JPH1171621A - High strength and high ductility beta type titanium alloy rod wire and its production - Google Patents

High strength and high ductility beta type titanium alloy rod wire and its production

Info

Publication number
JPH1171621A
JPH1171621A JP23305597A JP23305597A JPH1171621A JP H1171621 A JPH1171621 A JP H1171621A JP 23305597 A JP23305597 A JP 23305597A JP 23305597 A JP23305597 A JP 23305597A JP H1171621 A JPH1171621 A JP H1171621A
Authority
JP
Japan
Prior art keywords
titanium alloy
transformation point
type titanium
aging treatment
alloy rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23305597A
Other languages
Japanese (ja)
Inventor
Kazuhiro Takahashi
一浩 高橋
Hideki Fujii
秀樹 藤井
Naotomi Yamada
直臣 山田
Kazuo Matsuhashi
一夫 松橋
Yukio Ochiai
征雄 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Suzuki Metal Industry Co Ltd
Original Assignee
Nippon Steel Corp
Suzuki Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Suzuki Metal Industry Co Ltd filed Critical Nippon Steel Corp
Priority to JP23305597A priority Critical patent/JPH1171621A/en
Publication of JPH1171621A publication Critical patent/JPH1171621A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a rod wire in which the texture is regulated by cold wire drawing at a relatively small reduction of area by specifying the ratio of the X-ray diffraction intensity from respectively specified two planes of α phases in the cross-section vertical to the longitudinal direction of the rod wire after the α phases are precipitated by aging treatment. SOLUTION: A deformation texture of β phases is formed before aging treatment to regulate the deformation texture of α phases precipitated by aging treatment, and the ratio of the X-ray diffraction intensity from the α phases in the cross-section vertical to the longitudinal direction of the rod wire after aging, i.e., I (0002)/I (101 0) is regulated to >=1.5 times that in the case a random sample is used. In this way, deterioration in durability accompanying the increase of its strength, particularly in the value of the reduction of area can be suppressed. Preferably, a βtype Ti alloy rod wire contg., by weight, 1 to 2% Al, 4 to 5% Fe, 4 to 7% Mo, <=0.2% O, and the balance Ti is subjected to cold wire drawing at >=30% reduction of area, is thereafter annealed at the β type transformation point -100 deg.C to the β type transformation point -10 deg.C, is subsequently formed into a product shape and is subjected to aging treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高強度・高延性の
β型チタン合金棒線とその製造方法に関する。
The present invention relates to a high-strength and high-ductility β-type titanium alloy rod and a method for producing the same.

【外2】 説明において、これを(101- 0)と表示する。[Outside 2] In the description, the same - to display (101 0).

【0002】[0002]

【従来の技術】一般的なβ型チタン合金であるTi−1
5V−3Cr−3Sn−3Al合金やTi−3Al−8
V−6Cr−4Mo−4Zr合金等の棒線は、一般的に
冷間伸線後、或いはβ変態点以上の温度で溶体化処理後
に製品の形状に加工し、その後、高強度化するために時
効処理を施し、α相を析出させて使用される。この場
合、時効処理により高強度化は可能であるが、冷間伸線
の減面率の増大やβ相結晶粒の粗大化に伴い延性が低下
し、引張試験の破断伸びが約5%以下、絞り値が約10
%以下と低くなる場合がある。これに対して、β型チタ
ン合金棒線から成形するコイルばねは、高強度、高延性
が要求されており、一般的に引張試験の引張強度で約1
300MPa以上、絞り値で約20%以上、好ましくは
引張強度で1500MPa以上、絞り値で約30%以上
が良い。
2. Description of the Related Art Ti-1 which is a general β-type titanium alloy
5V-3Cr-3Sn-3Al alloy or Ti-3Al-8
In general, rods such as V-6Cr-4Mo-4Zr alloy are processed into a product shape after cold drawing or after solution treatment at a temperature equal to or higher than the β transformation point, and then, to increase strength. It is used after aging treatment to precipitate the α phase. In this case, it is possible to increase the strength by aging treatment, but the ductility decreases due to the increase in the area reduction rate of the cold drawing and the coarsening of the β phase crystal grains, and the elongation at break in the tensile test is about 5% or less. , Aperture value is about 10
% Or less in some cases. On the other hand, coil springs formed from β-type titanium alloy rods are required to have high strength and high ductility, and generally have a tensile strength of about 1 in a tensile test.
300 MPa or more, an aperture value of about 20% or more, preferably a tensile strength of 1500 MPa or more, and an aperture value of about 30% or more are good.

【0003】従来、時効処理後の延性低下を抑制する手
段として、母相となるβ相の結晶粒細粒化があり、冷間
加工後の焼鈍温度や時間を規制すると共に、冷間加工と
組み合わせていた。
[0003] Conventionally, as means for suppressing a decrease in ductility after aging treatment, there is grain refinement of a β phase as a parent phase, which regulates the annealing temperature and time after cold working and reduces the temperature and time during cold working. Had been combined.

【0004】例えば、特許第1898688号(特公平
6−27309号公報)では、冷間圧延板に関して、圧
下率30%以上の冷間圧延後にβ変態点〜β変態点+2
00℃のβ変態点以上の温度で所定の時間以内の中間溶
体化処理を行った後、更に圧下率3〜30%の冷間圧延
を行い、β変態点以上の温度で溶体化処理後、時効処理
を行う。この方法は、冷間圧延後の中間溶体化の温度と
時間を規制することにより、再結晶を完了させずに回復
状態として粒成長を抑制し、細粒化するものであるが、
β変態点以上の温度では再結晶と結晶粒成長が比較的速
く、工業的に制御するのは容易でないと共に、成分偏析
がある場合にはβ変態点にばらつきが生じるため更に制
御が難しくなる。
[0004] For example, in Japanese Patent No. 1898688 (Japanese Patent Publication No. 6-27309), a β-transformation point to a β-transformation point +2 after a cold-rolled sheet having a rolling reduction of 30% or more is obtained.
After performing an intermediate solution treatment within a predetermined time at a temperature equal to or higher than the β transformation point of 00 ° C., further perform cold rolling at a reduction rate of 3 to 30%, and a solution treatment at a temperature equal to or higher than the β transformation point. Perform aging processing. This method regulates the temperature and time of the intermediate solution after cold rolling, suppresses grain growth as a recovery state without completing recrystallization, and refines grains.
At a temperature higher than the β transformation point, recrystallization and crystal grain growth are relatively fast, and it is not easy to control industrially. In addition, when there is component segregation, the β transformation point varies, which makes the control more difficult.

【0005】この方法のように、一般的には最終溶体化
処理をβ変態点以上で行うため、冷間加工で発達したβ
相の集合組織が最終溶体化処理により、ほぼランダム化
してしまうため、時効処理で析出するα相の集合組織も
ほぼランダムになる。
[0005] As in this method, since the final solution treatment is generally performed at the β transformation point or higher, the β solution developed by cold working is generally used.
Since the texture of the phase is almost randomized by the final solution treatment, the texture of the α phase precipitated by the aging treatment is also almost random.

【0006】また、特開平2−153054号公報、特
開平2−217451号公報、特開平4−74856号
公報には、α+β二相温度域で溶体化処理を行い、α相
を析出させた状態で冷間加工を行うことにより、時効処
理後の結晶組織を微細にする方法が開示されている。こ
の方法は、α+β二相温度域の溶体化処理で析出したα
相を活用するものであり、この析出α相が冷間加工性を
低下させるため、高加工度の冷間伸線等は困難である。
Further, JP-A-2-153054, JP-A-2-217451 and JP-A-4-74856 disclose a state in which a solution treatment is performed in an α + β two-phase temperature range to precipitate an α phase. A method of making the crystal structure after the aging treatment fine by performing cold working with the above method is disclosed. This method is based on the solution of α precipitated by solution treatment in the α + β two-phase temperature range.
Since the precipitated α phase lowers the cold workability, it is difficult to perform cold drawing with a high workability.

【0007】また、β型チタン合金製のコイルばねは、
高強度化するため一般に冷間伸線の減面率を約80%以
上と高くしていることから、冷間伸線時に伸線ダイスと
の焼き付きやかじりが発生し易く、冷間伸線の途中で何
度も再潤滑処理をする必要がある。
[0007] A coil spring made of β-type titanium alloy is
In general, the reduction in area of cold drawing is increased to about 80% or more in order to increase the strength. Therefore, seizure or galling with the drawing die is liable to occur during cold drawing, and the cold drawing is not easily performed. It is necessary to perform re-lubrication treatment many times during the process.

【0008】[0008]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、β型チタン合金棒線の集合組織を制御した
高強度且つ高延性のβ型チタン合金棒線を提供すること
である。更に、比較的小さな減面率の冷間伸線により、
集合組織を制御した高強度且つ高延性のβ型チタン合金
棒線を製造することである。
An object of the present invention is to provide a high-strength and high-ductility β-type titanium alloy rod having a controlled texture of the β-type titanium alloy rod. Furthermore, by cold drawing with a relatively small area reduction rate,
An object of the present invention is to produce a high-strength and high-ductility β-type titanium alloy rod having a controlled texture.

【0009】[0009]

【課題を解決するための手段】本発明は、β型チタン合
金棒線において、時効処理前にβ相の加工集合組織を形
成し、時効処理で析出するα相の変態集合組織を制御す
るものであり、時効後の棒線長手方向と垂直な断面にお
けるα相の(0002)面からのX線回折強度I(00
02)と(101- 0)面からのX線回折強度I(10
- 0)の比I(0002)/I(101- 0)がラン
ダム試料を用いた場合の1.5倍以上にすることを特徴
とし、これにより、高強度化に伴う延性、特に絞り値の
低下を抑制する。また、β型チタン合金棒線を、β変態
点超の温度で溶体化処理或いは熱間圧延を行い、若しく
は行わずして、減面率が比較的小さい30%以上の冷間
伸線後、β変態点−100℃〜変態点−10℃の温度域
で焼鈍を行い、その後所定の形状に成形し、時効処理を
することにより、上記のような時効処理で析出するα相
の変態集合組織を形成する。
SUMMARY OF THE INVENTION The present invention provides a β-type titanium alloy rod which forms a processed texture of β phase before aging treatment and controls a transformation texture of α phase precipitated by aging treatment. And the X-ray diffraction intensity I (00) from the (0002) plane of the α phase in a cross section perpendicular to the longitudinal direction of the rod after aging.
02) and (101 - 0) X-rays from the plane diffraction intensity I (10
1 - 0) ratio of I (0002) / I (101 - 0) is characterized in that at least 1.5 times that in the case of using a random sample, thereby, ductility due to high strength, particularly aperture To suppress the decrease. In addition, the β-type titanium alloy rod is subjected to solution treatment or hot rolling at a temperature higher than the β transformation point or not, and after cold drawing of a relatively small area reduction of 30% or more, Transformation texture of α phase precipitated by the above aging treatment by annealing in the temperature range of β transformation point -100 ° C to transformation point -10 ° C, then forming into a predetermined shape, and performing aging treatment To form

【0010】更にβ型チタン合金を、Al:1〜2重量
%、Fe:4〜5重量%、Mo:4〜7重量%、O(酸
素):0.25重量%以下で、残部がTi及び不可避的
不純物からなる成分とすることにより、時効による析出
硬化が大きく、より低い減面率の冷間伸線でも高強度に
できる。
[0010] Further, the β-type titanium alloy is composed of 1 to 2% by weight of Al, 4 to 5% by weight of Fe, 4 to 7% by weight of Mo, 0.25% by weight or less of O (oxygen), and the balance of Ti By using a component consisting of unavoidable impurities, precipitation hardening due to aging is large, and high strength can be obtained even with cold drawing with a lower area reduction.

【0011】図1に、Ti−1.5Al−4.5Fe−
6.8Mo合金(酸素濃度0.17重量%)製線材の時
効処理後の線材長手方向と垂直な断面におけるX線回折
強度比I(0002)/I(101- 0)のランダム試
料に対する比率と、線材長手方向の引張試験での絞り値
との関係を示す。ここでTi−1.5Al−4.5Fe
−6.8Mo合金(酸素濃度0.17重量%)製線材
は、直径13mmから種々の減面率で冷間伸線後、760
℃または850℃で30分間焼鈍し、その後540℃で
8時間の時効処理をした試料を用いた。I(0002)
とI(101- 0)を比較するX線回折は、Cu製ター
ゲットを使用して測定した。またX線回折強度比の比較
に用いたランダム試料は、Ti−1.5Al−4.5F
e−6.8Mo合金(酸素濃度0.17重量%)製の粉
末を、真空焼結後、HIP処理を行って固め、続いてβ
変態点以上の870℃で溶体化し水冷した後、540℃
で8時間の時効処理を行って作製した。
FIG. 1 shows that Ti-1.5Al-4.5Fe-
A ratio of the random sample of the - (0 101) 6.8Mo alloy (oxygen concentration 0.17 wt%) X-ray diffraction intensity ratio of the wire rod after the aging treatment made wire longitudinal direction and a section perpendicular I (0002) / I And the relationship with the aperture value in a tensile test in the longitudinal direction of the wire rod. Here, Ti-1.5Al-4.5Fe
The wire made of -6.8Mo alloy (oxygen concentration 0.17 wt%) is 760 mm after cold drawing at various reductions from 13 mm in diameter.
A sample which was annealed at 540 ° C. or 850 ° C. for 30 minutes and then aged at 540 ° C. for 8 hours was used. I (0002)
And I - X-ray diffraction to compare (101 0) was measured using a Cu-made targets. The random sample used for comparison of the X-ray diffraction intensity ratio was Ti-1.5Al-4.5F.
e-6.8Mo alloy (oxygen concentration 0.17% by weight) powder was vacuum-sintered, HIP-treated, and then solidified.
540 ° C after solution and water cooling at 870 ° C above the transformation point
For 8 hours.

【0012】図1より、時効処理後のX線回折強度比I
(0002)/I(101- 0)のランダム試料に対す
る比率が1.2倍以下の場合には絞り値が約6〜10%
と低いが、1.5〜2倍に増加すると絞り値が約25〜
35%強と高くなり、2倍以上になると更に高くなる。
また、冷間伸線後にβ変態点超の850℃で30分間の
焼鈍を行った試料は、時効処理後のX線回折強度比I
(0002)/I(101- 0)のランダム試料に対す
る比率が約1.2倍未満と小さく、絞り値が6%と非常
に小さい。従って、X線回折強度比I(0002)/I
(101- 0)のランダム試料に対する比率を、絞り値
が25%以上になる1.5倍以上とした。好ましくは2
倍以上である。
FIG. 1 shows that the X-ray diffraction intensity ratio I after aging treatment
(0002) / I (101 - 0) aperture when the ratio is 1.2 times or less with respect to the random sample of about 6-10% of the
The aperture value is about 25-
It is as high as over 35% and further higher when it is twice or more.
Further, after cold drawing, the sample which had been annealed at 850 ° C. above the β transformation point for 30 minutes was subjected to an X-ray diffraction intensity ratio I after aging treatment.
(0002) / I (101 - 0) ratio of the random sample is less than about 1.2 times the aperture value is very small and 6%. Therefore, the X-ray diffraction intensity ratio I (0002) / I
(101 - 0) a ratio of random samples, the aperture value is set to 1.5 times or more becomes 25% or more. Preferably 2
More than double.

【0013】冷間伸線の減面率が30%以上で、時効処
理後のX線回折強度比I(0002)/I(101
- 0)のランダム試料に対する比率が1.5倍以上とな
り、約20〜30%以上の絞り値が得られることから、
冷間伸線の減面率を30%以上とした。好ましくは冷間
伸線の減面率は40〜80%である。これは冷間伸線の
減面率が40%以上で、時効処理後のX線回折強度比I
(0002)/I(101- 0)のランダム試料に対す
る比率が2倍以上となり、約30〜40%の絞り値が得
られることから、好ましい下限の減面率を40%とし、
また冷間伸線時の再潤滑処理の回数を低減するために、
好ましい上限の減面率を80%とした。
An X-ray diffraction intensity ratio I (0002) / I (101) after aging treatment when the area reduction rate of cold drawing is 30% or more.
- since the ratio of the random sample is 1.5 times or more, the aperture value of at least about 20-30% is obtained of 0),
The area reduction rate of cold drawing was 30% or more. Preferably, the area reduction rate of the cold drawing is 40 to 80%. This is because the area reduction rate of cold drawing is 40% or more, and the X-ray diffraction intensity ratio I after aging treatment is I
(0002) / I (101 - 0) ratio of the random sample is more than twice of the fact that about 30-40% of the aperture is obtained, the reduction rate of the preferred lower limit is 40%
Also, to reduce the number of re-lubrication processes during cold drawing,
A preferable upper limit area reduction rate was set to 80%.

【0014】β相の加工集合組織を形成するために減面
率30%以上の冷間伸線を行うと、棒線が加工硬化する
ため、その後の製品形状への成形が困難になることか
ら、冷間伸線後に焼鈍し、軟化させる方が好ましい。し
かし、冷間伸線後の焼鈍温度をβ変態点以上にすると、
再結晶が起こり、冷間伸線で形成したβ相の加工集合組
織がランダム化するため、時効処理後の絞り値が低くな
ってしまう。またβ変態点−10℃超のβ変態点直下で
は、成分のミクロ偏析でβ変態点のばらつきがある場
合、β変態点が低い部分で再結晶と集合組織のランダム
化が起こり、時効処理後の材質にばらつきが発生してし
まう。β変態点−100℃未満では、α相の析出が多く
なることから、析出硬化してしまう他、β相のβ安定度
が増すため、その後の時効処理で強度を高める微細なα
相の析出量が低下し、強度が1300MPa未満にしか
ならず、一般的にコイル状ばねで要求される強度130
0MPaに及ばない場合がある。従って、冷間伸線後の
焼鈍温度をβ変態点−100℃〜β変態点−10℃とし
た。好ましくはβ変態点−80℃〜β変態点−15℃で
ある。
If cold drawing is performed with a reduction in area of 30% or more in order to form a work texture of β phase, the rod hardens and hardens, so that subsequent shaping into a product shape becomes difficult. It is preferable to anneal and soften after cold drawing. However, if the annealing temperature after cold drawing is higher than the β transformation point,
Recrystallization occurs, and the processed texture of the β phase formed by cold drawing is randomized, so that the aperture value after the aging treatment is reduced. In addition, if there is a variation in the β transformation point due to the microsegregation of the component immediately below the β transformation point above −10 ° C., recrystallization and randomization of the texture occur in the low β transformation point, and after aging treatment The material of the material varies. If the β transformation point is lower than −100 ° C., precipitation of the α phase increases, so that precipitation hardening occurs, and β stability of the β phase increases.
The precipitation amount of the phase is reduced, and the strength becomes less than 1300 MPa.
In some cases, it does not reach 0 MPa. Therefore, the annealing temperature after cold drawing was set to β transformation point −100 ° C. to β transformation point −10 ° C. Preferably, the β transformation point is −80 ° C. to the β transformation point −15 ° C.

【0015】また本発明においては、冷間伸線前に、β
変態点超の温度で溶体化処理或いは熱間圧延を行い、α
相がない状態にすることにより、冷間加工性を良好にし
て冷間伸線を容易にすると共に、冷間伸線でのβ相の加
工集合組織をより均一に形成され易くすることができ
る。
Further, in the present invention, before cold drawing, β
Solution treatment or hot rolling at a temperature above the transformation point, α
By having no phase, it is possible to improve the cold workability and facilitate cold drawing, and to facilitate the formation of a β-phase processed texture in cold drawing more uniformly. .

【0016】[0016]

【発明の実施の形態】以下の実施例により、本発明を更
に詳しく説明する。β変態点超の温度で熱間圧延した直
径13mmのTi−1.5Al−4.5Fe−6.8Mo
合金(酸素濃度0.17重量%、β変態点は約800
℃)とTi−3Al−8V−6Cr−4Mo−4Zr合
金(酸素濃度0.10重量%、β変態点は約730℃)
の線材を脱スケールして、種々の減面率で冷間伸線した
後、種々の温度と時間で焼鈍処理を行い、その後540
℃で8時間の時効処理を行った後、この試料を用いて線
材の長手方向と垂直な断面でのX線回折と長手方向での
引張試験を行った。ここで熱間圧延の仕上げ温度はβ変
態点超の940〜990℃である。焼鈍はアルゴン雰囲
気で行い、アルゴンを流し、強制冷却した。時効処理は
大気中で行い、空冷した。また、X線回折はCu製ター
ゲットで行う。引張試験はJIS9号Aの試験片で行っ
た。
The present invention will be described in more detail with reference to the following examples. 13 mm diameter Ti-1.5Al-4.5Fe-6.8Mo hot-rolled at a temperature above the β transformation point
Alloy (oxygen concentration 0.17 wt%, β transformation point is about 800
° C) and Ti-3Al-8V-6Cr-4Mo-4Zr alloy (oxygen concentration 0.10% by weight, β transformation point is about 730 ° C)
Is descaled, cold drawn at various area reduction rates, and then annealed at various temperatures and times.
After the aging treatment at 8 ° C. for 8 hours, the sample was subjected to X-ray diffraction in a cross section perpendicular to the longitudinal direction of the wire and tensile test in the longitudinal direction. Here, the finishing temperature of hot rolling is 940 to 990 ° C., which is higher than the β transformation point. Annealing was performed in an argon atmosphere, argon was flown, and forced cooling was performed. The aging treatment was performed in the air and air-cooled. X-ray diffraction is performed with a Cu target. The tensile test was performed on a test piece of JIS No. 9A.

【0017】表1に、合金の種類、冷間伸線前の溶体化
処理の有無及びその条件、冷間伸線の減面率、焼鈍条
件、時効条件、時効処理後のX線回折強度比I(000
2)/I(101- 0)のランダム試料に対する比率、
引張試験の材質結果(引張強度、0.2%耐力、破断伸
び、絞り値)を示す。ここで、X線回折強度比を比較す
るランダム試料は、各合金製の粉末を真空焼結後、HI
P処理を行って固め、続いてβ変態点以上の870℃で
溶体化し、水冷した後、540℃で8時間の時効処理を
行って作製した。また引張試験の材質結果は、3本試験
した値の平均値である。
Table 1 shows the types of alloys, the presence or absence and conditions of solution treatment before cold drawing, the reduction in area of cold drawing, annealing conditions, aging conditions, and X-ray diffraction intensity ratios after aging treatment. I (000
2) / I (101 - 0 ratio random sample),
The material results of the tensile test (tensile strength, 0.2% proof stress, elongation at break, aperture value) are shown. Here, a random sample for comparing the X-ray diffraction intensity ratios was obtained by sintering each alloy powder under vacuum and
P treatment was performed to solidify, then solution was formed at 870 ° C. above the β transformation point, water-cooled, and then subjected to aging treatment at 540 ° C. for 8 hours. Further, the material result of the tensile test is an average value of the values of three tests.

【0018】[0018]

【表1】 [Table 1]

【0019】表1より、Ti−1.5Al−4.5Fe
−6.8Mo合金において、冷間伸線の減面率が30〜
80%で冷間伸線後の焼鈍温度が760℃であるNo.
4〜7とNo.12〜15は、いずれも時効処理後のX
線回折強度比I(0002)/I(101- 0)のラン
ダム試料に対する比率が1.5倍以上と大きく、本発明
の範囲内であり、引張試験の絞り値が25%以上と高
く、且つ引張強度も1500MPa超と高い。また冷間
伸線前の状態が、熱間圧延ままの場合とβ変態点超の8
50℃で溶体化した場合とでは、時効処理後のX線回折
強度比I(0002)/I(101-0)のランダム試
料に対する比率と引張試験の材質に大きな差はない。
From Table 1, it can be seen that Ti-1.5Al-4.5Fe
For -6.8Mo alloy, the area reduction rate of cold drawing is 30 to
No. 80% and the annealing temperature after cold drawing was 760 ° C.
Nos. 4 to 7 and Nos. 12 to 15 are X after aging treatment
Ray diffraction intensity ratio I (0002) / I - ratio random sample as large as 1.5 times or more (101 0), are within the scope of the present invention, the aperture value of the tensile test as high as 25% or more, and The tensile strength is as high as more than 1500 MPa. In addition, the state before cold drawing is the same as in the case of hot rolling as it is,
In the case of solution at 50 ° C., X-ray diffraction intensity ratio I (0002) after the aging treatment / I (101 - 0) a large difference in the material of the ratio between the tensile tests on random samples of no.

【0020】一方、冷間伸線の減面率が0〜20%のN
o.1〜3,10,11は、いずれも時効処理後のX線
回折強度比I(0002)/I(101- 0)のランダ
ム試料に対する比率が1.14〜1.32倍と小さく、
引張試験の絞り値が6〜14%と小さい。
On the other hand, when the area reduction rate of cold drawing is 0 to 20%, N
o. 1~3,10,11 are all X-ray diffraction intensity ratio I after aging treatment (0002) / I (101 - 0) ratio of the random sample is as small as 1.14 to 1.32 times the,
The aperture value in the tensile test is as small as 6 to 14%.

【0021】冷間伸線の減面率が60%でも冷間伸線後
の焼鈍温度がβ変態点超の850℃であるNo.9は、
時効処理後のX線回折強度比I(0002)/I(10
-0)のランダム試料に対する比率が1.14倍と小
さく、引張試験の絞り値が6%と非常に小さい。
Even when the reduction ratio of the cold drawing was 60%, the annealing temperature after the cold drawing was 850 ° C. which was higher than the β transformation point. 9 is
X-ray diffraction intensity ratio after aging treatment I (0002) / I (10
1 - 0 ratio random sample is as small as 1.14 times of), the aperture value of the tensile test is very small and 6%.

【0022】また、冷間伸線の減面率が60%で冷間伸
線後の焼鈍温度がβ変態点−100℃以下の680℃で
あるNo.8は、時効処理後のX線回折強度比I(00
02)/I(101- 0)のランダム試料に対する比率
が2.67倍と大きく、引張試験の絞り値が37%と高
いが、引張強度が1290MPaとコイルばねで一般的
に要求されている1300MPaより小さい。
In the case of No. 1, in which the area reduction rate of the cold drawing was 60% and the annealing temperature after the cold drawing was 680 ° C. below the β transformation point of −100 ° C. 8 is the X-ray diffraction intensity ratio I (00
02) / I (101 - 0 large ratio 2.67 times for a random sample of), the aperture value of the tensile test is 37% and higher, tensile strength is generally required in 1290MPa and a coil spring 1300MPa Less than.

【0023】次に、Ti−3Al−8V−6Cr−4M
o−4Zr合金において、表1より、冷間伸線の減面率
が40,80%で冷間伸線後の焼鈍が710℃であるN
o.24,25は、いずれも時効処理後のX線回折強度
比I(0002)/I(101- 0)のランダム試料に
対する比率が2倍以上と大きく、本発明の範囲内であ
り、引張試験の絞り値が30%以上と高い。
Next, Ti-3Al-8V-6Cr-4M
Table 1 shows that in the o-4Zr alloy, from Table 1, the reduction ratio of the cold drawn wire is 40,80% and the annealing after the cold drawn wire is 710 ° C.
o. 24 and 25 are all X-ray diffraction intensity ratio I (0002) after the aging treatment / I (101 - 0) ratio of the random sample is large as twice or more, are within the scope of the present invention, the tensile test The aperture value is as high as 30% or more.

【0024】一方、冷間伸線の減面率が0、20%のN
o.22,23は、いずれも時効処理後のX線回折強度
比I(0002)/I(101- 0)のランダム試料に
対する比率が約1.3倍以下であり、引張試験の絞り値
が19%以下と小さい。
On the other hand, when the area reduction rate of cold drawing is 0 or 20%,
o. 22 and 23 are all X-ray diffraction intensity ratio I (0002) after the aging treatment / I (101 - 0) ratio of the random sample is less than or equal to about 1.3 times the aperture value of the tensile test 19% Less than the following.

【0025】また、冷間伸線の減面率が80%でも冷間
伸線後の焼鈍温度がβ変態点超の820℃であるNo.
26は、時効処理後のX線回折強度比I(0002)/
I(101- 0)のランダム試料に対する比率が1.1
8倍と小さく、引張試験の絞り値が12%と小さい。
Further, even when the reduction ratio of the cold drawing is 80%, the annealing temperature after the cold drawing is 820 ° C. which is higher than the β transformation point.
26 is an X-ray diffraction intensity ratio after aging treatment I (0002) /
I (101 - 0) ratio of the random sample is 1.1
It is as small as eight times, and the aperture value in the tensile test is as small as 12%.

【0026】このように、Ti−3Al−8V−6Cr
−4Mo−4Zr合金においても、Ti−1.5Al−
4.5Fe−6.8Mo合金と同様の結果を示す。
Thus, Ti-3Al-8V-6Cr
-4Mo-4Zr alloy, Ti-1.5Al-
The results are similar to those of the 4.5Fe-6.8Mo alloy.

【0027】[0027]

【発明の効果】β型チタン合金棒線の時効処理後の析出
α相の集合組織を制御することにより、高強度且つ高延
性のβ型チタン合金棒線を提供することができる。ま
た、比較的小さな減面率の冷間伸線でβ相の加工集合組
織を形成し、β変態点−100℃〜β変態点−10℃の
温度域で焼鈍を行った後、製品形状に成形し、時効処理
することにより、時効析出したα相の変態集合組織を形
成し、高強度且つ高延性のβ型チタン合金棒線を製造で
きる。更に、β型チタン合金を、Al:1〜2重量%、
Fe:4〜5重量%、Mo:4〜7重量%、O(酸
素):0.25重量%以下で、残部がTi及び不可避的
不純物からなる成分にすることにより、より低い減面率
の冷間伸線でも、高強度にできる。
By controlling the texture of the precipitated α-phase after aging treatment of the β-type titanium alloy rod, a β-type titanium alloy rod having high strength and high ductility can be provided. Also, after forming a texture of β phase by cold drawing with a relatively small area reduction rate, annealing at a temperature range of β transformation point -100 ° C to β transformation point -10 ° C, the product shape By forming and aging, a transformed texture of the α phase precipitated by aging is formed, and a high strength and high ductility β-type titanium alloy rod can be manufactured. Further, a β-type titanium alloy is prepared by adding Al: 1 to 2% by weight,
Fe: 4 to 5% by weight, Mo: 4 to 7% by weight, O (oxygen): 0.25% by weight or less, with the balance being a component consisting of Ti and unavoidable impurities, a lower area reduction rate is obtained. High strength can be achieved even by cold drawing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Ti−1.5Al−4.5Fe−6.8Mo合
金(酸素濃度0.17重量%)製線材の時効処理後の線
材長手方向と垂直な断面におけるX線回折強度比I(0
002)/I(101- 0)のランダム試料に対する比
率と線材長手方向の引張試験の絞り値との関係を示す
図。
FIG. 1 is an X-ray diffraction intensity ratio I (0) in a section perpendicular to the longitudinal direction of a wire made of a Ti-1.5Al-4.5Fe-6.8Mo alloy (oxygen concentration: 0.17% by weight) after aging treatment.
002) / I (101 - diagram showing the relationship between the aperture of the tensile test ratio and the wire longitudinal direction with respect to the random sample 0).

フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 630 C22F 1/00 630A 683 683 685 685Z 691 691B 694 694A (72)発明者 山田 直臣 東京都千代田区大手町2−6−3 新日本 製鐵株式会社内 (72)発明者 松橋 一夫 千葉県習志野市東習志野7丁目5番1号 鈴木金属工業株式会社内 (72)発明者 落合 征雄 千葉県習志野市東習志野7丁目5番1号 鈴木金属工業株式会社内Continuation of the front page (51) Int.Cl. 6 identification code FI C22F 1/00 630 C22F 1/00 630A 683 683 685 685Z 691 691B 694 694A (72) Inventor Naomi Yamada 2-6 Otemachi, Chiyoda-ku, Tokyo -3 Nippon Steel Corporation (72) Inventor Kazuo Matsuhashi 7-5-1 Higashi Narashino, Narashino City, Chiba Prefecture Suzuki Metal Industry Co., Ltd. (72) Inventor Masao Ochiai 7-5-1 Higashi Narashino, Narashino City, Chiba Prefecture No. Inside Suzuki Metal Industry Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 β型チタン合金棒線において、時効処理
によりα相を析出させた後の棒線長手方向と垂直な断面
におけるα相の(0002)面からのX線回 【外1】 あることを特徴とする高強度・高延性β型チタン合金棒
線。
1. An X-ray beam from the (0002) plane of the α phase in a section perpendicular to the longitudinal direction of the rod after precipitation of the α phase by aging treatment in a β type titanium alloy rod. High strength and high ductility β-type titanium alloy rod wire characterized by the following.
【請求項2】 β型チタン合金棒線に、減面率30%以
上の冷間加工を加え、続いてβ変態点−100℃〜β変
態点−10℃の温度域で焼鈍した後、所定の形状に成形
し、時効処理することを特徴とする高強度・高延性β型
チタン合金棒線の製造方法。
2. A β-type titanium alloy rod wire is subjected to cold working with a surface reduction rate of 30% or more, and then annealed in a temperature range of β transformation point-100 ° C. to β transformation point-10 ° C. A method for producing a high-strength and high-ductility β-type titanium alloy rod wire, which is formed into a shape of a titanium alloy and subjected to aging treatment.
【請求項3】 β型チタン合金棒線を、β変態点超の温
度で溶体化処理或いは熱間圧延した後、減面率30%以
上の冷間加工を加え、続いてβ変態点−100℃〜β変
態点−10℃の温度域で焼鈍した後、所定の形状に成形
し、時効処理することを特徴とする高強度・高延性β型
チタン合金棒線の製造方法。
3. The β-type titanium alloy rod is subjected to a solution treatment or a hot rolling at a temperature higher than the β transformation point, and then subjected to cold working with a surface reduction rate of 30% or more, followed by a β transformation point of −100. A method for producing a high-strength and high-ductility β-type titanium alloy rod or wire, wherein the rod is annealed in a temperature range of -10 ° C to a transformation point of -10 ° C, then formed into a predetermined shape, and then subjected to aging treatment.
【請求項4】 β型チタン合金棒線の成分が、Al:1
〜2重量%、Fe:4〜5重量%、Mo:4〜7重量
%、O(酸素):0.25重量%以下で、残部がTi及
び不可避的不純物からなることを特徴とする請求項2ま
たは3に記載の高強度・高延性β型チタン合金棒線の製
造方法。
4. The composition of a β-type titanium alloy rod wire comprises Al: 1
2% by weight, Fe: 4 to 5% by weight, Mo: 4 to 7% by weight, O (oxygen): 0.25% by weight or less, with the balance being Ti and unavoidable impurities. 4. The method for producing a high-strength and high-ductility β-type titanium alloy rod according to 2 or 3.
JP23305597A 1997-08-28 1997-08-28 High strength and high ductility beta type titanium alloy rod wire and its production Withdrawn JPH1171621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23305597A JPH1171621A (en) 1997-08-28 1997-08-28 High strength and high ductility beta type titanium alloy rod wire and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23305597A JPH1171621A (en) 1997-08-28 1997-08-28 High strength and high ductility beta type titanium alloy rod wire and its production

Publications (1)

Publication Number Publication Date
JPH1171621A true JPH1171621A (en) 1999-03-16

Family

ID=16949099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23305597A Withdrawn JPH1171621A (en) 1997-08-28 1997-08-28 High strength and high ductility beta type titanium alloy rod wire and its production

Country Status (1)

Country Link
JP (1) JPH1171621A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6402859B1 (en) 1999-09-10 2002-06-11 Terumo Corporation β-titanium alloy wire, method for its production and medical instruments made by said β-titanium alloy wire
WO2013080390A1 (en) * 2011-11-29 2013-06-06 東邦チタニウム株式会社 α+β OR β TITANIUM ALLOY AND METHOD FOR PRODUCING SAME

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6402859B1 (en) 1999-09-10 2002-06-11 Terumo Corporation β-titanium alloy wire, method for its production and medical instruments made by said β-titanium alloy wire
US6800153B2 (en) 1999-09-10 2004-10-05 Terumo Corporation Method for producing β-titanium alloy wire
WO2013080390A1 (en) * 2011-11-29 2013-06-06 東邦チタニウム株式会社 α+β OR β TITANIUM ALLOY AND METHOD FOR PRODUCING SAME
US9969004B2 (en) 2011-11-29 2018-05-15 Toho Titanium Co., Ltd. α+β or β titanium alloy and method for producing same

Similar Documents

Publication Publication Date Title
US4889170A (en) High strength Ti alloy material having improved workability and process for producing the same
US5304263A (en) Titanium alloy part
EP0683242B1 (en) Method for making titanium alloy products
EP0610006A1 (en) Superplastic aluminum alloy and process for producing same
WO2003052155A1 (en) Method for processing beta titanium alloys
JPH10306335A (en) Alpha plus beta titanium alloy bar and wire rod, and its production
JP2968822B2 (en) Manufacturing method of high strength and high ductility β-type Ti alloy material
JP2003055749A (en) BETA Ti ALLOY WITH HIGH STRENGTH AND LOW YOUNG&#39;S MODULUS, AND ITS MANUFACTURING METHOD
JP3417844B2 (en) Manufacturing method of high-strength Ti alloy with excellent workability
JPH09194969A (en) High strength titanium alloy and its production
JPS62267438A (en) High-strength ti alloy material excellent in workability and its production
US4226621A (en) Brass material and a process for the preparation thereof
KR100219931B1 (en) High strength steel sway bars and method of making
JP3252596B2 (en) Method for producing high strength and high toughness titanium alloy
JP3362428B2 (en) Processing method of hot-formed product of β-type titanium alloy
JPH07180011A (en) Production of alpha+beta type titanium alloy extruded material
US4358324A (en) Method of imparting a fine grain structure to aluminum alloys having precipitating constituents
US5417779A (en) High ductility processing for alpha-two titanium materials
JPH1171621A (en) High strength and high ductility beta type titanium alloy rod wire and its production
RU2739926C1 (en) Ultra-fine aluminum alloys for high-strength articles made under superplasticity conditions, and a method of producing articles
JPH05247574A (en) Production of aluminum alloy for forging and forged product of aluminum alloy
JP2023509367A (en) Plates or strips made of precipitation hardenable aluminum alloys, vehicle parts made from said plates or strips, uses of said plates or strips and methods for producing them
JP3481428B2 (en) Method for producing Ti-Fe-ON-based high-strength titanium alloy sheet with small in-plane anisotropy
JP2018053313A (en) α+β TYPE TITANIUM ALLOY BAR AND MANUFACTURING METHOD THEREFOR
JPH06293929A (en) Beta titanium alloy wire and its production

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041102