JPH10242018A - Exposure optical system - Google Patents

Exposure optical system

Info

Publication number
JPH10242018A
JPH10242018A JP5252397A JP5252397A JPH10242018A JP H10242018 A JPH10242018 A JP H10242018A JP 5252397 A JP5252397 A JP 5252397A JP 5252397 A JP5252397 A JP 5252397A JP H10242018 A JPH10242018 A JP H10242018A
Authority
JP
Japan
Prior art keywords
mirror
light beam
light
optical system
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5252397A
Other languages
Japanese (ja)
Inventor
Makoto Uehara
誠 上原
Shinichi Nagata
信一 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEJIRO PRECISION KK
Mejiro Precision KK
Original Assignee
MEJIRO PRECISION KK
Mejiro Precision KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEJIRO PRECISION KK, Mejiro Precision KK filed Critical MEJIRO PRECISION KK
Priority to JP5252397A priority Critical patent/JPH10242018A/en
Publication of JPH10242018A publication Critical patent/JPH10242018A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exposure optical system with superior parallelism in spite of low cost and a short optical path length. SOLUTION: The optical system consists of a light source 10, a condensing means 20, a secondary light source-forming means 30, a collimator 40 and a mirror 50. In this case, when an angle of incidence of a light beam A to the mirror A is θ and a parallel error of a light beam B and the light beam A is ϕ, the mirror 50 is elastically deformed so that an angle of incidence of the light beam B to the mirror 50 becomes θ+ϕ/2. The light beam A is a principal ray beam on an optical axis to enter the mirror 50, and the light beam B is a principal ray beam passing outside the optical axis to enter the mirror 50.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マスクに描かれた
パターンを半導体基板やガラス基板等(以下基板とい
う)に露光する装置に関し、特にマスクと基板の間に微
少な間隔を隔てて露光するいわゆるプロキシミティ露光
装置の光学系に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for exposing a pattern drawn on a mask to a semiconductor substrate, a glass substrate, or the like (hereinafter, referred to as a substrate), and more particularly, to exposing a pattern with a small space between the mask and the substrate. The present invention relates to an optical system of a so-called proximity exposure apparatus.

【0002】[0002]

【従来の技術】従来のプロキシミティ露光装置の光学系
は9図のような構成になっている。すなわち、ランプ1
1から出た光を楕円鏡21で2次光源作成手段30に集
め、ここに2次光源を作る。2次光源から出た光はコリ
メーター40によって平行光に変換され、露光面60に
設置されたマスクと基板を照射する。
2. Description of the Related Art The optical system of a conventional proximity exposure apparatus has a structure as shown in FIG. That is, the lamp 1
The light emitted from 1 is collected by the elliptical mirror 21 to the secondary light source creating means 30, where the secondary light source is created. Light emitted from the secondary light source is converted into parallel light by the collimator 40, and irradiates the mask and the substrate provided on the exposure surface 60.

【0003】[0003]

【発明が解決しようとする課題】ところが、ここで、コ
リメーター40の性能が不十分で、光線の平行度に誤差
があると、マスク上の場所によって光線の照射角が異な
ることになる。たとえば、図2において、プロキシミテ
ィギャップ65が500ミクロンで、光線の平行度に
0.1度の誤差がある場合、マスク61に描かれたパタ
ーン62の転写位置ズレ66は0.9ミクロンになり、
半導体や液晶の製造に支障をきたす。このため、従来は
コリメーター40の性能を高めるべく以下の2つのアプ
ローチがとられてきた。
However, if the performance of the collimator 40 is insufficient and there is an error in the parallelism of the light beam, the irradiation angle of the light beam will differ depending on the location on the mask. For example, in FIG. 2, when the proximity gap 65 is 500 microns and there is an error of 0.1 degree in the parallelism of light rays, the transfer position shift 66 of the pattern 62 drawn on the mask 61 becomes 0.9 microns. ,
It hinders the production of semiconductors and liquid crystals. For this reason, conventionally, the following two approaches have been taken to improve the performance of the collimator 40.

【0004】第1は、コリメーターに放物面鏡を使うア
プローチである。図3のような軸外し放物面鏡を使用す
れば、1点から出た光を完全な平行光に変換できること
は広く知られている。しかし、軸外し放物面を製作する
には、図3のように軸を含む直径Dの放物面の生成が必
要であることに加え、曲率が鏡の場所によって変化する
ため研磨が容易でない。このため、コリメーターに軸外
し放物面鏡を使うときわめてコストが高くなるという弊
害がある。
[0004] The first approach is to use a parabolic mirror for the collimator. It is widely known that the use of an off-axis parabolic mirror as shown in FIG. 3 allows the light emitted from one point to be converted into perfect parallel light. However, in order to manufacture an off-axis paraboloid, it is necessary to generate a paraboloid having a diameter D including the axis as shown in FIG. 3, and it is not easy to polish because the curvature varies depending on the position of the mirror. . For this reason, the use of an off-axis parabolic mirror for the collimator has the disadvantage of extremely high costs.

【0005】第2は、コリメーターに球面鏡を使い、そ
の焦点距離をできるだけ長くするアプローチである。1
点から出た光を球面鏡で平行光に変換しようとすると、
球面収差によって平行誤差が発生する。ここで、平行誤
差は球面鏡のFナンバー(焦点距離を口径で割った値)
の2乗に逆比例するので、焦点距離を長くすれば平行誤
差を実用上支障のないレベルまで引き下げることができ
る。だいたい、Fナンバーを5以上にとれば実用上支障
ないレベルになる。しかし、焦点距離を長くすると光路
長が長くなるという弊害がある。特に近年は液晶基板の
大面積化が進み、露光サイズも対角で1m程度のが必要
になった。この場合には焦点距離が5mも必要になり、
2次光源から露光面までの光路長は10mにもなる。装
置がこんなに大きくなっては装置コストが上昇するだけ
でなく、高価なクリーンルームの占有面積も増してしま
う。そこで、本発明は装置コストを上昇させることな
く、かつ装置サイズを増大させることなく、露光光の平
行度の改善された露光光学系を提供することを課題とす
る。
[0005] A second approach is to use a spherical mirror for the collimator and make the focal length as long as possible. 1
If you try to convert light emitted from a point into parallel light with a spherical mirror,
Parallel errors occur due to spherical aberration. Here, the parallel error is the F number of the spherical mirror (the value obtained by dividing the focal length by the aperture).
Since it is inversely proportional to the square of, the parallel error can be reduced to a level that does not hinder practical use by increasing the focal length. Generally, if the F-number is set to 5 or more, the level becomes practically acceptable. However, increasing the focal length has the disadvantage of increasing the optical path length. In particular, in recent years, the area of the liquid crystal substrate has been increased, and the exposure size has to be about 1 m diagonally. In this case, a focal length of 5 m is required,
The optical path length from the secondary light source to the exposure surface is as long as 10 m. Such an increase in the size of the apparatus not only increases the cost of the apparatus, but also increases the area occupied by an expensive clean room. Therefore, an object of the present invention is to provide an exposure optical system in which the parallelism of exposure light is improved without increasing the cost of the apparatus and without increasing the size of the apparatus.

【0006】[0006]

【課題を解決するための手段】光源10と、集光手段2
0と、2次光源作成手段30と、コリメーター40と、
ミラー50から成る露光光学系において、光線Aのミラ
ー50への入射角をθとし、光線Bと光線Aの平行誤差
をφとしたとき、光線Bのミラー50への入射角がθ+
φ/2となるようにミラー50を弾性変形させる。ただ
し、光線Aはミラー50へ入射する光軸上の主光線、光
線Bはミラー50へ入射する光軸外を通る主光線であ
る。
A light source 10 and a condensing means 2 are provided.
0, secondary light source creating means 30, collimator 40,
In the exposure optical system including the mirror 50, when the incident angle of the light beam A to the mirror 50 is θ and the parallel error between the light beam B and the light beam A is φ, the incident angle of the light beam B to the mirror 50 is θ +
The mirror 50 is elastically deformed so as to be φ / 2. Here, the ray A is a principal ray on the optical axis that enters the mirror 50, and the ray B is a principal ray that passes off the optical axis and enters the mirror 50.

【0007】[0007]

【発明の実施の形態】本実施形態は740mm×620
mmの領域を均一強度の紫外光(主波長365nm)で
露光するため光学系で、1図にその構成を示す。10は
光源であり、本実施形態においては超高圧水銀灯が用い
られているが、基板上に塗布される感光材料によっては
キセノン水銀ランプ等へも代替可能である。20は集光
手段であり、本実施形態においては楕円鏡が用いられて
いる。集光手段にはこの他、球面鏡、コンデンサーレン
ズなどが含まれる。30は2次光源作成手段である。本
実施形態においてはロッド31とレンズ33から成る。
集光手段20によって集光された光はロッド31に投入
され、その内部で全反射を繰り返し、出射端面32で均
一な光強度分布になる。レンズ33はロッドの出射端面
32を露光面60に拡大投影し、均一な照度分布での露
光を実現する。2次光源作成手段には、図4のようなフ
ライアイレンズも含まれる。これは光束を分割重畳させ
ることによって露光面60で均一な照度分布を実現する
ものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present embodiment is 740 mm × 620.
FIG. 1 shows an optical system for exposing a region of mm with ultraviolet light (main wavelength: 365 nm) having a uniform intensity. Reference numeral 10 denotes a light source. In this embodiment, an ultra-high pressure mercury lamp is used. However, a xenon mercury lamp or the like may be used depending on a photosensitive material applied on a substrate. Reference numeral 20 denotes a condensing unit, and an elliptical mirror is used in the present embodiment. In addition, the condensing means includes a spherical mirror, a condenser lens, and the like. Reference numeral 30 denotes a secondary light source creating means. In the present embodiment, it comprises a rod 31 and a lens 33.
The light condensed by the light condensing means 20 is input to the rod 31, and total reflection is repeated inside the rod 31, so that a uniform light intensity distribution is obtained on the emission end face 32. The lens 33 enlarges and projects the emission end surface 32 of the rod onto the exposure surface 60, thereby realizing exposure with a uniform illuminance distribution. The secondary light source creating means also includes a fly-eye lens as shown in FIG. This realizes a uniform illuminance distribution on the exposure surface 60 by dividing and superimposing a light beam.

【0008】コリメーター40には球面鏡が用いられ
る。これは2次光源から2.46mの位置に配置され、
その焦点距離は2.5m、口径は840mm×720m
mである。軸外し角は28度に設置されている。本発明
では後述するように光線の平行度の補正をミラー50で
行うので、コリメーターには高価な軸外し放物面鏡を使
う必要もなければ、球面鏡の焦点距離をむやみに長くす
る必要もない。しかし、もちろんコリメーターは球面鏡
に限られるものではなく、他の非球面鏡とレンズを含
む。
[0008] A spherical mirror is used for the collimator 40. It is located 2.46m from the secondary light source,
Its focal length is 2.5m, aperture is 840mm x 720m
m. The off-axis angle is set at 28 degrees. In the present invention, since the parallelism of light rays is corrected by the mirror 50 as described later, it is not necessary to use an expensive off-axis parabolic mirror for the collimator, and it is not necessary to lengthen the focal length of the spherical mirror unnecessarily. Absent. However, of course, the collimator is not limited to a spherical mirror and includes other aspheric mirrors and lenses.

【0009】ミラー50は5mm厚のガラスにアルミニ
ウムを蒸着したもので、そのサイズは980mm×84
0mmである。このミラーはホルダー51に収納されて
いる。図5はミラー50が完全な平面の場合に、露光面
60における光線の平行度を表したものである。矢印の
起点は露光面60上の位置を表し、矢印の方向は光線の
倒れ方向を表している。そして、矢印の長さが光線の平
行度を示している。コリメーター40に球面収差がある
ため平行度は最悪0.42度に達しており、露光位置誤
差が無視できない。次に図6はミラー50を図7のよう
な形状に弾性変形させた場合の光線の平行度を表したも
のである。ミラー50は比較的薄いため容易に変形でき
る。図7はミラー50の等高線図であり、ミラー50は
±2ミリほど変形されていることがわかる。図6にある
ように、平行度は最悪値でも0.06度と実用上支障の
ないレベルにまで改善されている。ここで、ミラー50
の理想形状の求めかたについて図8を用いて説明する。
以下の説明において、光線Aはミラー50へ入射する光
軸上の主光線、光線Bはミラー50へ入射する光軸外を
通る主光線である。
The mirror 50 is formed by evaporating aluminum on glass having a thickness of 5 mm, and has a size of 980 mm × 84 mm.
0 mm. This mirror is housed in a holder 51. FIG. 5 shows the parallelism of light rays on the exposure surface 60 when the mirror 50 is a perfect plane. The starting point of the arrow indicates the position on the exposure surface 60, and the direction of the arrow indicates the falling direction of the light beam. The length of the arrow indicates the parallelism of the light beam. Since the collimator 40 has spherical aberration, the parallelism has reached 0.42 degrees at the worst, and the exposure position error cannot be ignored. Next, FIG. 6 shows the parallelism of light rays when the mirror 50 is elastically deformed into the shape shown in FIG. The mirror 50 can be easily deformed because it is relatively thin. FIG. 7 is a contour diagram of the mirror 50, and it can be seen that the mirror 50 is deformed by about ± 2 mm. As shown in FIG. 6, the parallelism is 0.06 degrees at the worst value, which is improved to a level that does not hinder practical use. Here, the mirror 50
The method for obtaining the ideal shape of the above will be described with reference to FIG.
In the following description, a ray A is a principal ray on the optical axis that enters the mirror 50, and a ray B is a principal ray that passes off the optical axis and enters the mirror 50.

【0010】ここで、光線Aと、光線Aがミラー50に
入射する点でのミラーの法線Nのなす角をθとする。ま
た、光線Aがミラー50で反射した後の光線をPとす
る。光線Pは法線Nと角θをなし、かつ光線Aと法線N
が作る面内にある。一方、光線Bと光線Aの平行誤差を
φとしたとき、光線Bがミラー50で反射した後光線P
と平行になるには、図8のように光線Bがミラー50に
入射する点でのミラーの法線Mをφ/2だけ傾ければよ
い。
Here, the angle between the ray A and the normal N of the mirror at the point where the ray A enters the mirror 50 is defined as θ. Further, a light ray after the light ray A is reflected by the mirror 50 is defined as P. Ray P forms an angle θ with normal N, and ray A and normal N
Is in the plane to make. On the other hand, when the parallel error between the light beam B and the light beam A is φ, the light beam P
In order to be parallel, the mirror normal M at the point where the light beam B enters the mirror 50 as shown in FIG.

【0011】以上の操作をミラー50の多くの点で繰り
返せば、ミラー50の各点の傾きが決まる。これを全面
にわたって積分すればミラー50の理想形状が決まる。
一方、上記理想形状を研磨によって創生すると、きわめ
てコストが高くなる。そこで、本発明の好適な実施の形
態においては、上記形状はミラー50を弾性変形させる
ことによって得ている。ミラー50をホルダー51に入
れていくつかの場所に圧力をかけた場合に生じる弾性変
形量は、上記理想形状とはわずかに異なる。このため、
ミラー50で反射した後、必ずしも光束は平行にならな
いが、図6に見られる通り、0.06度の残存量であれ
ば実用上支障はない。また図7に見られる通り変形量は
±2ミリ程度で足り、ミラー50の弾性変形の領域内で
ある。
By repeating the above operation at many points of the mirror 50, the inclination of each point of the mirror 50 is determined. By integrating this over the entire surface, the ideal shape of the mirror 50 is determined.
On the other hand, if the ideal shape is created by polishing, the cost becomes extremely high. Therefore, in a preferred embodiment of the present invention, the above-described shape is obtained by elastically deforming the mirror 50. The amount of elastic deformation that occurs when the mirror 50 is placed in the holder 51 and pressure is applied to some places is slightly different from the ideal shape. For this reason,
After being reflected by the mirror 50, the luminous flux does not always become parallel, but as shown in FIG. 6, there is no practical problem if the residual amount is 0.06 degrees. In addition, as shown in FIG. 7, the deformation amount is about ± 2 mm, which is within the elastic deformation area of the mirror 50.

【0012】[0012]

【発明の効果】本発明によれば、露光光束の平行度を改
善するのにコリメーターを非球面化する必要がない。こ
のため、コリメーターに非球面鏡を用いた露光光学系に
比較して露光光学系のコストを下げることができる。
According to the present invention, it is not necessary to make the collimator aspherical in order to improve the parallelism of the exposure light beam. Therefore, the cost of the exposure optical system can be reduced as compared with an exposure optical system using an aspherical mirror as a collimator.

【0013】さらに、本発明によれば、露光光束の平行
度を改善するのにコリメーターの焦点距離を長くする必
要もない。従って、露光光学系の全光路長を短くするこ
とができ、ひいては露光装置の設置床面積を小さくでき
る。
Further, according to the present invention, it is not necessary to increase the focal length of the collimator to improve the parallelism of the exposure light beam. Therefore, the total optical path length of the exposure optical system can be shortened, and the floor area where the exposure apparatus is installed can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる露光光学系の全体構成図であ
る。
FIG. 1 is an overall configuration diagram of an exposure optical system according to the present invention.

【図2】露光光の平行度の誤差がパターンの転写ずれの
原因になることを説明する図である。
FIG. 2 is a diagram illustrating that an error in the degree of parallelism of exposure light causes transfer deviation of a pattern.

【図3】軸外し放物面鏡を説明する図である。FIG. 3 is a diagram illustrating an off-axis parabolic mirror.

【図4】フライアイレンズを表す図である。FIG. 4 is a diagram illustrating a fly-eye lens.

【図5】ミラー50で補正をしない場合の露光光の平行
度を表す図である。
FIG. 5 is a diagram illustrating the parallelism of exposure light when no correction is performed by a mirror 50;

【図6】ミラー50で補正をした場合の露光光の平行度
を表す図である。
FIG. 6 is a diagram illustrating the parallelism of exposure light when correction has been performed by a mirror 50;

【図7】ミラー50の弾性変形量を表す等高線図であ
る。
FIG. 7 is a contour diagram showing the amount of elastic deformation of the mirror 50;

【図8】光線A、Bがミラー50へ入射する様子を説明
する図である。
FIG. 8 is a diagram illustrating how light rays A and B enter a mirror 50;

【図9】従来の露光光学系を説明する図である。FIG. 9 is a diagram illustrating a conventional exposure optical system.

【符号の説明】[Explanation of symbols]

10 光源 20 集光手段 30 2次光源作成手段 40 コリメーター 50 ミラー DESCRIPTION OF SYMBOLS 10 Light source 20 Condensing means 30 Secondary light source creation means 40 Collimator 50 Mirror

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】光源10と、集光手段20と、2次光源作
成手段30と、コリメーター40と、ミラー50から成
る露光光学系において、光線Aのミラー50への入射角
をθとし、光線Bと光線Aの平行誤差をφとしたとき、
光線Bのミラー50への入射角がθ+φ/2となるよう
にミラー50を弾性変形させたことを特徴とする露光光
学系。ただし、光線Aはミラー50へ入射する光軸上の
主光線、光線Bはミラー50へ入射する光軸外を通る主
光線である。
In an exposure optical system including a light source, a light condensing means, a secondary light source creating means, a collimator, and a mirror, an incident angle of a light beam on the mirror is defined as θ. When the parallel error between the ray B and the ray A is φ,
An exposure optical system, wherein the mirror 50 is elastically deformed so that the incident angle of the light beam B on the mirror 50 becomes θ + φ / 2. Here, the ray A is a principal ray on the optical axis that enters the mirror 50, and the ray B is a principal ray that passes off the optical axis and enters the mirror 50.
JP5252397A 1997-02-21 1997-02-21 Exposure optical system Pending JPH10242018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5252397A JPH10242018A (en) 1997-02-21 1997-02-21 Exposure optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5252397A JPH10242018A (en) 1997-02-21 1997-02-21 Exposure optical system

Publications (1)

Publication Number Publication Date
JPH10242018A true JPH10242018A (en) 1998-09-11

Family

ID=12917114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5252397A Pending JPH10242018A (en) 1997-02-21 1997-02-21 Exposure optical system

Country Status (1)

Country Link
JP (1) JPH10242018A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013011715A (en) * 2011-06-29 2013-01-17 Hitachi High-Technologies Corp Exposure method and device thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013011715A (en) * 2011-06-29 2013-01-17 Hitachi High-Technologies Corp Exposure method and device thereof
KR101432888B1 (en) * 2011-06-29 2014-08-21 가부시키가이샤 히다치 하이테크놀로지즈 Exposing method and device thereof

Similar Documents

Publication Publication Date Title
JP2655465B2 (en) Reflection type homogenizer and reflection type illumination optical device
US9280054B2 (en) Illumination optical system, exposure apparatus, and method of manufacturing device
JPH11249313A (en) Annular surface reduction projection optical system
JPH07176475A (en) Projecting exposure apparatus and manufacture of device using the same apparatus
JPH09190969A (en) Projecting exposure system and manufacture of device using it
JP2003107354A (en) Image formation optical system and exposure device
JPH032284B2 (en)
JP2750062B2 (en) Catadioptric optical system and projection exposure apparatus having the optical system
US6210865B1 (en) Extreme-UV lithography condenser
US8149386B2 (en) Illumination optical system, exposure apparatus using the same and device manufacturing method
US6857764B2 (en) Illumination optical system and exposure apparatus having the same
JP3311319B2 (en) Optical unit, optical equipment using optical unit
JP2002198309A (en) Illumination system with less heat load
JP5220136B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
US20050057738A1 (en) Illumination optical system and exposure apparatus
JP2001308006A (en) Microlithography illuminating system and microlithography projection exposure system equipped therewith
JP2010257998A (en) Reflective projection optical system, exposure apparatus, and method of manufacturing device
JPH10242018A (en) Exposure optical system
JP2002075859A (en) Illumination system, exposure system and method for manufacturing device
JP2000162415A (en) Manufacture of reflection mirror or reflection type lighting system or semiconductor exposing device
JPH1174172A (en) Exposure optical system
US6055039A (en) Illumination system and exposure apparatus using the same
JPS58215621A (en) 1:1 projection aligner
JP2005310942A (en) Aligner, exposure method, and device manufacturing method using it
KR101999553B1 (en) Illumination optical device, exposure apparatus, and method of manufacturing article

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050729

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060110