JPH1174823A - Non-contact ic card system - Google Patents

Non-contact ic card system

Info

Publication number
JPH1174823A
JPH1174823A JP9232222A JP23222297A JPH1174823A JP H1174823 A JPH1174823 A JP H1174823A JP 9232222 A JP9232222 A JP 9232222A JP 23222297 A JP23222297 A JP 23222297A JP H1174823 A JPH1174823 A JP H1174823A
Authority
JP
Japan
Prior art keywords
phase
card
contact
rwu
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9232222A
Other languages
Japanese (ja)
Other versions
JP3670454B2 (en
Inventor
Takahiro Watanabe
高洋 渡辺
Manabu Nakamura
学 中村
Shinichi Miyashita
信一 宮下
Mitsuhiro Okada
充弘 岡田
Keisuke Igarashi
啓介 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP23222297A priority Critical patent/JP3670454B2/en
Publication of JPH1174823A publication Critical patent/JPH1174823A/en
Application granted granted Critical
Publication of JP3670454B2 publication Critical patent/JP3670454B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To attain efficient demodulation by using phase change by providing a phase shifter between a carrier wave oscillator and a multiplier, and changing the phase of the carrier wave for operating multiplication. SOLUTION: A phase shifter 6 is inserted between a carrier wave oscillator 5 and a multiplier 7 of a reader/writer unit(RWU) of a non-contact IC card system. In a load switch system for changing a capacitor to be inserted in parallel into the coil antenna of the non-contact IC card, when the capacity of the capacitor is changed, parallel oscillation frequency with the coil antenna is deviated from the frequency of a carrier wave received for a power, and the amplitude and phase of a carrier wave transmitted from a coil antenna 1 of the RWU is changed. In this case, the amplitude difference is changed by changing the phase shift amounts of the phase shifter 6. That is, the phase shift amounts for obtaining the maximum amplitude difference value is set by the phase shifter 6 so that an efficient data demodulator can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ロードスイッチ方
式を用いた非接触ICカードシステムに係わり、特にリ
ーダライタユニット(以下RWUと記述する)でのデー
タ復調装置の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a contactless IC card system using a load switch system, and more particularly to an improvement of a data demodulation device in a reader / writer unit (hereinafter, referred to as RWU).

【0002】[0002]

【従来の技術】ICカード内には電源をもたず、RWU
(リーダライタユニット)より電磁誘導などにより非接
触で電力を伝送し、その電力でICカードを動作させる
非接触ICカードシステムが開発されている。このシス
テムのRWUの構成を図5に、非接触ICカードの構成
を図6に示す。RWUからは、搬送波発振器5の出力が
変調器4を経由しパワーアンプ3で増幅され、RWUの
コイルアンテナ1から送出される。図6の非接触ICカ
ードのコイルアンテナがRWUのコイルアンテナ1に近
づくと、RWUから電磁誘導で電力が伝達される。非接
触ICカードのコイルアンテナはコンデンサCと並列共
振回路を形成し、共振周波数は受信した搬送波の周波数
に同調し、効率のよい受信を行う。この並列共振回路で
受けた受信電力はブリッジ整流器で整流されて直流電源
となり、平滑コンデンサで脈流が平滑されレギュレータ
で一定電圧に安定化されて制御部や復調器に供給されて
いる。
2. Description of the Related Art There is no power supply in an IC card, and RWU
A non-contact IC card system has been developed in which electric power is transmitted from a (reader / writer unit) by electromagnetic induction or the like in a non-contact manner and an IC card is operated with the electric power. FIG. 5 shows the configuration of the RWU of this system, and FIG. 6 shows the configuration of the contactless IC card. From the RWU, the output of the carrier oscillator 5 is amplified by the power amplifier 3 via the modulator 4 and transmitted from the coil antenna 1 of the RWU. When the coil antenna of the non-contact IC card in FIG. 6 approaches the coil antenna 1 of the RWU, power is transmitted from the RWU by electromagnetic induction. The coil antenna of the non-contact IC card forms a parallel resonance circuit with the capacitor C, the resonance frequency is tuned to the frequency of the received carrier wave, and efficient reception is performed. The received power received by this parallel resonance circuit is rectified by a bridge rectifier to become a DC power supply, a pulsating current is smoothed by a smoothing capacitor, stabilized to a constant voltage by a regulator, and supplied to a control unit and a demodulator.

【0003】RWUと非接触ICカードの間ではデータ
伝送も行われる。RWUから非接触ICカードへデータ
を伝送するには、図5で電力を送出しているRWUの搬
送波発振器5の出力を、制御部12からの送信データに
したがい変調器4で振幅変調する。非接触ICカードで
はコイルアンテナで受信した電力用搬送波から変調成分
を取り出し、復調器で復調する。また、送信データのク
ロックは、クロック抽出回路により取り出される。一
方、非接触ICカードからのデータの送出には、ロード
スイッチ方式が使われることが多い。このロードスイッ
チ方式とは、非接触ICカードのコイルアンテナで電力
を受信する場合に、受信インピーダンスを送出するデー
タにより変化させ、RWU側では送出した電力搬送波の
送出出力振幅が変化するのを検出する方式である。例え
ば図6の制御部は、データ“1”を送出する場合は何も
しないが、データ“0”を送る場合は、スイッチを接続
し、コイルアンテナに並列に接続されているコンデンサ
Cにさらに並列にコンデンサC1とC2の直列回路を付
加する。コンデンサC1とC2の直列回路が並列に付加
されると、非接触ICカードの受信コイルアンテナの共
振周波数が変わるので、電力を受信する受信インピーダ
ンスが変化し、電磁結合しているRWU側のコイルアン
テナ1の負荷が変化する。そのためパワーアンプ3の送
出電圧値が変化し、その変化を下記のようにしてRWU
で検出することで、非接触ICカードからのデータ信号
を受信することができる。
[0003] Data transmission is also performed between the RWU and the contactless IC card. In order to transmit data from the RWU to the contactless IC card, the output of the carrier oscillator 5 of the RWU that is transmitting power in FIG. 5 is amplitude-modulated by the modulator 4 according to the transmission data from the control unit 12. In a non-contact IC card, a modulation component is extracted from a power carrier received by a coil antenna and demodulated by a demodulator. The clock of the transmission data is extracted by a clock extraction circuit. On the other hand, a load switch method is often used for transmitting data from a non-contact IC card. In the load switch system, when power is received by a coil antenna of a non-contact IC card, the reception impedance is changed by data to be transmitted, and the RWU detects a change in the transmission output amplitude of the transmitted power carrier. It is a method. For example, the control unit in FIG. 6 does nothing when transmitting data “1”, but connects a switch when transmitting data “0”, and further connects the switch to a capacitor C connected in parallel to the coil antenna. , A series circuit of capacitors C1 and C2 is added. When the series circuit of the capacitors C1 and C2 is added in parallel, the resonance frequency of the receiving coil antenna of the non-contact IC card changes, so that the receiving impedance for receiving power changes and the coil antenna on the RWU side electromagnetically coupled. 1 changes. As a result, the transmission voltage value of the power amplifier 3 changes, and the change is
, The data signal from the non-contact IC card can be received.

【0004】RWUでのデータ受信は、コイルアンテナ
1とパワーアンプ3の間に設けられた結合器2を介して
行われる。コイルアンテナ1と電磁結合している負荷が
変化することによるパワーアンプ3の送出電圧の振幅の
変化を復調するためには、非同期検波方式や同期検波方
式が用いられるが、同期検波方式の方が検波効率がよ
い。通常の同期検波方式では、受信した変調波から搬送
波成分を、PLL(フェーズロックループ)回路などで
抽出し、受信変調波と掛け算を行うことで変調されたデ
ータ信号成分を取り出すが、ロードスイッチ方式では、
受信変調波は、電力を送信する搬送波発振器からの搬送
波であるので、搬送波成分を新たに抽出する必要はな
い。すなわち、図5で、結合器2で負荷変動により振幅
が変化した送出電圧を取り出し、搬送波発振器5の出力
と掛け算器7で掛け算を行わせる。掛け算器7の出力か
ら、LPF(低域ろ波器)8で高周波成分を取り去り、
アンプ9で増幅し、コンパレータ10でデータを判定す
る。受信データは整形器11で波形整形され制御部12
で受信される。
[0004] Data reception in the RWU is performed via a coupler 2 provided between the coil antenna 1 and the power amplifier 3. In order to demodulate a change in the amplitude of the transmission voltage of the power amplifier 3 due to a change in the load electromagnetically coupled to the coil antenna 1, an asynchronous detection method or a synchronous detection method is used, but the synchronous detection method is more preferable. Good detection efficiency. In a normal synchronous detection method, a carrier component is extracted from a received modulated wave by a PLL (phase lock loop) circuit or the like, and the modulated data signal component is extracted by multiplying the received modulated wave by a load modulation method. Then
Since the received modulated wave is a carrier from a carrier oscillator that transmits power, it is not necessary to newly extract a carrier component. That is, in FIG. 5, the transmission voltage whose amplitude has changed due to the load fluctuation is taken out by the coupler 2 and the output of the carrier oscillator 5 is multiplied by the multiplier 7. From the output of the multiplier 7, high-frequency components are removed by an LPF (low-pass filter) 8,
The data is amplified by the amplifier 9 and the data is determined by the comparator 10. The received data is waveform-shaped by the shaper 11 and the control unit 12
Received at.

【0005】[0005]

【発明が解決しようとする課題】ロードスイッチ方式に
おける非接触ICカードからのデータ伝送は、非接触I
Cカードからは搬送波を新たに送出することなくデータ
を送出できるので極めて簡便な方式であるが、もともと
RWUとICカードの電磁結合が小さく、電力を受信す
るときの受信インピーダンスを変化させるだけであるの
で、変調度を大きくすることができない。すなわちRW
Uの電力用の搬送波出力に大きな振幅変化を与えること
がむずかしい。そのため、RWUでのデータ復調は変調
度が浅く困難な面があった。特にRWUのコイルアンテ
ナ1と非接触ICカードのコイルアンテナの距離が離
れ、電磁結合が弱まると、RWU側での復調はきわめて
むづかしくなった。
The data transmission from the non-contact IC card in the load switch system is performed by the non-contact IC card.
This is an extremely simple method because data can be transmitted from the C card without newly transmitting a carrier wave. However, the electromagnetic coupling between the RWU and the IC card is originally small, and only the reception impedance when receiving power is changed. Therefore, the modulation degree cannot be increased. That is, RW
It is difficult to give a large amplitude change to the carrier power output for U power. Therefore, data demodulation in the RWU has a difficulty in that the modulation factor is shallow. In particular, when the distance between the coil antenna 1 of the RWU and the coil antenna of the non-contact IC card is increased and the electromagnetic coupling is weakened, demodulation on the RWU side becomes extremely difficult.

【0006】本発明の目的は、ロードスイッチ方式での
データ受信において、変調が浅い場合にもより良好なデ
ータの復調を行うことができるデータ復調装置を提供す
る。
An object of the present invention is to provide a data demodulation apparatus which can perform better data demodulation even when the modulation is shallow in data reception by the load switch system.

【0007】[0007]

【課題を解決するための手段】非接触ICカードからの
データ伝送に、非接触ICカードのコイルアンテナに並
列に挿入されたコンデンサの容量を変化させるロードス
イッチ方式を用いた場合に、RWUの搬送波出力には、
振幅変化と位相変化が生ずることに着目し、RWUでの
復調には、搬送波発振器と掛け算器との間に移相器を設
け、掛け算を行う搬送波の位相を変化させることで位相
変化分をも利用し効率のよい復調を行う。
SUMMARY OF THE INVENTION When data is transmitted from a non-contact IC card using a load switch method that changes the capacity of a capacitor inserted in parallel with a coil antenna of the non-contact IC card, a carrier wave of the RWU is used. In the output,
Focusing on the occurrence of amplitude change and phase change, demodulation by the RWU involves installing a phase shifter between the carrier oscillator and the multiplier, and changing the phase of the carrier to be multiplied to obtain the phase change. Use and perform efficient demodulation.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態を詳細
に説明する。図1は、本発明になる非接触ICカードシ
ステムのRWUの構成図である。この構成が図5の従来
のRWUの構成と異なっているのは、搬送波発振器5と
掛け算器7の間に移相器6が挿入されている点であり、
他は同じである。以下、図1を用いて本発明のシステム
に於けるデータ復調方法を説明する。
Embodiments of the present invention will be described below in detail. FIG. 1 is a configuration diagram of the RWU of the contactless IC card system according to the present invention. This configuration differs from the configuration of the conventional RWU in FIG. 5 in that a phase shifter 6 is inserted between a carrier oscillator 5 and a multiplier 7.
Others are the same. Hereinafter, a data demodulation method in the system of the present invention will be described with reference to FIG.

【0009】図6で示したように、非接触ICカードの
コイルアンテナに並列に挿入されているコンデンサを変
化させるロードスイッチ方式では、コンデンサの容量が
変わることでコイルアンテナとの並列共振周波数が電力
用に受信している搬送波の周波数からずれ、RWUのコ
イルアンテナ1から送出される搬送波の振幅と位相に変
化が生ずる。図1の結合器2で検出されたロードスイッ
チ方式の変調波を e(t)とおくと、 e(t)は次式で表わさ
れる。
As shown in FIG. 6, in the load switch system in which the capacitor inserted in parallel to the coil antenna of the non-contact IC card is changed, the parallel resonance frequency with the coil antenna is changed by changing the capacitance of the capacitor. And the amplitude and phase of the carrier transmitted from the coil antenna 1 of the RWU change. Assuming that the load-switch type modulated wave detected by the coupler 2 in FIG. 1 is e (t), e (t) is represented by the following equation.

【数1】e(t)=Ao(1+m)cos(ωct+θ) ここで、Aoは搬送波の振幅、ωcは搬送波の角周波数で
ある。mとθは非接触ICカードでコンデンサを変化さ
せたときに搬送波に生じる振幅変化分と位相変化分で、
送出データ“1”のときは、m=0、θ=0、送出デー
タが“0”のときは、m=mo θ=θoになるものとす
る。この変調波e(t)は掛け算器7へ入力される。搬送波
発振器5からの出力をcosωctとすると、移相器6を通
過し、位相がφだけ移相した信号y(t)は、y(t)=cos(ω
ct+φ)となる。このy(t)が掛け算器7でe(t)と掛け算
されると以下の式になる。
E (t) = Ao (1 + m) cos (ωct + θ) where Ao is the amplitude of the carrier and ωc is the angular frequency of the carrier. m and θ are the amplitude change and phase change generated in the carrier when the capacitor is changed by the non-contact IC card,
When the transmission data is “1”, m = 0 and θ = 0, and when the transmission data is “0”, m = mo θ = θo. This modulated wave e (t) is input to the multiplier 7. Assuming that the output from the carrier oscillator 5 is cos ωct, a signal y (t) having passed through the phase shifter 6 and having a phase shifted by φ is given by y (t) = cos (ω
ct + φ). When y (t) is multiplied by e (t) by the multiplier 7, the following equation is obtained.

【数2】e(t)×y(t)=Ao(1+m)cos(ωct+θ)×cos(ωct+
φ)={Ao(1+m)/2}×{cos(2ωct+θ+φ)+cos(θ-
φ)} 2ωcの成分をLPF(低域ろ波器)8で取り除くと、L
PF8の出力である復調出力データb(t)は次式にな
る。
[Equation 2] e (t) × y (t) = Ao (1 + m) cos (ωct + θ) × cos (ωct +
φ) = {Ao (1 + m) / 2} × {cos (2ωct + θ + φ) + cos (θ-
When the component of φ) 成分 2ωc is removed by the LPF (low-pass filter) 8, L
Demodulated output data b (t), which is the output of PF8, is given by the following equation.

【数3】b(t)={Ao(1+m)/2}×cos(θ-φ) 出力データとしては、データ“1”のときの出力振幅と
データ“0”のときの出力振幅の差Dが大きければ、コ
ンパレータ10で検出しやすい。そこで上記の出力振幅
差Dを求めると以下の式になる。
[Mathematical formula-see original document] b (t) = {Ao (1 + m) / 2} × cos (θ-φ) As output data, the output amplitude when data is “1” and the output amplitude when data is “0” Is large, the comparator 10 can easily detect the difference. Therefore, when the above output amplitude difference D is obtained, the following equation is obtained.

【数4】 D=(Ao/2)×cos(-φ)-{Ao(1+mo)/2}×cos(θo-φ) この式から明らかなように、移相器6の移相量φを変化
させると、振幅差Dが変化することがわかる。すなわ
ち、最大のDの値が得られる移相量φを移相器6で設定
すれば効率の良いデータ復調装置が得られることにな
る。
D = (Ao / 2) × cos (−φ) − {Ao (1 + mo) / 2} × cos (θo−φ) As is clear from this equation, the phase shift of the phase shifter 6 is obtained. It can be seen that changing the amount φ changes the amplitude difference D. That is, if the phase shift amount φ at which the maximum value of D is obtained is set by the phase shifter 6, an efficient data demodulator can be obtained.

【0010】以下に、(数4)を用いて具体的な値を計
算してみる。(数4)で搬送波振幅Ao=2と仮定する。
moやθoの値は、図6の非接触ICカードのコイルアン
テナと並列のコンデンサCによる並列共振回路のQや、
並列に挿入されるコンデンサC1、C2の値により定ま
る。いまmo=-0.1 とすると、出力振幅差Dは以下の式
になる。
Hereinafter, a specific value will be calculated using (Equation 4). It is assumed that carrier amplitude Ao = 2 in (Equation 4).
The values of mo and θo are Q of the parallel resonance circuit formed by the capacitor C in parallel with the coil antenna of the contactless IC card of FIG.
It is determined by the values of the capacitors C1 and C2 inserted in parallel. Assuming that mo = −0.1, the output amplitude difference D is given by the following equation.

【数5】D=cos(φ)-0.9cos(θo-φ) このデータ“1”のときの振幅とデータ“0”のときの
出力振幅の差Dは、コンパレータ10の入力でのデータ
出力振幅に相当するので、この値が大きいとコンパレー
タ10でデータ“1”かデータ“0”かの識別がしやす
くなる。そこで(数5)のDの値を、θoが90°、30
°、0°の場合に、φを変化させて計算してみると図
2、図3、図4となる。これからまず、図2のθoが90
°の場合には、移相器6での移相量φを0°から360°ま
で変化させると、出力振幅差Dは図に示すように変化す
る。最大値は移相量が318°の場合で1.345となる。一
方、移相器6で位相を移相しない場合、すなわち従来方
式と同様のφ=0°のときの出力振幅差Dは、図2から
1である。従って、移相器6で位相を318°移相させる
と出力振幅差Dを1.345倍にすることができることを示
している。
D = cos (φ) −0.9 cos (θo−φ) The difference D between the amplitude when the data is “1” and the output amplitude when the data is “0” is the data output at the input of the comparator 10. Since this value corresponds to the amplitude, if the value is large, it becomes easy for the comparator 10 to distinguish between data “1” and data “0”. Therefore, the value of D in (Equation 5) is calculated as follows.
In the case of ° and 0 °, calculation is performed by changing φ, as shown in FIGS. 2, 3, and 4. First, θo in FIG.
In the case of °, when the phase shift amount φ in the phase shifter 6 is changed from 0 ° to 360 °, the output amplitude difference D changes as shown in the figure. The maximum value is 1.345 when the phase shift amount is 318 °. On the other hand, when the phase is not shifted by the phase shifter 6, that is, when φ = 0 ° as in the conventional method, the output amplitude difference D is 1 from FIG. Accordingly, it is shown that when the phase is shifted by 318 ° by the phase shifter 6, the output amplitude difference D can be increased to 1.345 times.

【0011】図3はθoが30°の場合である。図2と同
様に移相器6での移相量φを0°から360°まで変化させ
ると、出力振幅差Dの最大値は移相量が296°のときで
0.501であることがわかる。移相量φが0°の場合の出
力振幅差Dは0.22であるので、2倍以上の出力振幅差が
得られている。また、図4はθoが0°の場合である。こ
れは位相の変化がないことを意味する。この場合は、移
相器6での移相量φも0°のときが最大の出力振幅差D
が得られているが、その値は0.1ときわめて小さいこと
がわかる。
FIG. 3 shows a case where θo is 30 °. When the phase shift amount φ in the phase shifter 6 is changed from 0 ° to 360 ° as in FIG. 2, the maximum value of the output amplitude difference D is obtained when the phase shift amount is 296 °.
It turns out that it is 0.501. Since the output amplitude difference D when the phase shift amount φ is 0 ° is 0.22, an output amplitude difference of twice or more is obtained. FIG. 4 shows the case where θo is 0 °. This means that there is no phase change. In this case, the maximum output amplitude difference D is obtained when the phase shift amount φ in the phase shifter 6 is also 0 °.
Is obtained, but the value is very small as 0.1.

【0012】以上の図2、3、4の結果より、ロードス
イッチ方式で、搬送波が振幅変化のみしかない場合は、
本発明の方法を用いても効果はないが、振幅変化ととも
に位相変化をもともなうときは、本発明により著しい効
果があることがわかる。図6に示したような、非接触I
Cカードでのデータ伝送に、コイルアンテナに並列に挿
入されるコンデンサの値を変化させるロードスイッチ方
式を用いた場合は、振幅変化と位相変化の両方の変化が
搬送波にあるので、本発明の復調方法はきわめて有効で
ある。
From the results shown in FIGS. 2, 3, and 4, when the carrier has only an amplitude change in the load switch method,
Although the use of the method of the present invention has no effect, it can be seen that the present invention has a remarkable effect when a phase change accompanies an amplitude change. Non-contact I as shown in FIG.
In the case of using a load switch method in which the value of a capacitor inserted in parallel with a coil antenna is changed for data transmission by the C card, both the amplitude change and the phase change are present in the carrier wave. The method is very effective.

【0013】[0013]

【発明の効果】本発明により、振幅変調における振幅変
化分以上の復調出力振幅がえられるので以下の効果があ
る。 (1)RWUのコイルアンテナのC/N比が小さくても良
好な受信が行える。 (2)RWUと非接触ICカードの距離が離れてもデー
タの伝送ができるので非接触ICカードのサービスエリ
アを広くすることができる。
According to the present invention, a demodulated output amplitude greater than the amplitude change in amplitude modulation can be obtained, and the following effects are obtained. (1) Good reception can be performed even if the C / N ratio of the coil antenna of the RWU is small. (2) Even if the distance between the RWU and the non-contact IC card is long, data can be transmitted, so that the service area of the non-contact IC card can be widened.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に成る非接触ICカードシステムのリー
ダライタユニットの構成例を示す図である。
FIG. 1 is a diagram showing a configuration example of a reader / writer unit of a non-contact IC card system according to the present invention.

【図2】θが90°の場合の搬送波の位相を0°から36
0°まで移相したときのデータの出力振幅差を示す図で
ある。
FIG. 2 shows that the phase of a carrier wave is changed from 0 ° to 36 when θ is 90 °.
FIG. 11 is a diagram illustrating an output amplitude difference of data when the phase is shifted to 0 °.

【図3】θが30°の場合の搬送波の位相を0°から36
0°まで移相したときのデータの出力振幅差を示す図で
ある。
FIG. 3 shows that the phase of the carrier wave is changed from 0 ° to 36 when θ is 30 °.
FIG. 11 is a diagram illustrating an output amplitude difference of data when the phase is shifted to 0 °.

【図4】θが0°の場合の搬送波の位相を0°から36
0°まで移相したときのデータの出力振幅差を示す図で
ある。
FIG. 4 shows that the phase of the carrier wave is changed from 0 ° to 36 when θ is 0 °.
FIG. 11 is a diagram illustrating an output amplitude difference of data when the phase is shifted to 0 °.

【図5】従来方式のリーダライタユニットの構成図であ
る。
FIG. 5 is a configuration diagram of a conventional reader / writer unit.

【図6】非接触ICカードの構成図である。FIG. 6 is a configuration diagram of a non-contact IC card.

【符号の説明】[Explanation of symbols]

1 RWUのコイルアンテナ 2 結合器 3 パワーアンプ 4 変調器 5 搬送波発振器 6 移相器 7 掛け算器 8 LPF(低域ろ波器) 9 アンプ 10 コンパレータ 11 整形器 DESCRIPTION OF SYMBOLS 1 RWU coil antenna 2 Coupler 3 Power amplifier 4 Modulator 5 Carrier oscillator 6 Phase shifter 7 Multiplier 8 LPF (low-pass filter) 9 Amplifier 10 Comparator 11 Shaper

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡田 充弘 東京都中野区東中野三丁目14番20号 国際 電気株式会社内 (72)発明者 五十嵐 啓介 東京都中野区東中野三丁目14番20号 国際 電気株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Mitsuhiro Okada 3- 14-20 Higashinakano, Nakano-ku, Tokyo Kokusai Electric Co., Ltd. (72) Keisuke Igarashi 3-14-20 Higashinakano, Nakano-ku, Tokyo Kokusai Electric Inside the corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 リーダライタユニットとそのリーダライ
タユニットより電磁結合で電力を供給される非接触IC
カードからなる非接触ICカードシステムであって、 非接触ICカードでは、そのアンテナ負荷を送信データ
に応じて可変する事により、リーダライタユニットから
みた負荷の変化に少なくとも位相変化が生じるようにし
てデータを送信し、 リーダライタユニットでは、そのアンテナに供給される
搬送波を検波するためのローカルキャリアを、リーダラ
イタユニットの搬送波発振器出力から移相器を介して生
成する構成としたことを特徴とする非接触ICカードシ
ステム。
1. A reader / writer unit and a non-contact IC supplied with electric power by electromagnetic coupling from the reader / writer unit
A non-contact IC card system comprising a card. In the non-contact IC card, the antenna load is varied according to transmission data so that at least a phase change occurs in a change in load as viewed from a reader / writer unit. The reader / writer unit is configured to generate a local carrier for detecting a carrier supplied to the antenna from a carrier oscillator output of the reader / writer unit via a phase shifter. Contact IC card system.
JP23222297A 1997-08-28 1997-08-28 Non-contact IC card system Expired - Fee Related JP3670454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23222297A JP3670454B2 (en) 1997-08-28 1997-08-28 Non-contact IC card system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23222297A JP3670454B2 (en) 1997-08-28 1997-08-28 Non-contact IC card system

Publications (2)

Publication Number Publication Date
JPH1174823A true JPH1174823A (en) 1999-03-16
JP3670454B2 JP3670454B2 (en) 2005-07-13

Family

ID=16935905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23222297A Expired - Fee Related JP3670454B2 (en) 1997-08-28 1997-08-28 Non-contact IC card system

Country Status (1)

Country Link
JP (1) JP3670454B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003067689A (en) * 2001-08-23 2003-03-07 Sony Corp Communication equipment and method
JP2006295419A (en) * 2005-04-08 2006-10-26 Fujitsu Ltd Rfid transmitter/receiver
JP2010504683A (en) * 2006-09-21 2010-02-12 サムスン エレクトロニクス カンパニー リミテッド m RFID reader machine
WO2014199654A1 (en) * 2013-06-13 2014-12-18 日本航空電子工業株式会社 Current sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003067689A (en) * 2001-08-23 2003-03-07 Sony Corp Communication equipment and method
JP2006295419A (en) * 2005-04-08 2006-10-26 Fujitsu Ltd Rfid transmitter/receiver
JP2010504683A (en) * 2006-09-21 2010-02-12 サムスン エレクトロニクス カンパニー リミテッド m RFID reader machine
WO2014199654A1 (en) * 2013-06-13 2014-12-18 日本航空電子工業株式会社 Current sensor

Also Published As

Publication number Publication date
JP3670454B2 (en) 2005-07-13

Similar Documents

Publication Publication Date Title
JPH0981701A (en) Noncontact type information recording medium and noncontact type information transmitting method
US5940447A (en) Wireless powered communication device using power signal sampling and method
US5930304A (en) Wireless powered communication device with adaptive data detection and method
JP4558259B2 (en) Combination IC card
CN1881969B (en) Direct conversion radio apparatus
US6507607B1 (en) Apparatus and method for recovering a clock signal for use in a portable data carrier
JPH0877318A (en) Noncontact information recording medium
JP3891421B2 (en) Electronic circuit, modulation method, and information processing apparatus and method
JP3829577B2 (en) Full duplex transmission method of electromagnetic transponder system
JP2004040788A (en) Electromagnetic transponder reader
JP3670454B2 (en) Non-contact IC card system
JP3968948B2 (en) Detection of distance from electromagnetic transponder
RU2214053C2 (en) Data transfer circuit with station and response circuit
JP2000078211A (en) Information demodulator, information demodulating method and providing medium
US5949823A (en) Data communication system and radio IC card system
JPH10145443A (en) Data communication system, radio ic card and radio ic card system
JP4853731B2 (en) Synchronous phase non-contact demodulation method, related demodulator and reader
US7215239B2 (en) Non-contact smart card interrogator, wherein across a transmission line from an antenna to a receiver the signal modulation varies between amplitude modulation and phase modulation
JP2631664B2 (en) Non-contact magnetic coupling transmission / reception method
JP2000307465A (en) Bpsk demodulating circuit and noncontact ic card system with the circuit
EP1320829B1 (en) Synchronizing sample timing in an rfid receiver
NZ512523A (en) Device for demodulating an amplitude-modulated signal
JP3215036B2 (en) PSK signal demodulation circuit and data transmission / reception system
JPS5875333A (en) Receiving system of single side band signal of reduced carrier wave
JPH1141153A (en) Transmitter and receiver

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050414

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees