JPH1174313A - Method for connecting electrode - Google Patents

Method for connecting electrode

Info

Publication number
JPH1174313A
JPH1174313A JP23486797A JP23486797A JPH1174313A JP H1174313 A JPH1174313 A JP H1174313A JP 23486797 A JP23486797 A JP 23486797A JP 23486797 A JP23486797 A JP 23486797A JP H1174313 A JPH1174313 A JP H1174313A
Authority
JP
Japan
Prior art keywords
connection
circuit
heating
film
conductive particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23486797A
Other languages
Japanese (ja)
Other versions
JP3759294B2 (en
Inventor
Toshiyuki Yanagawa
俊之 柳川
Mitsugi Fujinawa
貢 藤縄
Itsuo Watanabe
伊津夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP23486797A priority Critical patent/JP3759294B2/en
Publication of JPH1174313A publication Critical patent/JPH1174313A/en
Application granted granted Critical
Publication of JP3759294B2 publication Critical patent/JP3759294B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive

Landscapes

  • Polymerisation Methods In General (AREA)
  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable connection at a low temperature and reduce thermal influence to a circuit member, by interposing a film-like circuit connection material containing photo-setting components and conductive particles between opposite first and the second connection terminals, and by electrically connecting the first and second connection terminals with each other by application of heat and pressure and light irradiation. SOLUTION: First and second connection terminals are oppositely placed, and a film-like circuit connection material containing photo-setting components and conductive particles is interposed between them. Then, the first and the second connection terminals are electrically connected with each other by application of heat and pressure and light irradiation. The film-like circuit connection material is mainly photo-cured, adhesive is melted and made to flow by the application of heat and pressure, and resin components in the vicinity of a part where the connection terminals and the conductive particles are in contact are sufficiently eliminated so that the conductive particles are sufficiently pressure-bonded between the connection terminals. Thus, heating may be performed to a temperature where the adhesive can flow, and a connection temperature of a circuit member can be lowered.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば液晶パネル
等少なくとも一方が光透過性を有する回路部材におい
て、2つの回路部材同士の電極について優れた接着力や
良好な電気的導通を得、さらに接続不良が生じた場合に
良好な回路補修性を得るために、光硬化成分を含有する
フィルム状回路接続材料を用いて、加熱加圧および光照
射を同時あるいは別個に用いる電極の接続方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a circuit member such as a liquid crystal panel in which at least one of the two members has a light transmitting property. The present invention relates to a method of connecting electrodes using heating and pressurizing and light irradiation simultaneously or separately using a film-like circuit connecting material containing a photocurable component in order to obtain good circuit repairability when a defect occurs.

【0002】[0002]

【従来の技術】フィルム状回路接続材料は、金属粒子等
の導電性粒子を所定量含有した接着剤からなるもので、
このフィルム状回路接続材料を電子部品と電極や回路の
間に設け、加圧または加熱加圧を行うことによって、両
者の電極同士が電気的に接続されると共に、隣接電極間
の絶縁性を付与して、電子部品と回路とが接着固定され
るものである。フィルム状回路接続材料に用いられる接
着剤としては、スチレン系やポリエステル系等の熱可塑
性物質や、エポキシ系やシリコーン系等の熱硬化性物質
が知られている。これらの物質を含む接着剤を硬化させ
るには硬化剤が必要であり、さらにその硬化剤には、フ
ィルム状回路接続材料の保存安定性を高めるために、常
温では不活性であり、活性温度以上でのみ反応するとい
う潜在性が伴っていなければならない。このため接着剤
を硬化させるためには、樹脂成分の流動性の向上および
硬化反応の促進のための加熱加圧が必要となる。すなわ
ち、接着剤を溶融、流動させ、導電性粒子を変形して回
路との接触面積を増大し、かつ回路部材との密着性を高
めるために温度や圧力が必要となり、これらは接着剤の
種類や硬化成分による。この他にフィルム状以外の形態
を有する回路接続材料としては、光硬化性樹脂を用いた
ペースト状材料が知られているが、これらの回路接続材
料は加圧もしくは加熱加圧によって回路部材を接続し、
その後光照射によって接着剤を硬化させることを特徴と
している。
2. Description of the Related Art A film-like circuit connecting material is made of an adhesive containing a predetermined amount of conductive particles such as metal particles.
This film-shaped circuit connecting material is provided between the electronic component and the electrodes or the circuit, and by applying pressure or heat and pressure, both electrodes are electrically connected and insulation between adjacent electrodes is provided. Then, the electronic component and the circuit are bonded and fixed. As an adhesive used for the film-like circuit connection material, a styrene-based or polyester-based thermoplastic material, or an epoxy-based or silicone-based thermosetting material is known. A curing agent is required to cure the adhesive containing these substances, and the curing agent is inactive at room temperature in order to enhance the storage stability of the film-like circuit connection material, and is at or above the activation temperature. Must have the potential to react only at Therefore, in order to cure the adhesive, it is necessary to apply heat and pressure for improving the fluidity of the resin component and accelerating the curing reaction. That is, the adhesive is melted and fluidized, the conductive particles are deformed to increase the contact area with the circuit, and temperature and pressure are required to increase the adhesion to the circuit member. And hardening components. In addition, as a circuit connection material having a form other than a film shape, a paste-like material using a photocurable resin is known, but these circuit connection materials connect circuit members by pressing or heating and pressing. And
Thereafter, the adhesive is cured by light irradiation.

【0003】また、これらの接着剤による接続におい
て、電気的接続不良であったり接続後に電子部品や回路
が不良になると、回路間を剥がす等した後で接着剤を溶
剤等で除去した後に、再度良品を接着剤によって接続す
ることが行われている。この場合、微細回路や電極上の
接着剤を汎用溶剤(例えばアセトン、メチルエチルケト
ン、トルエン、リグロイン、テトラヒドロフラン、アル
コール等)を用いて、周辺部の良好部に悪影響を与え
ず、迅速かつ容易に除去できることが重要である。接着
剤が熱硬化性物質等の場合、溶剤として例えば塩化メチ
レンと酸等より成るいわゆるエポキシ剥離剤を用いる場
合が多い。
In connection with these adhesives, if an electrical connection is poor or an electronic component or a circuit becomes defective after the connection, the adhesive is removed with a solvent or the like after peeling off between the circuits and the like. Non-defective products are connected by an adhesive. In this case, the adhesive on the microcircuit or the electrode can be quickly and easily removed using a general-purpose solvent (for example, acetone, methyl ethyl ketone, toluene, ligroin, tetrahydrofuran, alcohol, etc.) without adversely affecting a good portion in the peripheral portion. is important. When the adhesive is a thermosetting substance or the like, a so-called epoxy release agent composed of, for example, methylene chloride and an acid is often used as a solvent.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、樹脂硬
化の際の加熱加圧に伴う回路部材に対する熱や圧力の影
響はその大小を問わず存在し、特に熱的な影響に関して
は、回路部材自体への影響のみならず、回路部材接続時
の影響も大きい。すなわち、加熱加圧時の温度が高い条
件で接続を行うと、対向する2つの回路部材が異なって
おりそれぞれの熱膨張係数(α)の差が大きい場合に
は、回路の位置ずれが発生する可能性が高くなる。また
回路の補修に関して、従来用いていた熱硬化性の接着剤
では、溶剤として例えば塩化メチレンと酸等より成るい
わゆるエポキシ剥離剤および汎用溶剤を用いて補修して
いたが、前者の場合は基板回路等への悪影響があり、後
者の場合には接着剤によっては補修が不可能であるか、
または補修に要する時間が長くなることがあり、作業性
を低下させる。本発明はこのような状況に鑑みなされた
もので、従来より低温での接続が可能で回路部材に対す
る熱的影響を軽減し、かつ接続部の信頼性が高く、さら
には接続不良が発生した場合には汎用溶剤によって短時
間で容易に補修可能な、フィルム状回路接続部材を用い
た電極の接続方法を提供するものである。
However, the influence of heat and pressure on the circuit member due to the heating and pressurizing during the curing of the resin exists regardless of the magnitude thereof, and especially the thermal effect is exerted on the circuit member itself. In addition to the effects of the above, the effects of connecting the circuit members are also large. That is, when the connection is performed under the condition that the temperature at the time of heating and pressurization is high, the two circuit members facing each other are different, and when the difference between the respective thermal expansion coefficients (α) is large, the circuit is misaligned. The likelihood increases. With regard to circuit repair, conventionally used thermosetting adhesives have been repaired using so-called epoxy strippers composed of, for example, methylene chloride and acid, and general-purpose solvents as the solvent. In the latter case, repair is not possible depending on the adhesive,
Alternatively, the time required for repair may be long, and the workability is reduced. The present invention has been made in view of such a situation, and it is possible to connect at a lower temperature than before, reduce the thermal effect on circuit members, and have a high reliability of the connection portion, and furthermore, when a connection failure occurs. An object of the present invention is to provide an electrode connecting method using a film-like circuit connecting member, which can be easily repaired in a short time by a general-purpose solvent.

【0005】[0005]

【発明を解決するための手段】本発明の電極の接続方法
は、少なくとも一方が光透過性を有する2つの回路部
材、すなわち第一の接続端子を有する第一の回路部材
と、第二の接続端子を有する第二の回路部材とを、第一
の接続端子と第二の接続端子を対向して配置し、前記対
向配置した第一の接続端子と第二の接続端子の間に、光
硬化成分および導電性粒子を含有するフィルム状回路接
続材料を介在させ、加熱加圧および光照射を行い、前記
対向配置した第一の接続端子と第二の接続端子を電気的
に接続させることを特徴とする。フィルム状回路接続材
料は光硬化性樹脂、分子量が10,000以上の高分子
樹脂および導電性粒子を必須成分とするものが使用さ
れ、更にカップリング剤を含有することができる。本発
明では、加熱加圧および光照射によって、フィルム状回
路接続材料が溶融、流動し、導電性粒子による回路部材
間の導通が確保されるような条件で一次接続を行った
後、加熱加圧および光照射を中断し、導通検査による一
定時間経過後、再び光照射によって十分な硬化を行うこ
とにより電極を接続する。また、加熱加圧によって、フ
ィルム状回路接続材料が溶融、流動し、導電性粒子によ
る回路部材間の導通が確保されるような条件で一次接続
を行った後加熱加圧を中断し、導通検査による一定時間
経過後、光照射によって十分な硬化を行うことにより電
極を接続する。一次接続を行った後、フィルム状回路接
続材料のガラス転移点以下にまで冷却を行い、その後加
熱加圧および光照射を中断することができる。加熱加圧
と光照射を同時に開始するようにしたり、加熱加圧と光
照射の間に1〜数秒の間隔を設け、加熱加圧開始後に光
照射を行うようにすることができる。請求項4記載の電
極の接続方法。光透過性を有する回路部材の厚みが1.
2mm以下であるのが好ましく、導電性粒子の圧縮弾性
率は、1000〜10000MPaであることが好まし
い。
According to the method for connecting electrodes of the present invention, at least one of the two circuit members has a light transmitting property, that is, a first circuit member having a first connection terminal and a second connection member. A second circuit member having a terminal, a first connection terminal and a second connection terminal are arranged to face each other, and between the first connection terminal and the second connection terminal arranged opposite to each other, light curing is performed. A film-like circuit connection material containing a component and conductive particles is interposed, and heat and pressure and light irradiation are performed to electrically connect the first connection terminal and the second connection terminal arranged opposite to each other. And As the film-like circuit connection material, a photocurable resin, a polymer resin having a molecular weight of 10,000 or more and conductive particles are used as essential components, and a coupling agent can be further contained. In the present invention, the film-like circuit connecting material is melted and flows by heating and pressurizing and light irradiation, and the primary connection is performed under such a condition that conduction between the circuit members by the conductive particles is ensured. Then, the light irradiation is interrupted, and after a lapse of a certain time by the conduction test, the electrodes are connected by performing sufficient curing again by light irradiation. In addition, the heating and pressurization causes the film-like circuit connection material to melt and flow, and the primary connection is performed under conditions that ensure conduction between circuit members due to the conductive particles. After a certain period of time, the electrodes are connected by performing sufficient curing by light irradiation. After the primary connection is made, the film is cooled to a temperature lower than the glass transition point of the film-like circuit connection material, and then the heating and pressurizing and the light irradiation can be interrupted. The heating and pressurization and the light irradiation can be started at the same time, or an interval of 1 to several seconds is provided between the heating and pressurization and the light irradiation, and the light irradiation can be performed after the start of the heating and pressurization. The method for connecting electrodes according to claim 4. The thickness of the circuit member having optical transparency is 1.
It is preferably 2 mm or less, and the compression elastic modulus of the conductive particles is preferably 1,000 to 10,000 MPa.

【0006】本発明の電極の接続方法は、少なくとも一
方が光透過性を有する2つの回路部材、すなわち第一の
接続端子を有する第一の回路部材と、第二の接続端子を
有する第二の回路部材とを、第一の接続端子と第二の接
続端子を対向して配置し、前記対向配置した第一の接続
端子と第二の接続端子の間に、光硬化成分および導電性
粒子を含有するフィルム状回路接続材料を介在させ、加
熱加圧および光照射を併用することによって、前記対向
配置した第一の接続端子と第二の接続端子を電気的に接
続させることを特徴とし、これらのフィルム状回路接続
材料の構成成分が光硬化性樹脂、分子量が10,000
以上の高分子樹脂および導電性粒子を必須成分とするこ
とを特徴とするものである。また、加熱加圧および光照
射によって、フィルム状回路接続材料が溶融、流動し、
導電性粒子による回路部材間の導通が確保されるような
条件で一次接続を行った後、加熱加圧および光照射を中
断し、導通検査等による一定時間経過後、再び光照射の
みによって十分な硬化を行うことを特徴とするものであ
る。
According to the electrode connection method of the present invention, at least one of the two circuit members has optical transparency, that is, a first circuit member having a first connection terminal and a second circuit member having a second connection terminal. The circuit member, the first connection terminal and the second connection terminal are arranged to face each other, between the first connection terminal and the second connection terminal arranged opposite to each other, the photocurable component and the conductive particles By interposing a film-like circuit connection material to be contained, by using both heating and pressurization and light irradiation, the first connection terminal and the second connection terminal arranged opposite to each other are electrically connected, The composition component of the film-like circuit connection material is a photocurable resin and has a molecular weight of 10,000.
It is characterized in that the above-mentioned polymer resin and conductive particles are essential components. In addition, the film-like circuit connection material melts and flows by heating and pressing and light irradiation,
After the primary connection is performed under the condition that the conduction between the circuit members by the conductive particles is ensured, the heating and pressurization and the light irradiation are interrupted, and after a certain period of time such as a continuity test, sufficient light irradiation alone is sufficient. It is characterized by performing curing.

【0007】[0007]

【発明の実施の形態】本発明において、回路部材として
は半導体チップ、抵抗体チップ、コンデンサチップ等の
チップ部品、プリント基板等の基板、液晶パネル等が用
いられる。これらの回路部材には接続端子が通常は多数
(場合によっては単数でも良い)設けられており、少な
くとも一方が光透過性を有する前記回路部材の少なくと
も1組を、それらの回路部材に設けられた接続端子の少
なくとも1部を対向配置し、対向配置した接続端子間に
接着剤を介在させ、加熱加圧および光照射して対向配置
した接続端子同士を電気的に接続して接続体とする。こ
の時、光透過性を有する回路部材の厚みは、1.2mm
以下が光透過性の面で好ましい。また、光硬化性樹脂を
含有する回路接続材料の形態をフィルム状とすること
で、従来のペースト状回路接続材料に比べて取扱い性が
優れている点や接続厚みの均一化が図れる点等で有利で
ある。さらに、回路部材との密着性を高めるために、硬
化反応がほとんど進行せず樹脂が流動する程度の加熱を
行う場合、接続材料の加熱を行って接続端子−導電性粒
子−接続端子間の導通を確保した後、冷却工程を導入す
ることによって接続材料の溶融粘度を再上昇させること
が可能であり、これによって加熱−冷却のみによる導電
性粒子の圧接状態を維持し樹脂の固定が図れる。これは
ペースト状の回路接続材料では不可能である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, as a circuit member, a chip component such as a semiconductor chip, a resistor chip and a capacitor chip, a substrate such as a printed board, a liquid crystal panel and the like are used. These circuit members are usually provided with a large number of connection terminals (in some cases, a single terminal may be provided), and at least one of the circuit members having optical transparency is provided on the circuit members. At least one part of the connection terminals is opposed to each other, an adhesive is interposed between the opposed connection terminals, and heated and pressed and irradiated with light to electrically connect the opposed connection terminals to form a connection body. At this time, the thickness of the light-transmitting circuit member is 1.2 mm.
The following are preferable in terms of light transmission. In addition, by making the form of the circuit connection material containing the photocurable resin into a film form, the handleability is superior to that of the conventional paste-like circuit connection material, and the connection thickness can be made uniform. It is advantageous. Furthermore, in order to enhance the adhesiveness with the circuit member, when heating is performed to such an extent that the curing reaction hardly progresses and the resin flows, the connection material is heated to conduct the connection between the connection terminal, the conductive particles, and the connection terminal. After ensuring the above, it is possible to increase the melt viscosity of the connection material again by introducing a cooling step, whereby the pressure-contact state of the conductive particles by only heating and cooling can be maintained and the resin can be fixed. This is not possible with paste-like circuit connection materials.

【0008】請求項1に示した方法では、第一の接続端
子と第二の接続端子とを対向配置し、その間に光硬化成
分および導電性粒子を含有するフィルム状回路接続材料
を介在させ、加熱加圧および光照射によって前記対向配
置した第一の接続端子と第二の接続端子を電気的に接続
させる。フィルム状回路接続材料の硬化は主として光硬
化によって行なわれるために、加熱加圧工程の役割とし
ては、接着剤を溶融、流動させ、接続端子と導電性粒子
が接触する部分周辺の樹脂成分を十分に排除し、接続端
子間に導電性粒子を充分に圧接させることである、と考
えることができる。このため接着剤のTg以上、もしく
は導電性粒子の十分な変形に必要な接着剤の流動が得ら
れる温度まで加熱すればよく、その温度はフィルム形成
材料である高分子樹脂の種類にもよるが、概ね80〜1
40℃の範囲内である。これは従来の熱硬化性樹脂を硬
化成分として用いているフィルム状回路接続材料の接続
に必要な加熱温度である150〜190℃よりも低い。
したがって上記方法によって回路部材の接続温度の低温
化を図ることができる。また、加熱加圧と光照射を同時
に行う場合は、接着剤の流動によって導電性粒子の接触
を十分に行うために、溶融流動性と光照射能力との調整
が必要である。ここでいう光照射能力は、用いる光照射
装置の光源に依存しており、光量の少ない光源を使用し
ている光照射装置の場合には、接着剤の硬化速度が遅く
なり、その間に樹脂流動が十分に行なわれるため、加熱
加圧と光照射を全く同時に行うことができる(請求項
7)。また光量の多い光源を使用している光照射装置の
場合には、樹脂流動を優先させるために加熱加圧工程と
光照射工程の間に1〜数秒の間隔を設け、加熱加圧開始
後に光照射を行うこともできる(請求項8)。この場合
光照射を遅延して行うため、樹脂が流動し導電性粒子に
よる接続端子の導通が確保された後、光量を増加して短
時間で急速に硬化させてもよい。
In the method according to the first aspect, the first connection terminal and the second connection terminal are arranged to face each other, and a film-like circuit connection material containing a photocurable component and conductive particles is interposed therebetween. The first connection terminal and the second connection terminal arranged opposite to each other are electrically connected by heating and pressurizing and light irradiation. Since the curing of the film-like circuit connection material is mainly performed by photo-curing, the role of the heating and pressurizing step is to melt and flow the adhesive and sufficiently remove the resin component around the portion where the connection terminals and the conductive particles come into contact. And to sufficiently press the conductive particles between the connection terminals. For this reason, heating may be performed to a temperature higher than the Tg of the adhesive or to a temperature at which the flow of the adhesive necessary for sufficient deformation of the conductive particles can be obtained. The temperature depends on the type of the polymer resin as the film forming material. , Approximately 80-1
Within the range of 40 ° C. This is lower than the heating temperature of 150 to 190 ° C. required for connection of a film-like circuit connection material using a conventional thermosetting resin as a curing component.
Therefore, the connection temperature of the circuit member can be reduced by the above method. In addition, when heating and pressurization and light irradiation are performed simultaneously, it is necessary to adjust melt fluidity and light irradiation ability in order to sufficiently contact the conductive particles by the flow of the adhesive. The light irradiation ability here depends on the light source of the light irradiation device used, and in the case of a light irradiation device using a light source with a small amount of light, the curing speed of the adhesive becomes slow and the resin Is performed sufficiently, so that heating and pressurization and light irradiation can be performed at the same time (claim 7). In the case of a light irradiation device using a light source having a large amount of light, an interval of one to several seconds is provided between the heating and pressurizing step and the light irradiation step in order to give priority to the flow of the resin. Irradiation can also be performed (claim 8). In this case, since the light irradiation is performed with a delay, after the resin flows and the conduction of the connection terminals by the conductive particles is ensured, the amount of light may be increased to rapidly cure the resin in a short time.

【0009】請求項2に示した方法では、光硬化性樹
脂、分子量が10,000以上の高分子樹脂および導電
性粒子を必須成分とすることによって、光硬化が可能な
フィルム状の回路接続材料を提供することが可能であ
る。これは、分子量が10,000以上の高分子樹脂が
ほとんどが常温で固形であり、フィルム形成能力が高い
ことに起因している。この高分子樹脂と光硬化性樹脂を
混合することによって、従来の、光硬化性樹脂を用いた
回路接続材料の短所であった、取扱い性の向上や接続厚
みの均一化等を図ることが可能である。
According to a second aspect of the present invention, a photocurable film-like circuit connection material is formed by using a photocurable resin, a polymer resin having a molecular weight of 10,000 or more and conductive particles as essential components. It is possible to provide. This is because most polymer resins having a molecular weight of 10,000 or more are solid at room temperature and have high film-forming ability. By mixing this polymer resin and photo-curable resin, it is possible to improve the handleability and uniform the connection thickness, which were disadvantages of conventional circuit connection materials using photo-curable resin. It is.

【0010】光硬化性樹脂、分子量が10,000以上
の高分子樹脂および導電性粒子を必須成分とするフィル
ム状回路接続材料を用い、加熱加圧および光照射によっ
て、フィルム状回路接続材料が溶融、流動し、導電性粒
子による回路部材間の導通が確保されるような条件で一
次接続を行った後、加熱加圧および光照射を中断し、導
通検査等による一定時間経過後、再び光照射のみによっ
て十分な硬化を行う請求項4に示した方法、また、加熱
加圧のみによって、前記フィルム状回路接続材料が溶
融、流動し、導電性粒子による回路部材間の導通が確保
されるような条件で一次接続を行った後加熱加圧を中断
し、導通検査等による一定時間経過後、光照射のみによ
って十分な硬化を行う請求項4に示した方法において
は、初期導通を確保するには導電性粒子の変形が十分で
あり、かつその状態が加熱加圧終了後も維持されている
ことが重要であることから、導通を確保するのに最低限
必要な加熱加圧および光照射を行えばよい。この時の加
熱加圧条件は、温度の場合は前述したように接着剤のT
g以上、もしくは導電性粒子の十分な変形に必要な接着
剤の流動が得られる温度まで加熱できる条件が好まし
く、その温度はフィルム形成材料である高分子樹脂の種
類にもよるが、80〜140℃の範囲内が好ましい。ま
た圧力は回路部材の種類によって変化するが、回路部材
に悪影響を与えず、なおかつ導電性粒子を変形させるこ
とができる条件が好ましい。一次接続を行った時点で導
通検査を行い、その結果初期抵抗が高く導通が確保でき
ていなければ、回路部材を剥離して回路を補修すること
になるが、接着剤の硬化はまだ十分に進行していないた
め、汎用溶剤で非常に短時間に接着剤を除去することが
可能である。逆に、導通が確保されていれば未硬化であ
る接着剤を光照射によって十分に硬化させればよい。
[0010] Using a photo-curable resin, a polymer resin having a molecular weight of 10,000 or more, and a film-like circuit connection material containing conductive particles as essential components, the film-like circuit connection material is melted by heating and pressing and light irradiation. After the primary connection is made under the condition that the conduction between the circuit members by the flowing and the conductive particles is ensured, the heating and pressurization and the light irradiation are interrupted, and after a certain time elapses by the continuity test, the light irradiation is performed again. The method according to claim 4, wherein the film-like circuit connecting material is melted and flows by only the heating and pressurizing, and the conduction between the circuit members by the conductive particles is ensured only by the heating and pressurizing. The method according to claim 4, wherein after the primary connection is performed under the conditions, the heating and pressurizing are interrupted, and after a certain period of time such as a conduction test or the like, sufficient curing is performed only by light irradiation. It is important that the conductive particles are sufficiently deformed and that the state is maintained even after the completion of the heating and pressurizing. Therefore, the minimum necessary heating and pressurizing and light irradiation to ensure conduction are performed. Should be performed. At this time, the heating and pressurizing conditions are as follows.
g or more, or a condition that can be heated to a temperature at which the flow of the adhesive necessary for sufficient deformation of the conductive particles can be obtained. The temperature depends on the type of the polymer resin as the film forming material, but is preferably from 80 to 140. It is preferably within the range of ° C. The pressure varies depending on the type of the circuit member. However, it is preferable that the pressure does not adversely affect the circuit member and that the conductive particles can be deformed. Conduct a continuity test at the time of the primary connection.If the initial resistance is not high and continuity cannot be secured, the circuit members will be peeled off and the circuit will be repaired, but the curing of the adhesive will still proceed sufficiently Therefore, the adhesive can be removed with a general-purpose solvent in a very short time. Conversely, if conduction is ensured, the uncured adhesive may be sufficiently cured by light irradiation.

【0011】また、一次接続を行った後、フィルム状回
路接続材料のTg以下にまで冷却を行い、その後加熱加
圧および光照射を中断することを特徴とする請求項5に
示した方法では、圧力開放直前に熱圧着装置の加熱加圧
ヘッドを冷却するため、接着剤が全く未硬化であるか、
硬化反応がほとんど進行していない場合においても、冷
却工程によって接着剤温度がTg以下にまで低下し、溶
融粘度も再び上昇するため、圧力開放時の導電性粒子の
復元を抑制し、接続厚みが保たれることから導通を確保
することが可能である。逆に、接着剤が同様な状態であ
るとき、冷却工程を経ない場合においては、接着剤温度
がTg以上であり、溶融粘度も低くなっているため、圧
力解放時に接続厚みが増加し、回路間に気泡が多数発生
して接着性の低下を招く。また、接続厚みの増加によっ
て導電性粒子が復元し、回路との接触面積が減少するた
め、初期抵抗が著しく上昇し、導通が確保できない。
The method according to claim 5, wherein after the primary connection is made, the film-like circuit connection material is cooled to Tg or less, and then the heating and pressurizing and the light irradiation are interrupted. In order to cool the heating / pressing head of the thermocompression bonding device just before the pressure is released, whether the adhesive is completely uncured,
Even when the curing reaction hardly progresses, the cooling step lowers the temperature of the adhesive to Tg or lower, and the melt viscosity also rises again. Therefore, the restoration of the conductive particles when the pressure is released is suppressed, and the connection thickness is reduced. Since it is kept, conduction can be ensured. Conversely, when the adhesive is in the same state, when the cooling step is not performed, the adhesive temperature is equal to or higher than Tg and the melt viscosity is low, so that the connection thickness increases upon release of pressure, and the circuit Many air bubbles are generated in between, causing a decrease in adhesiveness. In addition, since the conductive particles are restored by the increase in the connection thickness and the contact area with the circuit is reduced, the initial resistance is significantly increased, and conduction cannot be secured.

【0012】本発明に用いるフィルム状回路接続材料と
しては光硬化性樹脂に、フィルム形成性を付与するため
の固形高分子樹脂を混合した接着剤成分、そして導電性
粒子から成っており、接続材料をフィルム状とすること
で回路部材接続時の取扱い性の向上を図ることができ
る。
The film-like circuit connecting material used in the present invention comprises an adhesive component obtained by mixing a photocurable resin with a solid polymer resin for imparting a film-forming property, and conductive particles. Is formed into a film-like shape, thereby improving the handleability when connecting circuit members.

【0013】本発明に用いる光硬化性樹脂としては、エ
ポキシアクリレートオリゴマー、ウレタンアクリレート
オリゴマー、ポリエーテルアクリレートオリゴマー、ポ
リエステルアクリレートオリゴマー等の光重合性オリゴ
マー、トリメチロールプロパントリアクリレート、ポリ
エチレングリコールジアクリレート、ポリアルキレング
リコールジアクリレート、ペンタエリスリトールアクリ
レート等の光重合性多官能アクリレートモノマー等とい
ったアクリル酸エステル、およびこれらと類似したメタ
クリル酸エステル等に代表される光重合型の樹脂があ
り、必要に応じてこれらの樹脂を単独あるいは混合して
用いてもよいが、接着剤硬化物の硬化収縮を抑制し、柔
軟性を与えるためにはウレタンアクリレートオリゴマー
を配合するのが好ましい。また上述した光重合性オリゴ
マーは高粘度であるために、粘度調整のために低粘度の
光重合性多官能アクリレートモノマー等のモノマーを配
合するのが好ましい。
The photocurable resin for use in the present invention includes photopolymerizable oligomers such as epoxy acrylate oligomer, urethane acrylate oligomer, polyether acrylate oligomer, polyester acrylate oligomer, trimethylolpropane triacrylate, polyethylene glycol diacrylate, and polyalkylene. There are photopolymerizable resins represented by acrylates such as photopolymerizable polyfunctional acrylate monomers such as glycol diacrylate and pentaerythritol acrylate, and methacrylates similar to these, and if necessary, these resins. May be used alone or as a mixture. However, in order to suppress the curing shrinkage of the cured adhesive and to impart flexibility, it is preferable to blend a urethane acrylate oligomer. There. Further, since the above-mentioned photopolymerizable oligomer has a high viscosity, it is preferable to mix a low-viscosity monomer such as a photopolymerizable polyfunctional acrylate monomer for viscosity adjustment.

【0014】これらの光硬化性樹脂は光開始剤を用いて
重合、硬化させる。本発明に用いる光開始剤としてはベ
ンゾインエチルエーテル、イソプロピルベンゾインエー
テル等のベンゾインエーテル、ベンジル、ヒドロキシシ
クロヘキシルフェニルケトン等のベンジルケタール、ベ
ンゾフェノン、アセトフェノン等のケトン類およびその
誘導体、チオキサントン類、ビイミダゾール類等があ
り、これらの光開始剤に必要に応じてアミン類、イオウ
化合物、リン化合物等の増感剤を任意の比で添加しても
よい。この際、用いる光源の波長や所望の硬化特性等に
応じて最適な光開始剤を選択する必要がある。また、こ
れらの光硬化性樹脂とポリエチレン、酢酸エチル、ポリ
プロピレン等の熱可塑性樹脂や、高耐熱性を有するポリ
エーテルスルホン、ポリエーテルイミド、ポリイミド等
の樹脂やエポキシ樹脂等の熱硬化性樹脂、あるいはフェ
ノキシ樹脂やエラストマー等とを混合して用いることが
できる。
These photocurable resins are polymerized and cured using a photoinitiator. Examples of the photoinitiator used in the present invention include benzoin ethers such as benzoin ethyl ether and isopropyl benzoin ether, benzyl ketals such as benzyl and hydroxycyclohexyl phenyl ketone, ketones such as benzophenone and acetophenone and derivatives thereof, thioxanthones and biimidazoles. Sensitizers such as amines, sulfur compounds, and phosphorus compounds may be added to these photoinitiators as needed at any ratio. At this time, it is necessary to select an optimal photoinitiator according to the wavelength of the light source used, the desired curing characteristics, and the like. Further, these photocurable resins and polyethylene, ethyl acetate, thermoplastic resins such as polypropylene, and polyethersulfone having high heat resistance, polyetherimide, thermosetting resins such as polyimide resins and epoxy resins, or A phenoxy resin, an elastomer or the like can be used as a mixture.

【0015】硬化に用いる光は、一般的に広く使用され
ている紫外線を用いることができ、水銀ランプ、メタル
ハライドランプ、無電極ランプ等で発生させることがで
きる。また、硬化反応としてラジカル反応を用いた場
合、酸素が反応禁止剤として作用するので、光照射の雰
囲気中の酸素量は光硬化性樹脂の硬化に影響を与える。
これは光硬化性樹脂、光開始剤、増感剤等の種類や濃度
にも大きく左右されるので、個々の配合系で詳細に検討
する必要がある。
As the light used for curing, generally used ultraviolet light can be used, and it can be generated by a mercury lamp, a metal halide lamp, an electrodeless lamp or the like. In addition, when a radical reaction is used as the curing reaction, oxygen acts as a reaction inhibitor, so that the amount of oxygen in the atmosphere of light irradiation affects the curing of the photocurable resin.
Since this greatly depends on the type and concentration of the photocurable resin, photoinitiator, sensitizer, and the like, it is necessary to study in detail for each compounding system.

【0016】導電性粒子としては、Au、Ag、Ni、
Cu、はんだ等の金属粒子やカーボン等があり、これら
および非導電性のガラス、セラミック、プラスチック等
に前記した導通層を被覆等によって形成したものでもよ
い。プラスチックを核とした場合や熱溶融金属粒子の場
合、加熱加圧によって変形性を有するので接続時に電極
との接触面積が増加し信頼性が向上するので好ましい。
導電性粒子は、接着剤成分100体積に対して、0.1
〜30体積%の広範囲で用途によって使い分ける。過剰
な導電性粒子による隣接回路の短絡等を防止するために
は、0.2〜15体積%とするのがより好ましい。この
時の導電性粒子の平均粒径は、その添加量にもよるが1
〜15μmとするのがより好ましい。また導電性粒子の
圧縮弾性率は、加熱加圧および光照射を中断した時に、
接着剤の弾性による粒子の復元を抑制するために、10
00〜10000MPaの範囲内とすることが好まし
い。
As the conductive particles, Au, Ag, Ni,
There are metal particles such as Cu, solder and the like, carbon and the like, and those obtained by forming the above-described conductive layer on these materials and non-conductive glass, ceramic, plastic or the like by coating or the like may be used. In the case of using plastic as a nucleus or hot-melt metal particles, they are deformable by heating and pressing, so that the contact area with the electrode at the time of connection increases and reliability is improved, which is preferable.
The conductive particles are 0.1% with respect to 100 volumes of the adhesive component.
Depending on the application, it is used properly in a wide range of -30% by volume. In order to prevent a short circuit or the like in an adjacent circuit due to excessive conductive particles, the content is more preferably 0.2 to 15% by volume. At this time, the average particle size of the conductive particles depends on the amount added, but is 1
It is more preferable that the thickness be 15 μm. In addition, the compression elastic modulus of the conductive particles, when heating and pressurizing and light irradiation is interrupted,
In order to suppress the restoration of particles due to the elasticity of the adhesive, 10
It is preferable to be in the range of 00 to 10000 MPa.

【0017】シランカップリング剤としてはビニルトリ
クロルシラン、ビニルトリエトキシシラン、ビニル−ト
リス−(βメトキシエトキシ)シラン、γ−メタクリロ
キシプロピルトリメトキシシラン、γ−グリシドキシプ
ロピルトリメトキシシラン、γ−アミノプロピルトリエ
トキシシラン、β−(3,4エポキシシクロヘキシル)
エチルトリメトキシシラン、イソイアン酸プロピルトリ
エトキシシラン等があるが、光硬化性樹脂との反応性を
高めるにはγ−メタクリロキシプロピルトリメトキシシ
ランを用いるのがより好ましい。
Examples of the silane coupling agent include vinyltrichlorosilane, vinyltriethoxysilane, vinyl-tris- (β-methoxyethoxy) silane, γ-methacryloxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ- Aminopropyltriethoxysilane, β- (3,4 epoxycyclohexyl)
Ethyltrimethoxysilane, propylisoethoxytriethoxysilane and the like are available, but γ-methacryloxypropyltrimethoxysilane is more preferably used to enhance the reactivity with the photocurable resin.

【0018】[0018]

【実施例】【Example】

実施例1 フェノキシ樹脂(ユニオンカーバイド株式会社製、商品
名PKHA)40gを、重量比でトルエン(沸点11
0.6℃、SP値8.90)/酢酸エチル(沸点77.
1℃、SP値9.10)=50/50の混合溶剤60g
に溶解して、固形分40%の溶液とした。光硬化性樹脂
は、エポキシアクリレートオリゴマー(新中村化学工業
株式会社製、商品名NKオリゴEA−1020)および
アクリレートモノマー(新中村化学工業株式会社製、商
品名NKエステルA−TMM−3L)を、3/1の重量
比で用いた。光開始剤はベンゾフェノンを用い、これに
増感剤として4,4’−ビスジエチルアミノベンゾフェ
ノン(保土ケ谷化学工業株式会社製、商品名EAB)
を、光開始剤/増感剤=5/1となるように混合して用
いた。ポリスチレンを核とする粒子の表面に、厚み0.
2μmのニッケル層を設け、このニッケル層の外側に、
厚み0.02μmの金層を設け、平均粒径5μm、比重
2.5の導電性粒子を作製した。固形重量比でフェノキ
シ樹脂50、光硬化性樹脂50、光開始剤5、増感剤1
となるように配合し、さらに導電性粒子を3体積%配合
分散させ、厚み80μmのフッ素樹脂フィルムに塗工装
置を用いて塗布し、70℃、10分の熱風乾燥によって
接着剤層の厚みが20μmのフィルム状回路接続材料を
得た。上記製法によって得たフィルム状回路接続材料を
用いて、ライン幅50μm、ピッチ100μm、厚み1
8μmの銅回路を500本有するフレキシブル回路板
(FPC)と、0.2μmの酸化インジウム(ITO)
の薄層を形成したガラス(厚み1.1mm、表面抵抗2
0Ω/□)とを、紫外線照射併用型熱圧着装置(加熱方
式:コンスタントヒート型、東レエンジニアリング株式
会社製)を用いて図1に示すように130℃、2MPa
で20秒間の加熱加圧およびITOガラス側からの紫外
線照射を同時に行って幅2mmにわたり接続し、時間経
過後圧力開放して、接続体を作製した。接着剤に照射さ
れる紫外線量(以下紫外線照射量)は1.3J/cm2
とした。この時、あらかじめITOガラス上に、フィル
ム状回路接続材料の接着面を貼り付けた後、70℃、
0.5MPaで5秒間加熱加圧して仮接続し、その後、
フッ素樹脂フィルムを剥離してもう一方の被着体である
FPCと接続した。
Example 1 40 g of a phenoxy resin (trade name: PKHA, manufactured by Union Carbide Co., Ltd.) was mixed with toluene (boiling point: 11
0.6 ° C, SP value 8.90) / ethyl acetate (boiling point 77.
1 g, SP value 9.10) = 60/50/50 mixed solvent 60 g
Into a solution having a solid content of 40%. The photocurable resin is an epoxy acrylate oligomer (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name NK Oligo EA-1020) and an acrylate monomer (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name NK Ester A-TMM-3L), It was used at a weight ratio of 3/1. The photoinitiator used was benzophenone, and 4,4′-bisdiethylaminobenzophenone was used as a sensitizer (trade name: EAB, manufactured by Hodogaya Chemical Industry Co., Ltd.).
Was used so that photoinitiator / sensitizer = 5/1. On the surface of the particles having polystyrene as a core, a thickness of 0.
A nickel layer of 2 μm is provided, and outside the nickel layer,
A gold layer having a thickness of 0.02 μm was provided, and conductive particles having an average particle size of 5 μm and a specific gravity of 2.5 were produced. Phenoxy resin 50, photocurable resin 50, photoinitiator 5, sensitizer 1 in solid weight ratio
Then, 3% by volume of the conductive particles are mixed and dispersed, applied to a 80 μm-thick fluororesin film using a coating device, and dried at 70 ° C. for 10 minutes with hot air to reduce the thickness of the adhesive layer. A film-like circuit connection material of 20 μm was obtained. Using the film-like circuit connection material obtained by the above method, a line width of 50 μm, a pitch of 100 μm, and a thickness of 1
Flexible circuit board (FPC) with 500 8 μm copper circuits and 0.2 μm indium oxide (ITO)
(Thickness 1.1 mm, surface resistance 2)
0 Ω / □) at 130 ° C., 2 MPa as shown in FIG. 1 using an ultraviolet irradiation combined thermocompression bonding apparatus (heating method: constant heat type, manufactured by Toray Engineering Co., Ltd.).
For 20 seconds and UV irradiation from the ITO glass side were simultaneously performed to connect over a width of 2 mm, and after a lapse of time, the pressure was released to produce a connected body. The amount of ultraviolet rays irradiated on the adhesive (hereinafter referred to as ultraviolet irradiation amount) is 1.3 J / cm 2.
And At this time, after bonding the adhesive surface of the film-like circuit connection material on the ITO glass in advance,
Temporarily connect by heating and pressing at 0.5 MPa for 5 seconds,
The fluororesin film was peeled off and connected to another FPC as an adherend.

【0019】実施例2 実施例1によって得たフィルム状回路接続材料を用い
て、ライン幅50μm、ピッチ100μm、厚み18μ
mの銅回路を500本有するフレキシブル回路板(FP
C)と、0.2μmの酸化インジウム(ITO)の薄層
を形成したガラス(厚み1.1mm、表面抵抗20Ω/
□)とを、パルスヒート型熱圧着装置(日本アビオニク
ス株式会社製)を用いて、図2に示すように130℃、
2MPaで20秒間加熱加圧して幅2mmにわたり接続
した後、約50℃までエアによって加熱ヘッドを冷却し
た後に圧力を開放し、これを接続終了とした。この時、
あらかじめITOガラス上に、フィルム状回路接続材料
の接着面を貼り付けた後、70℃、0.5MPaで5秒
間加熱加圧して仮接続し、その後、フッ素樹脂フィルム
を剥離してもう一方の被着体であるFPCと接続した。
上記方法によって得た接続体に、紫外線照射装置(ウシ
オ電機株式会社製)を用いて、図3に示すようにITO
ガラス側から紫外線を照射して接続体を作製した。この
時の紫外線照射量は1.3J/cm2とした。
Example 2 Using the film-like circuit connection material obtained in Example 1, a line width of 50 μm, a pitch of 100 μm, and a thickness of 18 μm
circuit board (FP) having 500 copper circuits
C) and glass having a thin layer of indium oxide (ITO) of 0.2 μm (thickness: 1.1 mm, surface resistance: 20Ω /
□) at 130 ° C. as shown in FIG. 2 using a pulse heat type thermocompression bonding device (manufactured by Nippon Avionics Co., Ltd.).
After heating and pressurizing at 2 MPa for 20 seconds and connecting over a width of 2 mm, the pressure was released after cooling the heating head to about 50 ° C. by air, and the connection was terminated. At this time,
After bonding the adhesive surface of the film-like circuit connection material on the ITO glass in advance, it is temporarily connected by heating and pressing at 70 ° C. and 0.5 MPa for 5 seconds, and then the fluororesin film is peeled off to remove the other coating. It was connected to the FPC that was the wearing body.
As shown in FIG. 3, ITO was applied to the connection body obtained by the above method using an ultraviolet irradiation device (manufactured by Ushio Inc.).
Ultraviolet rays were irradiated from the glass side to produce a connector. At this time, the amount of ultraviolet irradiation was 1.3 J / cm 2 .

【0020】実施例3 実施例1によって得たフィルム状回路接続材料を用い
て、ライン幅50μm、ピッチ100μm、厚み18μ
mの銅回路を500本有するフレキシブル回路板(FP
C)と、0.2μmの酸化インジウム(ITO)の薄層
を形成したガラス(厚み1.1mm、表面抵抗20Ω/
□)とを、紫外線照射併用型熱圧着装置(加熱方式:コ
ンスタントヒート型、東レエンジニアリング株式会社
製)を用いて図1に示すように130℃、2MPaで1
0秒間の加熱加圧およびITOガラス側からの紫外線照
射を同時に行って幅2mmにわたり接続し、時間経過後
圧力開放して、接続体を作製した。紫外線照射量は1.
3mJ/cm2とした。この時、あらかじめITOガラ
ス上に、フィルム状回路接続材料の接着面を貼り付けた
後、70℃、0.5MPaで5秒間加熱加圧して仮接続
し、その後、フッ素樹脂フィルムを剥離してもう一方の
被着体であるFPCと接続した。上記方法による接続
後、初期接続抵抗等の導通検査を行い、検査終了後同装
置を用いて130℃、2MPaで10秒間の加熱加圧お
よび照射量1.3J/cm2の紫外線照射を同時に行
い、時間経過後圧力開放して接続体を作製した。上記方
法による接続後、初期接続抵抗等の導通検査を行い、検
査終了後同装置を用いて130℃、2MPaで10秒間
の加熱加圧および照射量1.3J/cm2の紫外線照射
を同時に行い、時間経過後圧力開放して接続体を作製し
た。
Example 3 Using the film-like circuit connecting material obtained in Example 1, a line width of 50 μm, a pitch of 100 μm, and a thickness of 18 μm
circuit board (FP) having 500 copper circuits
C) and glass having a thin layer of indium oxide (ITO) of 0.2 μm (thickness: 1.1 mm, surface resistance: 20Ω /
□) using an ultraviolet irradiation combined thermocompression bonding apparatus (heating method: constant heat type, manufactured by Toray Engineering Co., Ltd.) at 130 ° C. and 2 MPa as shown in FIG.
The connection was made over a width of 2 mm by simultaneously performing heating and pressurization for 0 second and ultraviolet irradiation from the ITO glass side, and after a lapse of time, the pressure was released to produce a connected body. The amount of UV irradiation is 1.
3 mJ / cm 2 . At this time, after the adhesive surface of the film-like circuit connection material is pasted on the ITO glass in advance, it is temporarily connected by heating and pressing at 70 ° C. and 0.5 MPa for 5 seconds, and then the fluororesin film is peeled off. One of the adherends, the FPC, was connected. After the connection according to the above method, a continuity test such as initial connection resistance is performed, and after the test, heating and pressurization at 130 ° C. and 2 MPa for 10 seconds and ultraviolet irradiation at a dose of 1.3 J / cm 2 are simultaneously performed using the same device. After a lapse of time, the pressure was released to produce a connected body. After the connection according to the above method, a continuity test such as initial connection resistance is performed, and after the test, heating and pressurization at 130 ° C. and 2 MPa for 10 seconds and ultraviolet irradiation at a dose of 1.3 J / cm 2 are simultaneously performed using the same device. After a lapse of time, the pressure was released to produce a connected body.

【0021】実施例4 実施例1によって得たフィルム状回路接続材料を用い
て、ライン幅50μm、ピッチ100μm、厚み18μ
mの銅回路を500本有するフレキシブル回路板(FP
C)と、0.2μmの酸化インジウム(ITO)の薄層
を形成したガラス(厚み1.1mm、表面抵抗20Ω/
□)とを、紫外線照射併用型熱圧着装置(加熱方式:コ
ンスタントヒート型、東レエンジニアリング株式会社
製)を用いて図1に示すように130℃、2MPaで3
秒間の加熱加圧およびITOガラス側からの紫外線照射
を同時に行って幅2mmにわたり接続し、時間経過後圧
力開放して、接続体を作製した。紫外線照射量は1.3
J/cm2とした。この時、あらかじめITOガラス上
に、フィルム状回路接続材料の接着面を貼り付けた後、
70℃、0.5MPaで5秒間加熱加圧して仮接続し、
その後、フッ素樹脂フィルムを剥離してもう一方の被着
体であるFPCと接続した。上記方法による接続後、初
期接続抵抗等の導通検査を行った結果、導通不良である
ことが確認されたので、検査終了後回路の補修を行い、
実施例1と同様に同装置を用いて130℃、2MPaで
20秒間の加熱加圧および照射量1.3J/cm2の紫
外線照射を同時に行い、時間経過後圧力開放して接続体
を作製した。
Example 4 Using the film-like circuit connection material obtained in Example 1, a line width of 50 μm, a pitch of 100 μm, and a thickness of 18 μm
circuit board (FP) having 500 copper circuits
C) and glass having a thin layer of indium oxide (ITO) of 0.2 μm (thickness: 1.1 mm, surface resistance: 20Ω /
□) using an ultraviolet irradiation combined thermocompression bonding apparatus (heating method: constant heat type, manufactured by Toray Engineering Co., Ltd.) as shown in FIG.
The connection was made over a width of 2 mm by simultaneously applying heat and pressure for 2 seconds and irradiating ultraviolet rays from the ITO glass side, and after a lapse of time, the pressure was released to produce a connected body. UV irradiation amount is 1.3
J / cm 2 . At this time, after bonding the adhesive surface of the film-like circuit connection material on the ITO glass in advance,
Temporarily connected by heating and pressing at 70 ° C and 0.5 MPa for 5 seconds,
Thereafter, the fluororesin film was peeled off and connected to another FPC as an adherend. After the connection according to the above method, as a result of conducting a continuity test such as initial connection resistance, it was confirmed that the continuity was defective.
Using the same apparatus as in Example 1, heating and pressurization at 130 ° C. and 2 MPa for 20 seconds and UV irradiation at a dose of 1.3 J / cm 2 were simultaneously performed, and after a lapse of time, the pressure was released to produce a connected body. .

【0022】実施例5 実施例1によって得たフィルム状回路接続材料を用い
て、ライン幅50μm、ピッチ100μm、厚み18μ
mの銅回路を500本有するフレキシブル回路板(FP
C)と、0.2μmの酸化インジウム(ITO)の薄層
を形成したガラス(厚み1.1mm、表面抵抗20Ω/
□)とを、紫外線照射併用型熱圧着装置(加熱方式:コ
ンスタントヒート型、東レエンジニアリング株式会社
製)を用いて図1に示すように130℃、2MPaで1
0秒間の加熱加圧およびITOガラス側からの紫外線照
射を同時に行って幅2mmにわたり接続し、時間経過後
圧力開放して、接続体を作製した。紫外線照射量は5.
0J/cm2とした。この時、あらかじめITOガラス
上に、フィルム状回路接続材料の接着面を貼り付けた
後、70℃、0.5MPaで5秒間加熱加圧して仮接続
し、その後、フッ素樹脂フィルムを剥離してもう一方の
被着体であるFPCと接続した。図1における10秒間
の接続の際、加熱加圧のみを開始して2秒経過した後8
秒間の紫外線照射を開始し、加熱加圧10秒後に2工程
が同時に終了するようにした。
Example 5 Using the film-like circuit connecting material obtained in Example 1, the line width was 50 μm, the pitch was 100 μm, and the thickness was 18 μm.
circuit board (FP) having 500 copper circuits
C) and glass having a thin layer of indium oxide (ITO) of 0.2 μm (thickness: 1.1 mm, surface resistance: 20Ω /
□) using an ultraviolet irradiation combined thermocompression bonding apparatus (heating method: constant heat type, manufactured by Toray Engineering Co., Ltd.) at 130 ° C. and 2 MPa as shown in FIG.
The connection was made over a width of 2 mm by simultaneously performing heating and pressurization for 0 second and ultraviolet irradiation from the ITO glass side, and after a lapse of time, the pressure was released to produce a connected body. UV irradiation dose is 5.
It was set to 0 J / cm 2 . At this time, after the adhesive surface of the film-like circuit connection material is pasted on the ITO glass in advance, it is temporarily connected by heating and pressing at 70 ° C. and 0.5 MPa for 5 seconds, and then the fluororesin film is peeled off. One of the adherends, the FPC, was connected. At the time of connection for 10 seconds in FIG.
Irradiation of ultraviolet light for 2 seconds was started, and after 10 seconds of heating and pressurizing, the two steps were simultaneously completed.

【0023】実施例6 実施例1で使用したフィルム状回路接続材料の導電性粒
子を、平均粒径5μmのニッケル粒子(大同特殊綱株式
会社製、商品名DSP3101、比重8.5)に代えた
他は、実施例1と同様にして接続体を作製した。
Example 6 The conductive particles of the film-like circuit connecting material used in Example 1 were replaced with nickel particles having an average particle diameter of 5 μm (trade name DSP3101, specific gravity 8.5, manufactured by Daido Special Co., Ltd.). Other than that produced the connection body like Example 1. FIG.

【0024】実施例7 実施例1で使用したフィルム状回路接続材料の光硬化性
樹脂を、ウレタンアクリレートオリゴマー(新中村化学
工業株式会社製、商品名NKオリゴUA−512)およ
びアクリレートモノマー(A−TMM−3L)に代えた
他は、実施例1と同様にして接続体を作製した。
Example 7 The photocurable resin of the film-like circuit connecting material used in Example 1 was a urethane acrylate oligomer (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: NK Oligo UA-512) and an acrylate monomer (A- A connection body was produced in the same manner as in Example 1 except that TMM-3L) was used instead.

【0025】比較例1 実施例1で使用したフィルム状回路接続材料を用いて、
ライン幅50μm、ピッチ100μm、厚み18μmの
銅回路を500本有するフレキシブル回路板(FPC)
と、0.2μmの酸化インジウム(ITO)の薄層を形
成したガラス(厚み1.1mm、表面抵抗20Ω/□)
とを、コンスタントヒート型熱圧着装置(当社製)を用
いて130℃、2MPaで20秒間加熱加圧して幅2m
mにわたり接続し、時間経過後圧力開放して、これを接
続終了とした。この時、あらかじめITOガラス上に、
フィルム状回路接続材料の接着面を貼り付けた後、70
℃、0.5MPaで5秒間加熱加圧して仮接続し、その
後、フッ素樹脂フィルムを剥離してもう一方の被着体で
あるFPCと接続した。上記方法によって得た接続体
に、実施例2で用いた紫外線照射装置を用いて、図3に
示すようにITOガラス側から紫外線を照射して接続体
を作製した。この時の紫外線照射量は1.3J/cm2
とした。
Comparative Example 1 Using the film-like circuit connecting material used in Example 1,
Flexible circuit board (FPC) having 500 copper circuits with a line width of 50 μm, a pitch of 100 μm, and a thickness of 18 μm
And glass on which a thin layer of indium oxide (ITO) of 0.2 μm is formed (thickness: 1.1 mm, surface resistance: 20Ω / □)
Is heated and pressed at 130 ° C. and 2 MPa for 20 seconds using a constant heat type thermocompression bonding device (manufactured by our company) to obtain a width of 2 m.
m, and after a lapse of time, the pressure was released, and the connection was terminated. At this time, beforehand on the ITO glass,
After attaching the adhesive surface of the film-like circuit connection material, 70
Temporary connection was performed by heating and pressing at 0.5 ° C. and 0.5 MPa for 5 seconds, and then the fluororesin film was peeled off and connected to another FPC as an adherend. The connected body obtained by the above method was irradiated with ultraviolet rays from the ITO glass side as shown in FIG. 3 using the ultraviolet irradiation apparatus used in Example 2 to produce a connected body. At this time, the irradiation amount of ultraviolet light was 1.3 J / cm 2.
And

【0026】比較例2 実施例1で使用したフィルム状回路接続材料を用いて、
ライン幅50μm、ピッチ100μm、厚み18μmの
銅回路を500本有するフレキシブル回路板(FPC)
と、0.2μmの酸化インジウム(ITO)の薄層を形
成したガラス(厚み1.1mm、表面抵抗20Ω/□)
とを、紫外線照射併用型熱圧着装置(加熱方式:コンス
タントヒート型、東レエンジニアリング株式会社製)を
用いて図1に示すように130℃、2MPaで10秒間
の加熱加圧およびITOガラス側からの紫外線照射を同
時に行って幅2mmにわたり接続し、時間経過後圧力開
放して、接続体を作製した。紫外線照射量は5.0J/
cm2とした。この時、あらかじめITOガラス上に、
フィルム状回路接続材料の接着面を貼り付けた後、70
℃、0.5MPaで5秒間加熱加圧して仮接続し、その
後、フッ素樹脂フィルムを剥離してもう一方の被着体で
あるFPCと接続した。
Comparative Example 2 Using the film-like circuit connecting material used in Example 1,
Flexible circuit board (FPC) having 500 copper circuits with a line width of 50 μm, a pitch of 100 μm, and a thickness of 18 μm
And glass on which a thin layer of indium oxide (ITO) of 0.2 μm is formed (thickness: 1.1 mm, surface resistance: 20Ω / □)
As shown in FIG. 1, heat and pressure were applied at 130 ° C. and 2 MPa for 10 seconds using a thermocompression bonding apparatus combined with ultraviolet irradiation (heating method: constant heat type, manufactured by Toray Engineering Co., Ltd.), and pressure was applied from the ITO glass side. Ultraviolet irradiation was performed at the same time to connect over a width of 2 mm, and after a lapse of time, the pressure was released to produce a connected body. UV irradiation dose is 5.0J /
cm 2 . At this time, beforehand on the ITO glass,
After attaching the adhesive surface of the film-like circuit connection material, 70
Temporary connection was performed by heating and pressing at 0.5 ° C. and 0.5 MPa for 5 seconds, and then the fluororesin film was peeled off and connected to another FPC as an adherend.

【0027】比較例3 実施例1〜6、比較例1〜2で使用したフィルム状回路
接続材料の配合樹脂であるフェノキシ樹脂と、マイクロ
カプセル型潜在性硬化剤を含有する液状エポキシ樹脂
を、固形重量比でフェノキシ樹脂50、液状エポキシ樹
脂50となるように配合し、さらに実施例1で用いた導
電性粒子を3体積%配合分散させ、厚み80μmのフッ
素樹脂フィルムに塗工装置を用いて塗布し、70℃、1
0分の熱風乾燥によって接着剤層の厚みが20μmのフ
ィルム状回路接続材料を得た。上記製法によって得たフ
ィルム状回路接続材料を用いて、ライン幅50μm、ピ
ッチ100μm、厚み18μmの銅回路を500本有す
るフレキシブル回路板(FPC)と、0.2μmの酸化
インジウム(ITO)の薄層を形成したガラス(厚み
1.1mm、表面抵抗20Ω/□)とを、コンスタント
ヒート型熱圧着装置(当社製)を用いて130℃、2M
Paで20秒間加熱加圧して幅2mmにわたり接続し、
時間経過後圧力開放して、これを接続終了とした。この
時、あらかじめITOガラス上に、フィルム状回路接続
材料の接着面を貼り付けた後、70℃、0.5MPaで
5秒間加熱加圧して仮接続し、その後、フッ素樹脂フィ
ルムを剥離してもう一方の被着体であるFPCと接続し
た。
Comparative Example 3 A phenoxy resin, which is a compounded resin of the film-like circuit connecting material used in Examples 1 to 6 and Comparative Examples 1 and 2, and a liquid epoxy resin containing a microcapsule type latent curing agent were solidified. The phenoxy resin 50 and the liquid epoxy resin 50 were blended in a weight ratio, and the conductive particles used in Example 1 were further blended and dispersed by 3% by volume, and applied to a 80 μm-thick fluororesin film using a coating apparatus. And 70 ° C, 1
By hot-air drying for 0 minutes, a film-like circuit connection material having an adhesive layer thickness of 20 μm was obtained. A flexible circuit board (FPC) having 500 copper circuits having a line width of 50 μm, a pitch of 100 μm, and a thickness of 18 μm, and a thin layer of indium oxide (ITO) having a thickness of 0.2 μm, using the film-like circuit connection material obtained by the above method. The glass (having a thickness of 1.1 mm and a surface resistance of 20 Ω / square) formed at 130 ° C. and 2M using a constant heat type thermocompression bonding apparatus (manufactured by our company).
Heat and pressurize for 20 seconds at Pa and connect over 2 mm width,
After a lapse of time, the pressure was released, and the connection was terminated. At this time, after the adhesive surface of the film-like circuit connection material is pasted on the ITO glass in advance, it is temporarily connected by heating and pressing at 70 ° C. and 0.5 MPa for 5 seconds, and then the fluororesin film is peeled off. One of the adherends, the FPC, was connected.

【0028】比較例4 光硬化性樹脂は、エポキシアクリレートオリゴマー(新
中村化学工業株式会社製、商品名NKオリゴEA−10
20)およびアクリレートモノマー(新中村化学工業株
式会社製、商品名NKエステルA−TMM−3L)を、
3/1の重量比で用い、光開始剤にはベンゾフェノンを
用い、これに増感剤として4,4’−ビスジエチルアミ
ノベンゾフェノン(保土ケ谷化学工業株式会社製、商品
名EAB)を、光開始剤/増感剤=5/1となるように
混合して用いた。また、ポリスチレンを核とする粒子の
表面に、厚み0.2μmのニッケル層を設け、このニッ
ケル層の外側に、厚み0.02μmの金層を設け、平均
粒径5μm、比重2.5の導電性粒子を作製した。これ
らを用い、固形重量比で光硬化性樹脂100、光開始剤
5、増感剤1となるように配合し、さらに導電性粒子を
3体積%配合分散させ、ペースト状回路接続材料を得
た。上記製法によって得たペースト状回路接続材料を用
いて、ライン幅50μm、ピッチ100μm、厚み18
μmの銅回路を500本有するフレキシブル回路板(F
PC)と、0.2μmの酸化インジウム(ITO)の薄
層を形成したガラス(厚み1.1mm、表面抵抗20Ω
/□)とを、パルスヒート型熱圧着装置(日本アビオニ
クス株式会社製)を用いて130℃、2MPaで20秒
間加熱加圧して幅2mmにわたり接続し、時間経過後圧
力開放して、これを接続終了とした。この時、あらかじ
めITOガラス上に、ペースト状回路接続材料を適量塗
布し、もう一方の被着体であるFPCと接続した。上記
方法によって得た接続体に、紫外線照射装置(ウシオ電
機株式会社製)を用いて、図3に示すようにITOガラ
ス側から紫外線を照射して接続体を作製した。この時の
紫外線照射量は1.3J/cm2とした。
Comparative Example 4 A photocurable resin was an epoxy acrylate oligomer (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: NK Oligo EA-10)
20) and an acrylate monomer (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: NK ester A-TMM-3L)
A benzophenone was used as a photoinitiator, and 4,4'-bisdiethylaminobenzophenone (trade name: EAB, manufactured by Hodogaya Chemical Industry Co., Ltd.) was used as a sensitizer. The sensitizer was mixed and used so as to be 5/1. A nickel layer having a thickness of 0.2 μm is provided on the surface of the particles having polystyrene as a core, and a gold layer having a thickness of 0.02 μm is provided outside the nickel layer. Particles were prepared. Using these, the photocurable resin 100, the photoinitiator 5, and the sensitizer 1 were blended so as to be a solid weight ratio, and the conductive particles were further blended and dispersed by 3% by volume to obtain a paste-like circuit connecting material. . A line width of 50 μm, a pitch of 100 μm, and a thickness of 18 were obtained using the paste-like circuit connection material obtained by the above method.
Flexible circuit board (F) with 500 μm copper circuits
PC) and glass (thickness: 1.1 mm, surface resistance: 20Ω) on which a thin layer of 0.2 μm indium oxide (ITO) was formed.
/ □) using a pulse-heat-type thermocompression bonding machine (manufactured by Nippon Avionics Co., Ltd.) to connect by heating and pressing at 130 ° C. and 2 MPa for 20 seconds over a width of 2 mm. Ended. At this time, an appropriate amount of a paste-like circuit connection material was applied on the ITO glass in advance, and connected to the FPC as the other adherend. The connected body obtained by the above method was irradiated with ultraviolet rays from the ITO glass side using an ultraviolet irradiation device (manufactured by Ushio Inc.) to produce a connected body as shown in FIG. At this time, the amount of ultraviolet irradiation was 1.3 J / cm 2 .

【0029】実施例1〜7、比較例1〜4で得た接続体
について初期抵抗、接着性および回路の補修性について
評価した。初期抵抗については、回路部材の接続後、上
記接続部を含むFPCの隣接回路間の抵抗値を、マルチ
メータで測定した。測定電流は1mAとし、抵抗値は隣
接回路間の抵抗150点の平均(x+3σ)で示した。
FPCならびにITOガラスに対する接着性について
は、接着力をJIS−Z0237に準じて90度剥離法
で測定し、評価した。測定装置は東洋ボールドウィン株
式会社製テンシロンUTM−4(剥離速度50mm/m
in、25℃)を使用した。また回路補修性について
は、上記接続部のFPCをITOガラスから剥離し、I
TOガラス上に残存する一定面積(20×2mm)の接
着剤を、アセトンを含浸した綿棒で拭き取り、終わるま
でに要した時間で評価した。
The connection bodies obtained in Examples 1 to 7 and Comparative Examples 1 to 4 were evaluated for initial resistance, adhesiveness, and circuit repairability. Regarding the initial resistance, after the circuit members were connected, the resistance value between adjacent circuits of the FPC including the above-mentioned connection portions was measured with a multimeter. The measurement current was 1 mA, and the resistance value was represented by an average (x + 3σ) of 150 points of resistance between adjacent circuits.
Regarding the adhesion to FPC and ITO glass, the adhesion was measured and evaluated by a 90-degree peeling method according to JIS-Z0237. The measuring device was Tensilon UTM-4 manufactured by Toyo Baldwin Co., Ltd. (peeling speed 50 mm / m
in, 25 ° C.). Regarding the circuit repairability, the FPC at the connection portion was peeled off from the ITO glass,
The adhesive remaining on the TO glass and having a fixed area (20 × 2 mm) was wiped off with a cotton swab impregnated with acetone, and evaluated by the time required to finish.

【0030】これらの結果をすべての実施例、比較例に
ついて図4の表1に示した。加熱加圧と紫外線照射を同
時に行っている実施例1では、初期抵抗、接着力のいず
れも良好な値を示した。加熱加圧と紫外線照射を別個の
装置を用い、同時に行っていない実施例2も、圧力解放
前に接続体が十分に冷却されているために接続厚みの増
加が抑えられ、低接続抵抗となっている。また、10秒
という実施例1、実施例2より短時間での接続である実
施例3の場合には、接着剤の硬化反応が比較的進行して
いるために導電性粒子の復元が抑制され、接続抵抗に関
しては問題ないが、さらに硬化反応を促進するために紫
外線照射を行った結果、接着力についても良好な値を示
した。実施例4の場合には、3秒間しか加熱加圧および
紫外線照射を行わなかったため、導電性粒子の変形や硬
化反応が不十分であり、初期抵抗が高くなった。そこで
FPCを剥離して回路の補修を行ったところ、接着剤が
未硬化であるためにごく短時間で補修を行うことができ
た。これによって回路の再接続を手早く行うことが可能
となる。さらに、紫外線照射量を5.0J/cm2に増
加した実施例5の場合、樹脂の流動および導通の確保を
優先するために光照射開始を2秒遅らせた結果、良好な
接続特性が得られた。導電性粒子、光硬化性樹脂を代え
た実施例6、実施例7においても良好な接続状態であ
る。一方、冷却工程を設けていない接続方法である比較
例1の場合、接着力に関しては紫外線照射によって十分
に接着剤が硬化しているために実施例1〜4とほぼ同等
の値を示しているが、冷却工程がないために接着剤が固
定されないことから導電性粒子の変形が維持されず、回
路部材との接触面積が小さくなるため、初期抵抗は著し
く高くなっている。また、実施例5に対して、光照射量
5.0J/cm2の条件下で加熱加圧と紫外線照射を同
時に行った比較例2では、接着剤の硬化反応が樹脂の流
動よりも早く進行するため、導電性粒子が回路部材に十
分に接触しておらず、導通不良となった。さらに、熱硬
化性樹脂を主成分とした接着剤を用いている比較例3で
は、130℃、2MPa、20秒の接続条件では接着剤
の反応率が低くなるため、十分な硬化が得られず、接着
力がかなり低くなり初期抵抗も高くなった。比較例4の
場合には、フィルム形成性を付与する高分子樹脂が含有
されていないために、フィルム状回路接続材料を用いた
場合に導通が確保されている実施例2と比較して、一次
接続における冷却過程における導通の確保の点で劣って
おり、また取扱い性の点でフィルム状材料より不利であ
った。
The results are shown in Table 1 of FIG. 4 for all Examples and Comparative Examples. In Example 1 in which the heating and pressurizing and the ultraviolet irradiation were performed simultaneously, both the initial resistance and the adhesive strength showed good values. In Example 2 in which heating and pressurization and ultraviolet irradiation were performed simultaneously using separate devices and the connection was sufficiently cooled before the pressure was released, the increase in connection thickness was suppressed, resulting in low connection resistance. ing. Also, in the case of Example 3 in which the connection time is shorter than those in Example 1 and Example 2 of 10 seconds, the restoration of the conductive particles is suppressed because the curing reaction of the adhesive is relatively progressing. Although there was no problem with regard to the connection resistance, as a result of irradiation with ultraviolet rays for further accelerating the curing reaction, a good value was also exhibited for the adhesive strength. In the case of Example 4, since heating and pressurization and ultraviolet irradiation were performed for only 3 seconds, the deformation and curing reaction of the conductive particles were insufficient, and the initial resistance was increased. Then, when the circuit was repaired by removing the FPC, the repair could be performed in a very short time because the adhesive was not cured. This makes it possible to quickly reconnect the circuit. Furthermore, in the case of Example 5 in which the amount of ultraviolet irradiation was increased to 5.0 J / cm 2 , the start of light irradiation was delayed by 2 seconds in order to give priority to ensuring the flow and conduction of the resin, resulting in good connection characteristics. Was. In Examples 6 and 7 in which the conductive particles and the photocurable resin were changed, a good connection state was also obtained. On the other hand, in the case of Comparative Example 1, which is a connection method not provided with a cooling step, the adhesive force shows substantially the same value as in Examples 1 to 4 because the adhesive is sufficiently cured by ultraviolet irradiation. However, since the adhesive is not fixed because there is no cooling step, the deformation of the conductive particles is not maintained, and the contact area with the circuit member is reduced, so that the initial resistance is significantly increased. In Comparative Example 2 in which heating and pressurization and UV irradiation were simultaneously performed under the condition of a light irradiation amount of 5.0 J / cm 2 , the curing reaction of the adhesive progressed faster than the flow of the resin. As a result, the conductive particles did not sufficiently contact the circuit member, resulting in poor conduction. Furthermore, in Comparative Example 3 in which an adhesive containing a thermosetting resin as a main component was used, the reaction rate of the adhesive was low under the connection conditions of 130 ° C., 2 MPa, and 20 seconds, so that sufficient curing could not be obtained. However, the adhesive strength was considerably reduced and the initial resistance was also increased. Comparative Example 4 does not contain a polymer resin that imparts film forming properties, and thus has a higher primary conductivity than Example 2 in which conduction is ensured when a film-like circuit connection material is used. It is inferior in securing conduction in the cooling process at the time of connection, and is more disadvantageous in terms of handleability than the film-like material.

【0031】[0031]

【発明の効果】本発明によれば、接着剤に光硬化性樹脂
をおよび導電性粒子を必須成分とするフィルム状回路接
続材料を介在させ、加熱加圧と同時に、あるいは加熱加
圧後に光照射によって回路部材を接続するため、接続に
要する温度を従来より低くすることが可能で、また加熱
加圧後、圧力開放直前に接続体を冷却するため、導電性
粒子の復元ならびに接続厚みの増加を抑制し、優れた接
着力や良好な電気的導通を得ることができる。さらに初
期接続の際に接続不良が発生した場合には、樹脂の硬化
反応があまり進行していないので、汎用溶剤による回路
補修を容易に行うことが可能である。
According to the present invention, a light-curable resin and a film-like circuit connection material containing conductive particles as essential components are interposed in an adhesive, and light irradiation is performed simultaneously with or after heating and pressing. By connecting circuit members, the temperature required for connection can be lower than before, and after heating and pressurizing, the connecting body is cooled just before the pressure is released, thus restoring the conductive particles and increasing the connection thickness. It is possible to obtain excellent adhesive strength and good electrical conduction. Further, when a connection failure occurs at the time of initial connection, the curing reaction of the resin has not progressed so much, so that the circuit can be easily repaired with a general-purpose solvent.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のフィルム状回路接続材料を用いた接
続方法(実施例)を説明する断面図である。
FIG. 1 is a cross-sectional view illustrating a connection method (example) using a film-like circuit connection material of the present invention.

【図2】 本発明のフィルム状回路接続材料を用いた接
続方法(実施例)を説明する断面図である。
FIG. 2 is a cross-sectional view illustrating a connection method (example) using the film-like circuit connection material of the present invention.

【図3】 フィルム状回路接続材料を用いた接続方法
(比較例)を説明する断面図である。
FIG. 3 is a cross-sectional view illustrating a connection method (comparative example) using a film-like circuit connection material.

【図4】 実施例1〜7、比較例1〜4で得た接続体に
ついて初期抵抗、接着性および回路の補修性についての
評価結果を示す表である。
FIG. 4 is a table showing evaluation results of initial resistance, adhesiveness, and circuit repairability of the connection bodies obtained in Examples 1 to 7 and Comparative Examples 1 to 4.

【符号の説明】[Explanation of symbols]

1…ITOガラス、2…導電性粒子、3…FPC回路、
4…FPC基材、5…接着剤、6…光源、7…光、8…
ベース、9…加熱加圧ヘッド、10…冷却用空気注入口
1: ITO glass, 2: conductive particles, 3: FPC circuit,
4 ... FPC base material, 5 ... adhesive, 6 ... light source, 7 ... light, 8 ...
Base, 9 ... Heating / pressing head, 10 ... Air inlet for cooling

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一方が光透過性を有する2つ
の回路部材、すなわち第一の接続端子を有する第一の回
路部材と、第二の接続端子を有する第二の回路部材と
を、第一の接続端子と第二の接続端子を対向して配置
し、前記対向配置した第一の接続端子と第二の接続端子
の間に、光硬化成分および導電性粒子を含有するフィル
ム状回路接続材料を介在させ、加熱加圧および光照射を
行い、前記対向配置した第一の接続端子と第二の接続端
子を電気的に接続させることを特徴とする電極の接続方
法。
At least one of the two circuit members has a light transmitting property, that is, a first circuit member having a first connection terminal and a second circuit member having a second connection terminal. A connection terminal and a second connection terminal are arranged to face each other, and a film-shaped circuit connection material containing a photocurable component and conductive particles between the first connection terminal and the second connection terminal arranged opposite to each other. And heating and pressurizing and irradiating light to electrically connect the first connection terminal and the second connection terminal arranged opposite to each other.
【請求項2】 フィルム状回路接続材料が光硬化性樹
脂、分子量が10,000以上の高分子樹脂および導電
性粒子を必須成分とする請求項1記載の電極の接続方
法。
2. The method for connecting electrodes according to claim 1, wherein the film-like circuit connection material comprises a photocurable resin, a polymer resin having a molecular weight of 10,000 or more, and conductive particles as essential components.
【請求項3】 フィルム状回路接続材料がカップリング
剤を含有する請求項1記載の電極の接続方法。
3. The method for connecting electrodes according to claim 1, wherein the film-like circuit connection material contains a coupling agent.
【請求項4】 加熱加圧および光照射によって、フィル
ム状回路接続材料が溶融、流動し、導電性粒子による回
路部材間の導通が確保されるような条件で一次接続を行
った後、加熱加圧および光照射を中断し、導通検査によ
る一定時間経過後、再び光照射によって十分な硬化を行
う請求項1〜3各項記載の電極の接続方法。
4. A film-like circuit connecting material is melted and flows by heating and pressurizing and light irradiation, and a primary connection is made under such a condition that conduction between circuit members by conductive particles is ensured. The electrode connection method according to any one of claims 1 to 3, wherein the pressure and light irradiation are interrupted, and after a lapse of a predetermined time by a conduction test, sufficient curing is performed again by light irradiation.
【請求項5】 加熱加圧によって、フィルム状回路接続
材料が溶融、流動し、導電性粒子による回路部材間の導
通が確保されるような条件で一次接続を行った後加熱加
圧を中断し、導通検査による一定時間経過後、光照射に
よって十分な硬化を行うことを特徴とする請求項1〜3
各項記載の電極の接続方法。
5. The primary connection is performed under such a condition that the film-like circuit connecting material melts and flows by the heating and pressurization, and the conduction between the circuit members by the conductive particles is ensured, and then the heating and pressurizing is interrupted. 4. A sufficient curing is performed by light irradiation after a lapse of a predetermined time by a continuity test.
The electrode connection method described in each item.
【請求項6】 一次接続を行った後、フィルム状回路接
続材料のガラス転移点以下にまで冷却を行い、その後加
熱加圧および光照射を中断する請求項4又は5記載の電
極の接続方法。
6. The method for connecting electrodes according to claim 4, wherein after the primary connection is performed, cooling is performed to a temperature equal to or lower than the glass transition point of the film-like circuit connection material, and then heating and pressurization and light irradiation are interrupted.
【請求項7】 加熱加圧と光照射を同時に開始する請求
項4記載の電極の接続方法。
7. The method for connecting electrodes according to claim 4, wherein heating and pressurizing and light irradiation are started simultaneously.
【請求項8】 加熱加圧と光照射の間に1〜数秒の間隔
を設け、加熱加圧開始後に光照射を行う請求項4記載の
電極の接続方法。
8. The electrode connection method according to claim 4, wherein an interval of one to several seconds is provided between the heating and pressurizing and the light irradiation, and the light irradiation is performed after the start of the heating and pressurizing.
【請求項9】 光透過性を有する回路部材の厚みが1.
2mm以下である請求項1〜8各項記載の電極の接続方
法。
9. A light transmitting circuit member having a thickness of 1.
The electrode connection method according to any one of claims 1 to 8, wherein the distance is 2 mm or less.
【請求項10】 導電性粒子の圧縮弾性率が1000〜
10000MPaである請求項1〜8各項記載の電極の
接続方法。
10. The conductive particles have a compression modulus of 1000 to 1000.
The electrode connection method according to any one of claims 1 to 8, wherein the pressure is 10,000 MPa.
JP23486797A 1997-08-29 1997-08-29 Electrode connection method Expired - Fee Related JP3759294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23486797A JP3759294B2 (en) 1997-08-29 1997-08-29 Electrode connection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23486797A JP3759294B2 (en) 1997-08-29 1997-08-29 Electrode connection method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005334272A Division JP2006173100A (en) 2005-11-18 2005-11-18 Method for connecting electrode

Publications (2)

Publication Number Publication Date
JPH1174313A true JPH1174313A (en) 1999-03-16
JP3759294B2 JP3759294B2 (en) 2006-03-22

Family

ID=16977591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23486797A Expired - Fee Related JP3759294B2 (en) 1997-08-29 1997-08-29 Electrode connection method

Country Status (1)

Country Link
JP (1) JP3759294B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010016388A (en) * 2009-07-13 2010-01-21 Hitachi Chem Co Ltd Circuit connecting method
WO2013121858A1 (en) * 2012-02-14 2013-08-22 デクセリアルズ株式会社 Method for manufacturing connector, and connection method
WO2015137008A1 (en) * 2014-03-11 2015-09-17 デクセリアルズ株式会社 Anisotropic conductive adhesive, method for producing connector and method for connecting electronic component
US9790405B2 (en) 2008-10-04 2017-10-17 Threebond Fine Chemical Co., Ltd. Photocurable adhesive composition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9790405B2 (en) 2008-10-04 2017-10-17 Threebond Fine Chemical Co., Ltd. Photocurable adhesive composition
JP2010016388A (en) * 2009-07-13 2010-01-21 Hitachi Chem Co Ltd Circuit connecting method
WO2013121858A1 (en) * 2012-02-14 2013-08-22 デクセリアルズ株式会社 Method for manufacturing connector, and connection method
JP2013168443A (en) * 2012-02-14 2013-08-29 Dexerials Corp Method for manufacturing connection body, and connection method
WO2015137008A1 (en) * 2014-03-11 2015-09-17 デクセリアルズ株式会社 Anisotropic conductive adhesive, method for producing connector and method for connecting electronic component
JP2015172109A (en) * 2014-03-11 2015-10-01 デクセリアルズ株式会社 Anisotropic conductive adhesive, method for producing connector and method for connecting electronic components
CN106062118A (en) * 2014-03-11 2016-10-26 迪睿合株式会社 Anisotropic conductive adhesive, method for producing connector and method for connecting electronic component
KR20160130977A (en) * 2014-03-11 2016-11-15 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive adhesive, method for producing connector and method for connecting electronic component
TWI673570B (en) * 2014-03-11 2019-10-01 日商迪睿合股份有限公司 Anisotropic conductive adhesive, method of manufacturing connector, and connection method of electronic component

Also Published As

Publication number Publication date
JP3759294B2 (en) 2006-03-22

Similar Documents

Publication Publication Date Title
JP4469089B2 (en) Film-like anisotropic conductive adhesive for circuit connection, electrode connection structure, and electrode connection method
CN101250386B (en) Adhesive for electrode connection and connecting method using it
KR100875411B1 (en) Low-temperature setting adhesive and anisotropically electroconductive adhesive film using the same
JP3801666B2 (en) Electrode connection method and connection member used therefor
EP0424106A2 (en) A method for connecting circuit boards
WO2005083772A1 (en) Anisotropic conduction connecting method and anisotropic conduction adhesive film
WO2007058142A1 (en) Method of manufacturing circuit board having electronic part
JP2006173100A (en) Method for connecting electrode
JPH1197482A (en) Electrode connecting method and electrode connection structure
JP2008252098A (en) Method of manufacturing circuit board apparatus
JP3759294B2 (en) Electrode connection method
JP3856233B2 (en) Electrode connection method
JPH11279500A (en) Circuit-connecting material and production of circuit board device
JP2000105388A (en) Production of liquid crystal display device, liquid crystal display device and conductive adhesive film
JP3871095B2 (en) Circuit board device manufacturing method
JP3562615B2 (en) Anisotropic conductive film-like connecting member and method of manufacturing the same
JP5000695B2 (en) Circuit board device manufacturing method
JP2009290231A (en) Method of manufacturing circuit board apparatus
JP4032320B2 (en) Electrode connection method
JPH0773921A (en) Connecting member
JP2002167569A (en) Adhesive composition, adhesive composition for connecting circuit, connected unit and semiconductor device
JP2000174066A (en) Method of mounting semiconductor device
JP2003268346A (en) Low-temperature curable adhesive and anisotropically electroconductive adhesive film obtained using the same
JPH06188548A (en) Repairing method for electronic component
JPH11166169A (en) Adhesive composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040827

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050623

A131 Notification of reasons for refusal

Effective date: 20050922

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051228

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110113

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20130113

LAPS Cancellation because of no payment of annual fees