JPH1174172A - Exposure optical system - Google Patents
Exposure optical systemInfo
- Publication number
- JPH1174172A JPH1174172A JP9247610A JP24761097A JPH1174172A JP H1174172 A JPH1174172 A JP H1174172A JP 9247610 A JP9247610 A JP 9247610A JP 24761097 A JP24761097 A JP 24761097A JP H1174172 A JPH1174172 A JP H1174172A
- Authority
- JP
- Japan
- Prior art keywords
- collimator
- light
- exposure
- optical system
- light ray
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、マスクに描かれた
パターンを半導体基板やガラス基板等(以下基板とい
う)に露光する装置に関し、特にマスクと基板の間に微
少な間隔を隔てて露光するいわゆるプロキシミティ露光
装置の光学系に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for exposing a pattern drawn on a mask to a semiconductor substrate, a glass substrate, or the like (hereinafter, referred to as a substrate), and more particularly, to exposing a pattern with a small space between the mask and the substrate. The present invention relates to an optical system of a so-called proximity exposure apparatus.
【0002】[0002]
【従来の技術】従来のプロキシミティ露光装置の光学系
は図8のような構成になっている。すなわち、光源10
から出た光を集光手段20で2次光源作成手段30に集
め、ここに2次光源を作る。2次光源から出た光はコリ
メーター40によって平行光に変換され、露光面60に
設置されたマスクと基板を照射する。2. Description of the Related Art An optical system of a conventional proximity exposure apparatus has a configuration as shown in FIG. That is, the light source 10
The light emitted from the light source is collected by the condensing means 20 to the secondary light source creating means 30, where a secondary light source is created. Light emitted from the secondary light source is converted into parallel light by the collimator 40, and irradiates the mask and the substrate provided on the exposure surface 60.
【0003】[0003]
【発明が解決しようとする課題】ところが、ここで、コ
リメーター40の性能が不十分で、光線の平行度に誤差
があると、マスク上の場所によって光線の照射角が異な
ることになる。たとえば、図2において、プロキシミテ
ィギャップ65が100ミクロンで、光線の平行度に
0.5度の誤差がある場合、マスク61に描かれたパタ
ーン62の転写位置ズレ66は0.9ミクロンになり、
半導体や液晶の製造に支障をきたす。このため、従来は
コリメーター40の性能を高めるべく以下の2つのアプ
ローチがとられてきた。However, if the performance of the collimator 40 is insufficient and there is an error in the parallelism of the light beam, the irradiation angle of the light beam will differ depending on the location on the mask. For example, in FIG. 2, when the proximity gap 65 is 100 microns and there is an error of 0.5 degree in the parallelism of light rays, the transfer position shift 66 of the pattern 62 drawn on the mask 61 becomes 0.9 microns. ,
It hinders the production of semiconductors and liquid crystals. For this reason, conventionally, the following two approaches have been taken to improve the performance of the collimator 40.
【0004】第1は、コリメーターに放物面鏡を使うア
プローチである。図3のような軸外し放物面鏡を使用す
れば、1点から出た光を完全な平行光に変換できること
は広く知られている。しかし、軸外し放物面を製作する
には、図3のように軸を含む直径Dの放物面の生成が必
要であることに加え、曲率が鏡の場所によって変化する
ため研磨が容易でない。このため、コリメーターに軸外
し放物面鏡を使うときわめてコストが高くなるという弊
害がある。[0004] The first approach is to use a parabolic mirror for the collimator. It is widely known that the use of an off-axis parabolic mirror as shown in FIG. 3 allows the light emitted from one point to be converted into perfect parallel light. However, in order to manufacture an off-axis paraboloid, it is necessary to generate a paraboloid having a diameter D including the axis as shown in FIG. 3, and it is not easy to polish because the curvature varies depending on the position of the mirror. . For this reason, the use of an off-axis parabolic mirror for the collimator has the disadvantage of extremely high costs.
【0005】第2は、コリメーターに球面鏡を使い、そ
の焦点距離をできるだけ長くするアプローチである。1
点から出た光を球面鏡で平行光に変換しようとすると、
球面収差によって平行誤差が発生する。ここで、平行誤
差は球面鏡のFナンバー(焦点距離を口径で割った値)
の2乗に逆比例するので、焦点距離を長くすれば平行誤
差を実用上支障のないレベルまで引き下げることができ
る。だいたい、Fナンバーを5以上にとれば実用上支障
ないレベルになる。しかし、焦点距離を長くすると光路
長が長くなるという弊害がある。特に近年は液晶基板の
大面積化が進み、露光サイズも対角で1m程度のものが
必要になった。この場合には焦点距離が5mも必要にな
り、2次光源から露光面までの光路長は10mにもな
る。装置がこんなに大きくなっては装置コストが上昇す
るだけでなく、高価なクリーンルームの占有面積も増し
てしまう。そこで、本発明は装置コストを上昇させるこ
となく、かつ装置サイズを増大させることなく、露光光
の平行度の改善された露光光学系を提供することを課題
とする。[0005] A second approach is to use a spherical mirror for the collimator and make the focal length as long as possible. 1
If you try to convert light emitted from a point into parallel light with a spherical mirror,
Parallel errors occur due to spherical aberration. Here, the parallel error is the F number of the spherical mirror (the value obtained by dividing the focal length by the aperture).
Since it is inversely proportional to the square of, the parallel error can be reduced to a level that does not hinder practical use by increasing the focal length. Generally, if the F-number is set to 5 or more, the level becomes practically acceptable. However, increasing the focal length has the disadvantage of increasing the optical path length. In particular, in recent years, the area of the liquid crystal substrate has been increased, and the exposure size has to be about 1 m diagonally. In this case, the focal length is required to be 5 m, and the optical path length from the secondary light source to the exposure surface is as long as 10 m. Such an increase in the size of the apparatus not only increases the cost of the apparatus, but also increases the area occupied by an expensive clean room. Therefore, an object of the present invention is to provide an exposure optical system in which the parallelism of exposure light is improved without increasing the cost of the apparatus and without increasing the size of the apparatus.
【0006】[0006]
【課題を解決するための手段】光源10と、集光手段2
0と、2次光源作成手段30と、コリメーター40から
成る露光光学系において、光線Aがコリメーター40の
接平面41から出射する角αと光線Bがコリメーター4
0の接平面41から出射する角βが等しくなるようにコ
リメーター40を弾性変形させる。ただし、光線Aはコ
リメーター40へ入射する光軸上の主光線、光線Bはコ
リメーター40へ入射する光軸外を通る主光線である。A light source 10 and a condensing means 2 are provided.
0, the secondary light source creating means 30, and the collimator 40, in the exposure optical system, the angle α at which the light ray A is emitted from the tangent plane 41 of the collimator 40 and the light ray B
The collimator 40 is elastically deformed so that the angle β emitted from the zero tangent plane 41 becomes equal. Here, the ray A is a principal ray on the optical axis that enters the collimator 40, and the ray B is a principal ray that passes off the optical axis and enters the collimator 40.
【0007】[0007]
【発明の実施の形態】本実施形態は740mm×620
mmの領域を均一強度の紫外光(主波長365nm)で
露光するため光学系で、図1にその構成を示す。10は
光源であり、本実施形態においては超高圧水銀灯が用い
られているが、基板上に塗布される感光材料によっては
キセノン水銀ランプ等へも代替可能である。20は集光
手段であり、本実施形態においては楕円鏡が用いられて
いる。集光手段にはこの他、球面鏡、コンデンサーレン
ズなどが含まれる。30は2次光源作成手段である。本
実施形態においてはロッド31とレンズ33から成る。
集光手段20によって集光された光はロッド31に投入
され、その内部で全反射を繰り返し、出射端面32で均
一な光強度分布になる。レンズ33はロッドの出射端面
32を露光面60に拡大投影し、均一な照度分布での露
光を実現する。2次光源作成手段には、図4のようなフ
ライアイレンズも含まれる。これは光束を分割重畳させ
ることによって露光面60で均一な照度分布を実現する
ものである。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present embodiment is 740 mm × 620.
FIG. 1 shows an optical system for exposing a region of mm with ultraviolet light (main wavelength: 365 nm) having a uniform intensity. Reference numeral 10 denotes a light source. In this embodiment, an ultra-high pressure mercury lamp is used. However, a xenon mercury lamp or the like may be used depending on a photosensitive material applied on a substrate. Reference numeral 20 denotes a condensing unit, and an elliptical mirror is used in the present embodiment. In addition, the condensing means includes a spherical mirror, a condenser lens, and the like. Reference numeral 30 denotes a secondary light source creating means. In the present embodiment, it comprises a rod 31 and a lens 33.
The light condensed by the light condensing means 20 is input to the rod 31, and total reflection is repeated inside the rod 31, so that a uniform light intensity distribution is obtained on the emission end face 32. The lens 33 enlarges and projects the emission end surface 32 of the rod onto the exposure surface 60, thereby realizing exposure with a uniform illuminance distribution. The secondary light source creating means also includes a fly-eye lens as shown in FIG. This realizes a uniform illuminance distribution on the exposure surface 60 by dividing and superimposing a light beam.
【0008】コリメーター40には厚み8mmのガラス
材にアルミニウムを蒸着した球面鏡が用いられる。これ
は2次光源から2.46mの位置に配置され、その焦点
距離は2.5m、口径は1000mm×820mmであ
る。軸外し角は28度に設置されている。本発明では後
述するように光線の平行度の補正をコリメーター40の
弾性変形で行うので、コリメーターには高価な軸外し放
物面鏡を使う必要もなければ、その焦点距離をむやみに
長くする必要もない。しかし、もちろんコリメーターは
球面鏡に限られるものではなく、非球面鏡に弾性変形を
加えてもよい。 ミラー50は平面鏡である。As the collimator 40, a spherical mirror obtained by depositing aluminum on a glass material having a thickness of 8 mm is used. It is located 2.46 m from the secondary light source, has a focal length of 2.5 m and an aperture of 1000 mm × 820 mm. The off-axis angle is set at 28 degrees. In the present invention, since the parallelism of light rays is corrected by the elastic deformation of the collimator 40 as described later, the collimator does not need to use an expensive off-axis parabolic mirror. You don't have to. However, of course, the collimator is not limited to the spherical mirror, and the aspheric mirror may be elastically deformed. The mirror 50 is a plane mirror.
【0009】図5はコリメーター40が完全な球面の場
合に、露光面60における光線の平行度を表したもので
ある。矢印の起点は露光面60上の位置を表し、矢印の
方向は光線の倒れ方向を表している。そして、矢印の長
さは光軸との平行度を示している。コリメーター40の
球面収差と斜入射の影響で平行度は最悪0.53度に達
しており、露光位置誤差が無視できない。FIG. 5 shows the parallelism of light rays on the exposure surface 60 when the collimator 40 is a perfect spherical surface. The starting point of the arrow indicates the position on the exposure surface 60, and the direction of the arrow indicates the falling direction of the light beam. The length of the arrow indicates the parallelism with the optical axis. Due to the spherical aberration of the collimator 40 and the oblique incidence, the parallelism reaches 0.53 degrees at the worst, and the exposure position error cannot be ignored.
【0010】次に図6はコリメーター40を図7のよう
な形状に弾性変形させた場合の光線の平行度を表したも
のである。図7はコリメーター40の変形量を示してお
り、元の球面から±1ミリほど変形されていることがわ
かる。図6にあるように、平行度は最悪値でも0.2度
未満と実用上支障のないレベルにまで改善されている。FIG. 6 shows the parallelism of light rays when the collimator 40 is elastically deformed into a shape as shown in FIG. FIG. 7 shows the deformation amount of the collimator 40, and it can be seen that the collimator 40 is deformed by about ± 1 mm from the original spherical surface. As shown in FIG. 6, the parallelism has been improved to a level that is not practically hindered, with the worst value being less than 0.2 degrees.
【0011】コリメーター40をホルダーに入れていく
つかの場所に圧力をかければ図7のような弾性変形は比
較的容易に得られる。If the collimator 40 is put in a holder and pressure is applied to some places, elastic deformation as shown in FIG. 7 can be obtained relatively easily.
【0012】[0012]
【発明の効果】本発明によれば、露光光束の平行度を改
善するのにコリメーターを軸外し放物面に研磨する必要
がない。このため、露光光学系のコストを下げることが
できる。さらに、本発明によれば、露光光束の平行度を
改善するのにコリメーターの焦点距離を長くする必要も
ない。従って、露光光学系の全光路長を短くすることが
でき、ひいては露光装置の設置床面積を小さくできる。According to the present invention, it is not necessary to off-axis the collimator and polish the paraboloid to improve the parallelism of the exposure light beam. Therefore, the cost of the exposure optical system can be reduced. Further, according to the present invention, it is not necessary to increase the focal length of the collimator to improve the parallelism of the exposure light beam. Therefore, the total optical path length of the exposure optical system can be shortened, and the floor area where the exposure apparatus is installed can be reduced.
【図1】本発明にかかる露光光学系の全体構成図であ
る。FIG. 1 is an overall configuration diagram of an exposure optical system according to the present invention.
【図2】露光光の平行度の誤差がパターンの転写ずれの
原因になることを説明する図である。FIG. 2 is a diagram illustrating that an error in the degree of parallelism of exposure light causes transfer deviation of a pattern.
【図3】軸外し放物面鏡を説明する図である。FIG. 3 is a diagram illustrating an off-axis parabolic mirror.
【図4】フライアイレンズを表す図である。FIG. 4 is a diagram illustrating a fly-eye lens.
【図5】補正をしない場合の露光光の光軸との平行度を
表す図である。FIG. 5 is a diagram illustrating a degree of parallelism of an exposure light with an optical axis when no correction is performed.
【図6】コリメーター40を弾性変形させた場合に、露
光光の光軸との平行度を表す図である。FIG. 6 is a diagram illustrating the parallelism with the optical axis of exposure light when the collimator 40 is elastically deformed.
【図7】コリメーター40の変形量を表す等高線図であ
る。FIG. 7 is a contour diagram showing a deformation amount of the collimator 40.
【図8】従来の露光光学系を説明する図である。FIG. 8 is a diagram illustrating a conventional exposure optical system.
10 光源 20 集光手段 30 2次光源作成手段 40 球面鏡 41 球面鏡の接平面 DESCRIPTION OF SYMBOLS 10 Light source 20 Condensing means 30 Secondary light source creation means 40 Spherical mirror 41 Tangential plane of a spherical mirror
Claims (1)
成手段30と、コリメーター40から成る露光光学系に
おいて、光線Aがコリメーター40の接平面41から出
射する角αと光線Bがコリメーター40の接平面41か
ら出射する角βがほぼ等しくなるようにコリメーター4
0を弾性変形させたことを特徴とする露光光学系。ただ
し、光線Aはコリメーター40へ入射する光軸上の主光
線、光線Bはコリメーター40へ入射する光軸外を通る
主光線である。1. An exposure optical system comprising a light source 10, a condensing means 20, a secondary light source creating means 30, and a collimator 40, wherein an angle α at which a light ray A is emitted from a tangent plane 41 of the collimator 40 and a light ray B is emitted from the tangent plane 41 of the collimator 40 so that the angle β is substantially equal.
An exposure optical system wherein 0 is elastically deformed. Here, the ray A is a principal ray on the optical axis that enters the collimator 40, and the ray B is a principal ray that passes off the optical axis and enters the collimator 40.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9247610A JPH1174172A (en) | 1997-08-29 | 1997-08-29 | Exposure optical system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9247610A JPH1174172A (en) | 1997-08-29 | 1997-08-29 | Exposure optical system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1174172A true JPH1174172A (en) | 1999-03-16 |
Family
ID=17166074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9247610A Pending JPH1174172A (en) | 1997-08-29 | 1997-08-29 | Exposure optical system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1174172A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008158282A (en) * | 2006-12-25 | 2008-07-10 | Toppan Printing Co Ltd | Proximity exposure apparatus |
-
1997
- 1997-08-29 JP JP9247610A patent/JPH1174172A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008158282A (en) * | 2006-12-25 | 2008-07-10 | Toppan Printing Co Ltd | Proximity exposure apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5594526A (en) | Optical integrator and projection exposure apparatus using the same | |
JP2655465B2 (en) | Reflection type homogenizer and reflection type illumination optical device | |
JPH0562877A (en) | Optical system for lsi manufacturing contraction projection aligner by light | |
JPS60232552A (en) | Lighting optical system | |
JPH0682598B2 (en) | Projection exposure device | |
JPH043528B2 (en) | ||
JPH11249313A (en) | Annular surface reduction projection optical system | |
JPH0462062B2 (en) | ||
JPS60218635A (en) | Lighting device | |
JP2000021765A (en) | Illuminating apparatus and projection aligner using the apparatus | |
US8149386B2 (en) | Illumination optical system, exposure apparatus using the same and device manufacturing method | |
JP3311319B2 (en) | Optical unit, optical equipment using optical unit | |
US9638992B2 (en) | Illumination optical system and image projection apparatus | |
JP2001308006A (en) | Microlithography illuminating system and microlithography projection exposure system equipped therewith | |
JP2016167024A (en) | Illumination optical system, exposure equipment and manufacturing method of article | |
JP2010257998A (en) | Reflective projection optical system, exposure apparatus, and method of manufacturing device | |
JP2000114160A (en) | Optical system for circular-arcuate illumination and aligner using the same | |
JP3008744B2 (en) | Projection exposure apparatus and semiconductor device manufacturing method using the same | |
JPH1174172A (en) | Exposure optical system | |
JP3811923B2 (en) | Illumination optics | |
TW201433826A (en) | Illumination optical system, exposure device, and method for manufacturing device | |
JP2673915B2 (en) | Fine pattern projection exposure equipment | |
JPH10242018A (en) | Exposure optical system | |
JPS58215621A (en) | 1:1 projection aligner | |
JPH0769576B2 (en) | Lighting optics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050729 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050809 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060110 |