱交換部をバイパスして流すバイパス機能部を備えることを特徴とする請求項2記載の射出成形機の油圧回路。  The temperature of the hydraulic oil is detected. When the detected temperature is equal to or lower than a set value, the hydraulic oil is caused to flow through the heat exchange unit. When the detected temperature exceeds the set value, the hydraulic oil is supplied to the heat exchange unit. The hydraulic circuit for an injection molding machine according to claim 2, further comprising a bypass function unit that bypasses and flows. 前記熱交換部は、前記作動油を収容するオイルタンクと前記サーボモータ間の伝熱部位により構成することを特徴とする請求項1記載の射出成形機の油圧回路。  2. The hydraulic circuit of an injection molding machine according to claim 1, wherein the heat exchanging unit is configured by a heat transfer portion between an oil tank that stores the hydraulic oil and the servo motor.
JP25042197A 1997-09-16 1997-09-16 Hydraulic circuit of injection molding machine Expired - Fee Related JP3786766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25042197A JP3786766B2 (en) 1997-09-16 1997-09-16 Hydraulic circuit of injection molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25042197A JP3786766B2 (en) 1997-09-16 1997-09-16 Hydraulic circuit of injection molding machine

Publications (2)

Publication Number Publication Date
JPH1177785A JPH1177785A (en) 1999-03-23
JP3786766B2 true JP3786766B2 (en) 2006-06-14

Family

ID=17207647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25042197A Expired - Fee Related JP3786766B2 (en) 1997-09-16 1997-09-16 Hydraulic circuit of injection molding machine

Country Status (1)

Country Link
JP (1) JP3786766B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI286874B (en) 2002-06-12 2007-09-11 Sumitomo Heavy Industries Cooling mechanism for cooling electric driving part of injection molding machine and cooling method for the same
DE102012000986B3 (en) * 2012-01-22 2013-05-23 Arburg Gmbh + Co Kg Hydraulic device with a tempering device
CN108167278A (en) * 2018-03-05 2018-06-15 肇庆高新区鸿胜模具制造有限公司 Oil cylinder cooling structure
CN109262946B (en) * 2018-08-02 2021-04-13 太仓求精塑模有限公司 Energy-saving emission-reducing high-gloss injection molding process
CN109080070A (en) * 2018-08-03 2018-12-25 太仓曌信金属制品有限公司 A kind of high performance plastics injection molding machine and injection molding forming method with cooling device

Also Published As

Publication number Publication date
JPH1177785A (en) 1999-03-23

Similar Documents

Publication Publication Date Title
JPH1068142A (en) Cooling device of construction machinery
JP2009041450A (en) Electric pump for cooling internal combustion engine and cooling device using the same
KR940010453A (en) Electric motor cooling system and electric motor used for this
CN101605971A (en) The radial venting axial fan that is used for power engine
CN109578126A (en) High/low temperature dual cycle cooling system for hybrid vehicle
JP3786766B2 (en) Hydraulic circuit of injection molding machine
JP2000274240A (en) Cooling device for hybrid vehicle
JPS591998A (en) Heat medium pressure control device for waste heat restrieving device
JPH09275664A (en) Motor controlling system
JP2004293430A (en) Engine cooling device
JP2009274462A (en) Air conditioner
US9988968B2 (en) Engine cooling system and method for operating the same
JP2002295253A (en) Cooling system for engine
JPH01155020A (en) Exhaust heat recovering device for engine
JP2004301032A (en) Engine cooling system
JP2003314281A (en) Engine coolant circulation system
JP3951527B2 (en) Cogeneration system and temperature control valve
JP2002188443A (en) Cooling device for internal combustion engine
KR200156849Y1 (en) Heating device of gas tank for an automobile
JPH058278A (en) Method for controlling temperature of operating oil of hydraulic device for injection molding machine
JP2002137271A (en) Cooling device and cooling method of plastic molding machine
KR20240037013A (en) Cooling water control system
JPS5832002Y2 (en) hydraulic unit
JP2002327713A (en) Oil cooling apparatus
JP2909141B2 (en) Heating and cooling device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees