JPH1174419A - Gas-sealed semiconductor device - Google Patents

Gas-sealed semiconductor device

Info

Publication number
JPH1174419A
JPH1174419A JP23199697A JP23199697A JPH1174419A JP H1174419 A JPH1174419 A JP H1174419A JP 23199697 A JP23199697 A JP 23199697A JP 23199697 A JP23199697 A JP 23199697A JP H1174419 A JPH1174419 A JP H1174419A
Authority
JP
Japan
Prior art keywords
gas
pressure
package
semiconductor device
sealed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23199697A
Other languages
Japanese (ja)
Inventor
Tetsumi Takano
哲美 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP23199697A priority Critical patent/JPH1174419A/en
Publication of JPH1174419A publication Critical patent/JPH1174419A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly reliable semiconductor device even at the tempera ture rise time, by eliminating drop of a breakdown voltage in a semiconductor device, wherein a semiconductor chip is contained in a package. SOLUTION: As the sealed gas in a package, the gas including the halogen element especially fluorine having the large insulation intensity is used, and the pressure reduced state is obtained. For example, when the sealing gas in the package is made to be SF6 and the pressure in sealing is made to be in the range of 0.015-0.08 MPa, the surface dielectric strength becomes larger than the device, wherein conventional N2 is sealed. Therefore, the improvement of dielectric strength and the shortening of the insulating dimenssion as the semiconductor device can be realized. Even at the upper limit temperature, for example, at 120 deg.C at an ordinary semiconductor, the pressure in the package does not become larger than the pressure of external atmosphere, and the expansion of the package does not occur.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体チップ或い
は半導体ペレットをガスとともにパッケージ内に封止し
たガス封入半導体素子に関する。
The present invention relates to a gas-filled semiconductor device in which a semiconductor chip or a semiconductor pellet is sealed in a package together with a gas.

【0002】[0002]

【従来の技術】半導体チップ或いは半導体エレメントを
使用環境から保護するためガスとともにパッケージ内に
封止することが一般に行われている。図2は、複数のI
GBTチップ1とダイオードチップ2とを、パッケージ
内に封止したIGBTモジュールのチップ配列状况を示
す平面図と断面図である。
2. Description of the Related Art In general, a semiconductor chip or a semiconductor element is sealed in a package together with a gas in order to protect the semiconductor chip or a semiconductor element from a use environment. FIG.
It is a top view and a sectional view showing a chip arrangement situation of an IGBT module in which a GBT chip 1 and a diode chip 2 are sealed in a package.

【0003】セラミックケース6の両側に気密にロウ付
けされた上下のエミッタ側電極3、コレクタ側電極5の
間に、集電極4を介してIGBTチップ1、ダイオード
チップ2が挟まれている。パッケージ内には、不活性ガ
ス例えば窒素が封入されている。IGBTチップ1、ダ
イオードチップ2の他にそれらを支持する幾つかの部材
も封入されているが、煩雑を避けるため図では省略して
いる。
The IGBT chip 1 and the diode chip 2 are sandwiched between the upper and lower emitter-side electrodes 3 and the collector-side electrodes 5 which are air-tightly brazed on both sides of the ceramic case 6 via the collector electrode 4. An inert gas such as nitrogen is sealed in the package. In addition to the IGBT chip 1 and the diode chip 2, some members supporting them are also enclosed, but are omitted in the drawing to avoid complication.

【0004】パッケージ内に封入されるガスとしては、
窒素(以下N2 と記す)のような不活性ガスが通常1気
圧(0.1013MPa)、或いは、低温でも1気圧以
下になるのを避けるため1気圧以上の圧力に封入され
る。他の例としては例えば、実開昭59−67939号
公報において、サイリスタペレットを0.12MPa
(1.2kg/cm2 )以上の圧力の六ふっ化硫黄(以
下SF6 と記す)で封止した半導体素子の例が開示され
ている。
[0004] As a gas sealed in the package,
An inert gas such as nitrogen (hereinafter referred to as N 2 ) is usually sealed at 1 atm (0.1013 MPa), or at a pressure of 1 atm or more so as to avoid a pressure of 1 atm or less even at a low temperature. As another example, for example, Japanese Unexamined Utility Model Publication No. 59-67939 discloses that a thyristor pellet is
An example of a semiconductor element sealed with sulfur hexafluoride (hereinafter referred to as SF 6 ) at a pressure of (1.2 kg / cm 2 ) or more is disclosed.

【0005】[0005]

【発明が解決しようとする課題】しかし、1気圧以上の
圧力に封止された半導体素子は、温度上昇時にガスの熱
膨張のため、パッケージの膨れと呼ばれる、上下の電極
の凸型の変形を生じることがある。そしてそのため、素
子の内部の部材の位置ずれなどを生じ、構造の安定が損
なわれる恐れがある。
However, a semiconductor element sealed at a pressure of 1 atm or more causes a convex deformation of the upper and lower electrodes, called swelling of a package, due to thermal expansion of gas when the temperature rises. May occur. Therefore, there is a possibility that the displacement of the members inside the element occurs, and the stability of the structure is impaired.

【0006】以上の問題に鑑み本発明の目的は、昇温時
に上下の電極が凸型に変形せず、信頼性および絶縁破壊
電圧の低下を招くことの無い半導体素子を提供すること
にある。
[0006] In view of the above problems, an object of the present invention is to provide a semiconductor element in which upper and lower electrodes do not deform into a convex shape when a temperature rises, and do not lower reliability and dielectric breakdown voltage.

【0007】[0007]

【課題を解決するための手段】電極の変形を回避するた
めには、封入するガスの圧力を下げることが考えられ
る。しかし、縁破壊電圧は図1の圧力依存性特性図に示
すように、N2 圧力の低下とともにほぼ直線的に低下す
る。特に、チップや構造絶縁物の表面に沿った絶縁部分
に異物が存在する場合は、絶縁強度は更に低下する。図
3は、異物の大きさの絶縁強度におよぼす影響を示す特
性図である。異物の大きさが大きい程、絶縁耐力は次第
に低下する。
In order to avoid deformation of the electrode, it is conceivable to lower the pressure of the gas to be sealed. However, the edge breakdown voltage decreases almost linearly as the N 2 pressure decreases, as shown in the pressure-dependent characteristic diagram of FIG. In particular, when foreign matter is present in an insulating portion along the surface of the chip or the structural insulator, the insulating strength is further reduced. FIG. 3 is a characteristic diagram showing the effect of the size of the foreign matter on the insulation strength. The dielectric strength gradually decreases as the size of the foreign matter increases.

【0008】このような絶縁破壊電圧の低下を回避する
ためには、半導体素子の耐圧保持部分の絶縁距離を増大
させなければならないことになる。放電物理から見ると
2 は負イオンを作らない気体であり、局所的な絶縁欠
陥による部分放電の現象において他の負イオンを作る気
体に比べ、部分放電の検出がし難く、また絶縁強度上も
有利な気体ではない。そこで封入するガスとして、絶縁
強度の大きいガスを選べば、減圧状態でも縁破壊電圧の
低下を回避することができる。
In order to avoid such a decrease in dielectric breakdown voltage, the insulation distance of the breakdown voltage holding portion of the semiconductor element must be increased. From the viewpoint of discharge physics, N 2 is a gas that does not produce negative ions, and it is more difficult to detect partial discharge than a gas that produces other negative ions in the phenomenon of partial discharge due to local insulation defects. Is not an advantageous gas. Therefore, if a gas having a high insulation strength is selected as the gas to be sealed, a decrease in the edge breakdown voltage can be avoided even in a reduced pressure state.

【0009】よって、上記課題解決のため本発明は、半
導体チップをパッケージ内に収納した半導体装置におい
て、パッケージ内の封入ガスを絶縁強度の大きいハロゲ
ン元素、特にふっ素を有するガスを含むものの減圧状態
とする。ハロゲン元素を含む絶縁性のガスの、N2 に対
する相対絶縁強度を表1に示す。このように絶縁強度の
大きいガスを用いれば、絶縁破壊電圧を低下させること
なく、パッケージ内を減圧状態にすることができる。
Therefore, in order to solve the above-mentioned problems, the present invention relates to a semiconductor device in which a semiconductor chip is housed in a package, wherein the sealing gas in the package is reduced under reduced pressure of a gas containing a halogen element having a large insulation strength, particularly a gas containing fluorine. I do. The insulating gas containing a halogen element, the relative dielectric strength for N 2 shown in Table 1. When a gas having a high insulation strength is used as described above, the pressure inside the package can be reduced without lowering the breakdown voltage.

【0010】[0010]

【表1】 特にパッケージ内の封入ガスがSF6 であるものとす
る。
[Table 1] In particular the filler gas in the package is assumed to be SF 6.

【0011】SF6 は極めて安定であり、600℃位ま
では分解しない。また仮にアーク放電が起きた時でも他
のハロゲン化炭素のように炭素を遊離することが無い。
図4は、SF6 とN2 および空気の実効電離係数の電界
依存性を示す特性図である。N2 では、絶縁耐力を決定
づける実効電離係数は非常に低い電界から立ち上がり、
同じ分子密度の空気の約90%で絶縁破壊する。それに
対しSF6 では、実効電離係数が、高い電界まで立ち上
がらない。
SF 6 is extremely stable and does not decompose up to about 600 ° C. Further, even if an arc discharge occurs, carbon is not released unlike other halogenated carbon.
FIG. 4 is a characteristic diagram showing electric field dependence of effective ionization coefficients of SF 6 , N 2 and air. At N 2 , the effective ionization coefficient that determines the dielectric strength rises from a very low electric field,
Breakdown occurs at about 90% of air of the same molecular density. In contrast, in SF 6 , the effective ionization coefficient does not rise to a high electric field.

【0012】更に、パッケージ内の封入圧力を0.01
5〜0.08MPaの範囲とするものとする。図1に、
SF6 の絶縁破壊電圧の圧力依存性をも示した。理想的
な絶縁破壊電圧はガス圧に応じて変化し、ガス圧の低下
とともにほぼそれに比例して低下する。SF6 は、空気
やN2 に比べて同じガス圧力において、約3倍程度の絶
縁強度を有しているが、減圧時には比較的強く、0.0
15MPaで0.1013MPa(1気圧)のN2 と同
等の絶縁破壊電圧となっている。
Further, the sealing pressure in the package is reduced to 0.01.
It shall be in the range of 5 to 0.08 MPa. In FIG.
The pressure dependence of the breakdown voltage of SF 6 was also shown. The ideal breakdown voltage changes according to the gas pressure, and decreases substantially in proportion to the decrease in the gas pressure. SF 6 has about three times the insulation strength at the same gas pressure as air or N 2 , but is relatively strong at the time of pressure reduction,
At 15 MPa, the breakdown voltage is equivalent to that of N 2 at 0.1013 MPa (1 atm).

【0013】したがって、パッケージ内の封入圧力を
0.015MPa以上とすれば、従来の1気圧のN2
同等以上の絶縁耐圧が保たれることになる。また、上記
の封入圧力範囲であれば、通常の半導体での上限温度、
例えば120℃においても、パッケージ内圧力が外気の
圧力より過大になって、パッケージの膨れを生じること
がない。ただし、パッケージが機械力に耐え得る内圧分
を約0.005MPaと見た。
[0013] Thus, if the filling pressure in the package with more than 0.015 MPa, so that the N 2 equal to or higher than the breakdown voltage of the conventional one atmosphere is maintained. In addition, if the above-mentioned sealing pressure range, the upper limit temperature of a normal semiconductor,
For example, even at 120 ° C., the pressure in the package does not exceed the pressure of the outside air, and the package does not swell. However, the internal pressure that the package can withstand mechanical force is considered to be about 0.005 MPa.

【0014】[0014]

【発明の実施の形態】この発明はガス封入半導体素子に
おいて、封入ガスの種類と圧力とをより適切なものにす
ることにより、高温時の内部構造の安定化と絶縁耐圧の
向上とを図るものである。図2に示したIGBTモジュ
ールのパッケージ内にSF6 を、0.015〜0.08
MPaの範囲内、例えば0.05MPaの圧力に封入し
た。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention aims at stabilizing the internal structure at high temperatures and improving the dielectric strength of a gas-filled semiconductor device by making the type and pressure of the fill gas more appropriate. It is. The SF 6 in the package of the IGBT module shown in FIG. 2, from 0.015 to 0.08
The pressure was sealed within the range of MPa, for example, 0.05 MPa.

【0015】そのIGBTモジュールは、高温において
もパッケージの膨れを生じることがなく、また、絶縁破
壊電圧が従来のN2 封入のものより低下することも無か
った。前項で述べたように、SF6 は、空気やN2 に比
べて同じガス圧力において、約2倍以上の絶縁強度を有
しているため、0.015MPaで0.1013MPa
(1気圧)のN2 と同等の絶縁破壊電圧となっている。
従って、0.05MPaのSF6 を封入した半導体素子
で絶縁破壊電圧が低下しないのは勿論のこと、表面上の
異物に対する耐量が増し、信頼性の高い半導体素子とな
る。
In the IGBT module, the package did not swell even at a high temperature, and the dielectric breakdown voltage did not lower than that of the conventional N 2 -filled module. As described in the previous section, SF 6 has an insulation strength of about twice or more at the same gas pressure as that of air or N 2 , so that it is 0.1013 MPa at 0.015 MPa.
The dielectric breakdown voltage is equivalent to N 2 at (1 atm).
Therefore, it course breakdown voltage in the semiconductor device encapsulating SF 6 of 0.05MPa is not reduced, the tolerance is increased with respect to foreign matter on the surface, a highly reliable semiconductor device.

【0016】そして、半導体素子としての絶縁耐圧の向
上や、絶縁寸法の縮小化が実現できる。また、25℃で
0.05MPaの圧力に封入したSF6 は、120℃に
おいて、0.066MPaになり、減圧状態が保たれて
いる。0.1013MPa(1気圧)のN2 と同等の絶
縁耐力のみを期待する場合には、封入圧力を0.015
MPaまで下げて用いることができる。このガス圧とし
たとき、大気圧以上の圧力となる温度は1500℃にな
り、半導体チップや他の構造物の耐熱温度をはるかに超
える。従って実用上は、使用する温度によって圧力が大
気圧を超えないガス圧とし、絶縁的な信頼性の上昇を同
時に実現することができる。
Further, it is possible to improve the withstand voltage of the semiconductor element and to reduce the insulation size. Further, SF 6 sealed at a pressure of 0.05 MPa at 25 ° C. becomes 0.066 MPa at 120 ° C., and the reduced pressure state is maintained. When only the dielectric strength equivalent to 0.113 MPa (1 atm) of N 2 is expected, the sealing pressure is 0.015 MPa.
It can be used down to MPa. At this gas pressure, the temperature at which the pressure is equal to or higher than the atmospheric pressure is 1500 ° C., which is far higher than the heat resistant temperature of the semiconductor chip and other structures. Therefore, in practical use, the gas pressure is such that the pressure does not exceed the atmospheric pressure depending on the temperature to be used, and an increase in insulating reliability can be realized at the same time.

【0017】通常の半導体での上限温度を、例えば12
0℃とすれば、その温度で1気圧となるようにするに
は、0.075MPaが上限の封入圧(封入温度25℃
の場合)となる。更に、パッケージの機械力で耐える内
圧分を約0.005MPaと見れば、0.08MPa程
度の封入圧力までが可能である。SF6 以外の他のふっ
素を含む気体においてもSF6 と同様の絶縁強度を有し
ているものは、同様の用い方によって絶縁性能の向上を
もたらす。前項で上げたもののなかに、沸点の高いもの
があるが、これらは沸点の低いガス例えばN2 と混合す
れば、沸点が下げられるので使用できる。
The upper limit temperature of a normal semiconductor is, for example, 12
If the temperature is set to 0 ° C., the upper limit of the sealing pressure is 0.075 MPa (the sealing temperature is 25 ° C.) so that the pressure becomes 1 atm at that temperature.
). Further, assuming that the internal pressure withstands by the mechanical force of the package is about 0.005 MPa, a sealing pressure of about 0.08 MPa is possible. Other fluorine-containing gases other than SF 6 having the same insulation strength as SF 6 can improve the insulation performance by the same use. Among the substances mentioned in the preceding paragraph, there are those having a high boiling point, but if they are mixed with a gas having a low boiling point, for example, N 2 , the boiling point can be lowered, so that they can be used.

【0018】先に触れたように、実開昭59−6793
9号公報において、スタッド型半導体素子のパッケージ
内に、SF6 を封入することが開示されている。しか
し、その例は、半導体ペレットの表面保護のためのコー
ティングを省略する目的であり、かつ、圧力が高い程絶
縁破壊電圧が向上することから、SF6 の圧力を約0.
12MPa(1.2kg/cm2 )以上に限定してい
て、本発明とは、目的が異なり、圧力範囲も全く重なら
ない領域である。
As mentioned earlier, Japanese Utility Model Application Laid-Open No. 59-6793.
No. 9 discloses that SF 6 is sealed in a package of a stud type semiconductor element. However, the example is coated omitted purpose for surface protection of semiconductor pellet, and, since the improved dielectric breakdown voltage higher pressures, about the pressure of the SF 6 0.
The region is limited to 12 MPa (1.2 kg / cm 2 ) or more, and has a different purpose from the present invention, and the pressure range does not overlap at all.

【0019】また、特開平3−190263号公報にお
いて、平型半導体素子にSF6 を封入することが開示さ
れている。その公報では、圧力範囲についての記述が一
切なされていないが、その請求項に半導体基体をSF6
と接触させる旨の記載があるので、実開昭59−679
39号公報のものと同じく表面保護のためのコーティン
グを省略する目的と考えられ、圧力の高い範囲を指向し
ていると思われる。
Japanese Patent Application Laid-Open No. 3-190263 discloses that SF 6 is sealed in a flat semiconductor device. Although the publication does not describe the pressure range at all, the claim states that the semiconductor substrate is SF 6.
There is a statement to contact with
It is considered to be a purpose of omitting the coating for protecting the surface as in the case of JP-A-39, and it is considered that the coating is directed to a high pressure range.

【0020】[0020]

【発明の効果】以上説明したように本発明によれば、パ
ッケージ内の封入ガスを絶縁強度の大きいハロゲン元素
特にふっ素を有するガス、又はそのガスを含む混合ガス
とし、かつ減圧状態とすることによって、絶縁破壊電圧
の低下を招くこと無く、信頼性の高い半導体素子とする
ことができる。特にパッケージ内の封入ガスをSF6
し、封入ガスの圧力を0.015〜0.08MPaの範
囲とすれば、従来のN2封入のものより表面絶縁耐力は
大きくなるので、半導体装置としての絶縁耐圧の向上
や、絶縁寸法の縮小化が実現できる。
As described above, according to the present invention, the sealing gas in the package is a gas containing a halogen element, particularly fluorine, having a large insulating strength, or a mixed gas containing the gas, and the pressure is reduced. In addition, a highly reliable semiconductor element can be provided without lowering the dielectric breakdown voltage. In particular, if the filling gas in the package is SF 6 and the pressure of the filling gas is in the range of 0.015 to 0.08 MPa, the surface dielectric strength becomes larger than that of the conventional N 2 filling, so that the insulation as a semiconductor device is increased. It is possible to improve the withstand voltage and reduce the insulation size.

【図面の簡単な説明】[Brief description of the drawings]

【図1】SF6 とN2 の絶縁強度の圧力依存特性図FIG. 1 is a diagram showing the pressure dependence of insulation strength between SF 6 and N 2 .

【図2】IGBTモジュールのチップ配列状況を示す平
面図と、断面図
FIGS. 2A and 2B are a plan view and a sectional view showing a chip arrangement state of the IGBT module.

【図3】異物が存在するときの相対絶縁破壊電圧特性図FIG. 3 is a graph showing a relative dielectric breakdown voltage characteristic when a foreign substance is present;

【図4】SF6 、N2 と空気の電離係数の電界依存特性
FIG. 4 is an electric field dependent characteristic diagram of the ionization coefficient of SF 6 , N 2 and air.

【符号の説明】[Explanation of symbols]

1 IGBTチップ 2 ダイオードチップ 3 エミッタ側電極板 4 集電極 5 コレクタ側電極板 6 セラミックケース DESCRIPTION OF SYMBOLS 1 IGBT chip 2 Diode chip 3 Emitter side electrode plate 4 Collector electrode 5 Collector side electrode plate 6 Ceramic case

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】半導体チップをパッケージ内に収納した半
導体装置において、パッケージ内の封入ガスを絶縁強度
の大きいハロゲン元素を有するガスを含むものとし、か
つ減圧状態とすることを特徴とするガス封入半導体素
子。
In a semiconductor device in which a semiconductor chip is housed in a package, a gas sealed in the package contains a gas containing a halogen element having a large insulating strength and is in a reduced pressure state. .
【請求項2】パッケージ内の封入ガスがふっ素を有する
ガスを含むものであることを特徴とする請求項1記載の
ガス封入半導体素子。
2. The gas-filled semiconductor device according to claim 1, wherein the fill gas in the package contains a gas containing fluorine.
【請求項3】パッケージ内の封入ガスがSF6 であるこ
とを特徴とする請求項2記載のガス封入半導体素子。
3. The gas-filled semiconductor device according to claim 2, wherein the filling gas in the package is SF 6 .
【請求項4】パッケージ内の封入ガスの圧力を0.01
5〜0.08MPaの範囲とすることを特徴とする請求
項1ないし3のいずれかに記載のガス封入半導体素子。
4. The pressure of a sealed gas in a package is set to 0.01.
The gas-filled semiconductor device according to claim 1, wherein the pressure is in a range of 5 to 0.08 MPa.
JP23199697A 1997-08-28 1997-08-28 Gas-sealed semiconductor device Pending JPH1174419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23199697A JPH1174419A (en) 1997-08-28 1997-08-28 Gas-sealed semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23199697A JPH1174419A (en) 1997-08-28 1997-08-28 Gas-sealed semiconductor device

Publications (1)

Publication Number Publication Date
JPH1174419A true JPH1174419A (en) 1999-03-16

Family

ID=16932319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23199697A Pending JPH1174419A (en) 1997-08-28 1997-08-28 Gas-sealed semiconductor device

Country Status (1)

Country Link
JP (1) JPH1174419A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011044700A (en) * 2009-07-21 2011-03-03 Kyushu Institute Of Technology Electronic component package

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011044700A (en) * 2009-07-21 2011-03-03 Kyushu Institute Of Technology Electronic component package

Similar Documents

Publication Publication Date Title
CN105914152A (en) Semiconductor device and semiconductor module
US2744217A (en) Electrical apparatus
JPS62291052A (en) Improved silicon package for power semiconductor device
JPH1174419A (en) Gas-sealed semiconductor device
JPH10173098A (en) Power semiconductor device and its manufacture
CN106981460A (en) Semiconductor device
US4890030A (en) Metal halide discharge lamp with arc tube temperature equalizing means
JPH08242009A (en) Power semiconductor device
JPH01228138A (en) Sheathing structure of two-terminal semiconductor element
CN115843388A (en) Semiconductor device with failure mode protection
JPH057835B2 (en)
US6552485B2 (en) Electron tube comprising a semiconductor cathode
JP2000341816A (en) Switchgear
JPH03194878A (en) Discharge type surge absorption element
JP3336718B2 (en) Manufacturing method of high voltage capacitor and high voltage capacitor
JP2001274321A (en) High breakdown voltage flat semiconductor device
JPS5892241A (en) Package for semiconductor device
US4988318A (en) Unsaturated vapor high pressure sodium lamp arc tube fabrication process
US3731159A (en) Microwave diode with low capacitance package
CN220291349U (en) Gas discharge tube
US20240105645A1 (en) Semiconductor device
JP2541069B2 (en) Sealing electrode and surge absorber using the same
EP0119082A2 (en) Unsaturated vapor high pressure sodium lamp including getter
JP2795961B2 (en) Semiconductor device and manufacturing method thereof
JP2910007B2 (en) surge absorber