JPH1170617A - Coating method for oxidation-resistant multilayered coating film of carbon fiber reinforced carbon composite material, and coated material - Google Patents

Coating method for oxidation-resistant multilayered coating film of carbon fiber reinforced carbon composite material, and coated material

Info

Publication number
JPH1170617A
JPH1170617A JP23386397A JP23386397A JPH1170617A JP H1170617 A JPH1170617 A JP H1170617A JP 23386397 A JP23386397 A JP 23386397A JP 23386397 A JP23386397 A JP 23386397A JP H1170617 A JPH1170617 A JP H1170617A
Authority
JP
Japan
Prior art keywords
oxide
film
composite material
coating
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23386397A
Other languages
Japanese (ja)
Other versions
JP3967797B2 (en
Inventor
Mitsunori Yamamoto
光紀 山本
Takayuki Kamiyama
隆之 神山
Noriaki Sugawara
憲明 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP23386397A priority Critical patent/JP3967797B2/en
Publication of JPH1170617A publication Critical patent/JPH1170617A/en
Application granted granted Critical
Publication of JP3967797B2 publication Critical patent/JP3967797B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coating method for a coating film having practical heat resistance of 1700 deg.C or higher and markedly good in the close adhesiveness with a carbon fiber reinforced carbon composite material and the oxidation- resistant multilayered coating film on the composite material and a material coated by this coating method. SOLUTION: In a material wherein a multilayered coating film is applied to the surface of a carbon fiber reinforced carbon composite material and a method for producing the same, a coating film of an intermetallic compd., a coating film of a noble metal, a coating film of first oxide and a coating film of second oxide are formed on the carbon fiber reinforced carbon composite material in this order.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭素繊維強化炭素
複合材料を高温耐熱材料および/または耐酸化材料で多
層被膜する方法および被膜された材料に関する。
The present invention relates to a method for multi-layer coating a carbon fiber reinforced carbon composite material with a high temperature heat resistant material and / or an oxidation resistant material, and a coated material.

【0002】[0002]

【従来の技術】炭素繊維強化炭素複合材料は、軽量で耐
熱性に優れた材料であるが、炭素材料であるため酸化さ
れやすく、大気中の使用に当たっては耐酸化被膜の被覆
が必要となる。炭素繊維強化炭素複合材料への従来の耐
酸化被膜は、SiC等をコンバーション法、CVD法等
で被膜形成し、炭素繊維強化炭素複合材料とSiCの熱
膨張差によって発生するクラックをガラス系材料でシー
ルするといった技術を中心とした研究がなされている。
しかしながら、これらのものは、その大気中での適用温
度はSiCの材料特性上約1700℃までが限界であっ
た。
2. Description of the Related Art Carbon fiber reinforced carbon composite materials are lightweight and excellent in heat resistance. However, since they are carbon materials, they are easily oxidized, so that they need to be coated with an oxidation resistant film when used in the atmosphere. Conventional oxidation resistant coatings on carbon fiber reinforced carbon composite materials are formed by coating SiC or the like by a conversion method, CVD method, or the like, and cracks generated due to the difference in thermal expansion between the carbon fiber reinforced carbon composite material and SiC are made of a glass material Research has focused on technologies such as sealing.
However, the application temperature of these materials in the atmosphere was limited to about 1700 ° C. due to the material characteristics of SiC.

【0003】[0003]

【発明が解決しようとする課題】上記の実情に鑑みて、
本発明の目的は、約1700℃以上の実用耐酸化性を有
すると共に、炭素繊維強化炭素複合材料とその上の耐酸
化多層被膜との密着性が著しく良好な被膜の形成方法お
よび被覆された材料を提供することである。
In view of the above situation,
An object of the present invention is to provide a method for forming a coating having a practical oxidation resistance of about 1700 ° C. or higher and having extremely good adhesion between a carbon fiber reinforced carbon composite material and an oxidation resistant multilayer coating thereon, and a coated material. It is to provide.

【0004】[0004]

【課題を解決するための手段】上記の目的を達成するた
めに、発明者たちが鋭意研究を重ねた結果、本発明は、
炭素繊維強化炭素複合材料の耐酸化多層被膜形成方法に
おいて、炭素繊維強化炭素複合材料の表面に、炭化物を
生成させ、炭化物上に貴金属の被膜を成膜し、熱処理に
より炭化物と貴金属とを反応させて金属間化合物の被膜
を生成させ、この上に貴金属被膜を成膜し、この被膜上
に第一の酸化物被膜を成膜し、次いで第二の酸化物被膜
を成膜することを特徴とし、炭素繊維強化炭素複合材料
に耐酸化多層被膜を成膜した耐酸化複合材料において、
炭素繊維強化炭素複合材料上に金属間化合物の被膜、金
属間化合物の被膜上に貴金属の被膜、貴金属の被膜上に
第一の酸化物の被膜および第一の酸化物の被膜上に第二
の酸化物の被膜を成膜したことを特徴とする。
Means for Solving the Problems In order to achieve the above object, the present inventors have made intensive studies, and as a result, the present invention provides
In the method for forming an oxidation-resistant multilayer coating of a carbon fiber reinforced carbon composite material, a carbide is formed on the surface of the carbon fiber reinforced carbon composite material, a coating of a noble metal is formed on the carbide, and the carbide and the noble metal are reacted by heat treatment. Forming a film of an intermetallic compound, forming a noble metal film thereon, forming a first oxide film on this film, and then forming a second oxide film. In an oxidation-resistant composite material obtained by forming an oxidation-resistant multilayer coating on a carbon fiber-reinforced carbon composite material,
An intermetallic compound coating on the carbon fiber reinforced carbon composite material, a noble metal coating on the intermetallic compound coating, a first oxide coating on the noble metal coating and a second oxide coating on the first oxide coating An oxide film is formed.

【0005】本発明の基質材料は、炭素繊維強化炭素複
合材料(以降C/Cと略記)であり、例えばポリアクリ
ルニトリル(PAN)、ピッチまたはレーヨンから得ら
れる黒鉛または炭素繊維を強化材とし、樹脂、例えばフ
ェノール樹脂を黒鉛化または炭化させてえられる黒鉛ま
たは炭素をマトリックスとしている。
[0005] The substrate material of the present invention is a carbon fiber reinforced carbon composite material (hereinafter abbreviated as C / C). For example, graphite or carbon fiber obtained from polyacrylonitrile (PAN), pitch or rayon is used as a reinforcing material, The matrix is made of a resin, for example, graphite or carbon obtained by graphitizing or carbonizing a phenol resin.

【0006】C/Cの表面は、被膜形成前に、例えば油
剤、塵芥等が除去されることが望ましい。
It is desirable that, for example, an oil agent, dust and the like be removed from the C / C surface before forming a film.

【0007】C/Cの表面に被覆された多層被膜は、
C/C上に金属間化合物の被膜、この被膜上に貴金属
の被膜、貴金属の被膜上に第一の酸化物の被膜および
第一の酸化物の被膜上に第二の酸化物被膜を成膜する
ことからなる。
[0007] The multilayer film coated on the surface of C / C is
An intermetallic compound film is formed on C / C, a noble metal film is formed on this film, a first oxide film is formed on the noble metal film, and a second oxide film is formed on the first oxide film. It consists of doing.

【0008】これらの被膜は、減圧プラズマ溶射法、ゾ
ルゲル法、CVD法、イオンプレーティング法、スパッ
タリング法等により成膜される。
These films are formed by a low pressure plasma spraying method, a sol-gel method, a CVD method, an ion plating method, a sputtering method or the like.

【0009】本発明の減圧プラズマ溶射法による被膜を
形成する酸化物および貴金属の粒径は5〜100ミクロ
ンが好ましく、特に好ましくは5〜50ミクロンであ
る。本発明の溶射法による被膜の膜厚は、好ましくは1
0〜50ミクロンでである。
The particle size of the oxide and the noble metal forming the coating by the low pressure plasma spraying method of the present invention is preferably 5 to 100 μm, particularly preferably 5 to 50 μm. The thickness of the coating by the thermal spraying method of the present invention is preferably 1
0-50 microns.

【0010】本発明のゾルゲル法は、金属アルコキシド
を加水分解して得られた金属プリカーサ溶液に被膜形成
対象物を接触させ、対象物表面、特にボイド、凹部等に
プリカーサ溶液を侵入および/または付着させ、乾燥後
熱処理して対象物上に金属酸化物からなる被膜を形成さ
せる。対象物にプリカーサ溶液を侵入および/または付
着させる方法としては、プリカーサ溶液への対象物の浸
漬、対象物表面へのプリカーサ溶液のスプレー、対象物
表面へのプリカーサ溶液の塗布等例示できるが、対象物
表面にプリカーサ溶液を侵入および/または付着させら
れうればいかなる方法でも適用可能である。ボイド等に
プリカーサ溶液を十分に侵入させるためには減圧下での
浸漬処理が特に好ましい。好ましいプリカーサ濃度は、
0.2〜1.1mol/lで、特に好ましくは0.3〜
0.5mol/lである。
In the sol-gel method of the present invention, an object for forming a film is brought into contact with a metal precursor solution obtained by hydrolyzing a metal alkoxide, and the precursor solution penetrates and / or adheres to the surface of the object, especially voids, recesses and the like. After drying, heat treatment is performed to form a film made of a metal oxide on the object. Examples of a method of injecting and / or attaching the precursor solution to the target object include immersing the target object in the precursor solution, spraying the precursor solution on the target object surface, and applying the precursor solution to the target object surface. Any method is applicable as long as the precursor solution can penetrate and / or adhere to the object surface. In order to allow the precursor solution to sufficiently penetrate into voids and the like, immersion treatment under reduced pressure is particularly preferable. A preferred precursor concentration is
0.2 to 1.1 mol / l, particularly preferably 0.3 to 1.1 mol / l
0.5 mol / l.

【0011】金属ハフニウムのアルコキシドとして、テ
トラエトキシハフニウム{Hf(OC254 }、テ
トラブトキシハフニウム{Hf(OC494 }等を
例示でき、金属アルミニウムのアルコキシドとして、ア
ルミニウムトリイソプロポキシド、アルミニウムブトキ
シド等を例示することができる。
Examples of alkoxides of metal hafnium include tetraethoxyhafnium {Hf (OC 2 H 5 ) 4 } and tetrabutoxy hafnium {Hf (OC 4 H 9 ) 4 }. Propoxide, aluminum butoxide and the like can be exemplified.

【0012】本発明は、耐酸化性改善のため被膜素材に
酸素透過性が低く、かつ高融点の貴金属を採用し、この
貴金属とC/Cとは熱膨張差が大きいために密着性が十
分でなく、剥離が生じやすいが、C/C上およびその内
部に形成させた炭化物と貴金属とを反応させ、C/C上
およびその内部に金属間化合物を形成させることにより
それらの密着性を向上させた。
The present invention employs a noble metal having a low oxygen permeability and a high melting point as a coating material in order to improve the oxidation resistance. The noble metal and C / C have a large difference in thermal expansion, so that the adhesion is sufficient. However, it is easy to cause peeling, but the carbide formed on and in C / C reacts with the noble metal to form an intermetallic compound on and in C / C to improve their adhesion. I let it.

【0013】炭化物を生成するための酸化物被膜の成膜
は、ゾルゲル法によるのが好ましく、ゾルゲル法による
と酸化物形成のための金属プレカーサー溶液を、C/C
中の凹部、空隙等に浸透させられうるのでC/Cと被膜
との接触表面積が高められる。酸化物被膜をコンバーシ
ョン法により炭化物に変換すると、他の方法を用いるよ
りも密着性が高められる。この酸化物としては酸化ハフ
ニウム(HfO2 )が好ましい。好ましい炭化物の膜厚
は2〜5ミクロンである。
The oxide film for forming carbides is preferably formed by a sol-gel method. According to the sol-gel method, a metal precursor solution for forming an oxide is formed by a C / C method.
Since it can be penetrated into recesses, voids and the like in the inside, the contact surface area between C / C and the coating is increased. When the oxide film is converted into a carbide by a conversion method, the adhesion is improved as compared with the case where another method is used. The oxide is preferably hafnium oxide (HfO 2 ). The preferred carbide thickness is 2-5 microns.

【0014】得られた炭化物上に貴金属の被膜を、例え
ば貴金属の粉末とバインダー等で貴金属スラリーを調製
し、これを塗布、乾燥して成膜する。好ましい膜厚は5
〜10ミクロンである。次に好ましくは約1700℃で
不活性ガス中または真空中で熱処理して、炭化物と貴金
属とを反応させて金属間化合物を生成させる。貴金属と
してはイリジウム、ロジウム、プラチナ等があり、特に
イリジウム(Ir)が好ましい。イリジウムは、融点が
約2450℃と高く、しかも酸素透過性が小さく、その
上に炭化ハフニウムとの反応性に優れ、金属間化合物の
生成を促進する。この時点でC/Cの表面、凹部、空隙
等の炭化物は金属間化合物に変換され、C/C上には被
膜が十分な密着性をもって形成される。
A noble metal film is formed on the obtained carbide by preparing a noble metal slurry using, for example, a noble metal powder and a binder, and applying and drying the slurry. The preferred film thickness is 5
〜1010 microns. Next, heat treatment is preferably performed at about 1700 ° C. in an inert gas or in a vacuum to react the carbide with the noble metal to form an intermetallic compound. The noble metal includes iridium, rhodium, platinum and the like, and iridium (Ir) is particularly preferable. Iridium has a high melting point of about 2450 ° C., low oxygen permeability, excellent reactivity with hafnium carbide, and promotes formation of intermetallic compounds. At this point, carbides such as C / C surfaces, recesses, and voids are converted to intermetallic compounds, and a film is formed on C / C with sufficient adhesion.

【0015】さらに、耐酸化性を高めるためにこの化合
物上に貴金属の厚い膜を減圧プラズマ溶射法により形成
する。この貴金属は、金属間化合物の貴金属と同じもの
を用いるのが好ましい。好ましい膜厚は10〜50ミク
ロンである。溶射層の緻密化を図るために、通常約19
00℃にて不活性雰囲気中または真空中で熱処理され
る。
Further, a thick film of a noble metal is formed on the compound by a low pressure plasma spraying method in order to enhance the oxidation resistance. It is preferable to use the same noble metal as the noble metal of the intermetallic compound. The preferred film thickness is between 10 and 50 microns. In order to densify the sprayed layer, usually about 19
Heat treatment is performed at 00 ° C. in an inert atmosphere or in a vacuum.

【0016】実用時のイリジウムの酸化揮散を防止する
ために溶射膜上に第一の酸化物を成膜する。第一の酸化
物とは、例えば酸化ハフニウムの場合、その変態を防ぐ
ため、例えば酸化(III)イットリウム(Y23
を約15重量%添加したものである。好ましい第一の酸
化物の膜厚は10〜100ミクロンである。
A first oxide is formed on the sprayed film to prevent iridium from being oxidized and volatilized in practical use. The first oxide is, for example, hafnium oxide, for example, yttrium oxide (III) oxide (Y 2 O 3 ) in order to prevent its transformation.
Is added at about 15% by weight. The preferred thickness of the first oxide is 10 to 100 microns.

【0017】第一の酸化物の被膜上に第二の酸化物が成
膜される。この成膜は、C/Cと被膜との熱膨張差によ
るクラックからのC/Cの酸化を防止するためである。
好ましい第二の酸化物は、酸化ハフニウムおよびアルミ
ナ(酸化アルミニウム)で、ゾルゲル法で成膜されるの
が好ましい。第二の酸化物の好ましい膜厚は1〜5ミク
ロンである。
A second oxide is formed on the first oxide film. This film formation is to prevent oxidation of C / C from cracks due to a difference in thermal expansion between C / C and the coating.
The preferred second oxide is hafnium oxide and alumina (aluminum oxide), and is preferably formed by a sol-gel method. The preferred thickness of the second oxide is 1-5 microns.

【0018】[0018]

【実施例】【Example】

1)コンバージョン法炭化ハフニウム(HfC)の形成 一方向材および/または織物材C/CにHfO2 被膜を
形成させるために、ゾルゲル法にてC/Cにテトラメト
キシハフニウムの溶液等の金属プリカーサ溶液(0.4
mol/l)を真空含浸させ、120℃にて十分乾燥し
た。不活性ガス中または真空中1700℃にて3時間熱
処理し、C /C中の炭素とHfO2 とを反応させHf
Cを形成させた。
1) Formation of Conversion Method Hafnium Carbide (HfC) A metal precursor solution such as a solution of tetramethoxyhafnium in C / C by sol-gel method in order to form a HfO 2 coating on unidirectional material and / or woven material C / C. (0.4
mol / l) was impregnated in vacuo and dried sufficiently at 120 ° C. Heat treatment is performed at 1700 ° C. for 3 hours in an inert gas or in a vacuum to cause carbon in C 2 / C to react with HfO 2 to form HfO 2.
C was formed.

【0019】2)金属間化合物の成膜 イリジウムスラリー(イリジウムの粉末とバインダーと
有機溶媒の混合物)を炭化ハフニウム上に塗布した。1
20℃にて十分乾燥後、不活性ガス中または真空中17
00℃にて熱処理し、イリジウムと炭化ハフニウムとを
反応させ金属間化合物(Ir3 Hf)を形成させた。こ
のときイリジウムは炭化ハフニウムを伝わってC/C表
面のみならず内部まで拡散し、図1に模式化されている
ような範囲に金属間化合物が形成された。
2) Film formation of intermetallic compound An iridium slurry (a mixture of iridium powder, a binder and an organic solvent) was applied on hafnium carbide. 1
After sufficiently drying at 20 ° C, the mixture is dried in an inert gas or in a vacuum.
Heat treatment was performed at 00 ° C. to react iridium and hafnium carbide to form an intermetallic compound (Ir 3 Hf). At this time, iridium diffused not only into the C / C surface but also inside through the hafnium carbide, and an intermetallic compound was formed in the range schematically illustrated in FIG.

【0020】3)減圧プラズマ溶射法によるイリジウム
の成膜 金属間化合物上に減圧プラズマ溶射法によるイリジウム
を成膜した。成膜後、溶射層の緻密化を図るために不活
性ガス中または真空中1900℃にて熱処理した。
3) Film formation of iridium by low-pressure plasma spraying Iridium was formed on the intermetallic compound by low-pressure plasma spraying. After the film formation, heat treatment was performed at 1900 ° C. in an inert gas or in a vacuum in order to densify the sprayed layer.

【0021】4)第一の酸化物の成膜 イリジウム被膜上にプラズマ溶射法により第一の酸化物
である酸化ハフニウム85重量%および酸化イットリウ
ム(III)15重量%からなる酸化化合物を減圧プラ
ズマ溶射法により溶射し、安定化させた酸化ハフニウム
を成膜した。
4) Formation of First Oxide A low-pressure plasma spraying of an oxidizing compound consisting of 85% by weight of hafnium oxide and 15% by weight of yttrium (III) oxide as the first oxide on the iridium film by plasma spraying. A stabilized hafnium oxide film was formed by thermal spraying.

【0022】5)第二の酸化物被膜の形成 第一の酸化物の被膜上に、ゾルゲル法にてテトラメトキ
シハフニウム等の金属プリカーサ溶液(0.4mol/
l)を真空含浸し、120℃にて十分乾燥し、さらに3
00〜500℃で1〜3時間焼成した。
5) Formation of Second Oxide Film A solution of a metal precursor such as tetramethoxyhafnium (0.4 mol / mol) was formed on the first oxide film by a sol-gel method.
l) is vacuum impregnated, dried sufficiently at 120 ° C.,
It baked for 1-3 hours at 00-500 degreeC.

【0023】耐酸化性の評価 1800℃または1900℃で大気中酸化曝露を30分
間行った後、真空中で上記各温度で高温引張試験を行っ
た結果、実験温度1800℃では引張強度350MP
a、1900℃では約250MPaの強度が得られた。
これらの強度は、室温強度に対してそれぞれ約80%と
約56%であった。
Evaluation of Oxidation Resistance After performing oxidation exposure in the air at 1800 ° C. or 1900 ° C. for 30 minutes, a high-temperature tensile test was performed at each of the above temperatures in a vacuum.
a At 1900 ° C., a strength of about 250 MPa was obtained.
These strengths were about 80% and about 56%, respectively, with respect to room temperature strength.

【0024】[0024]

【発明の効果】本発明の方法により得られる多層被膜お
よびこの多層被膜を有する材料は、特に金属間化合物と
してのイリジウムとC/Cとが密着性にに優れ、このた
め、それらの界面における剥離が、極めて起こりにく
く、高熱環境下でイリジウムの酸化も抑制されているの
で、1700℃以上の高温環境下で優れた耐酸化性を有
するものである。
According to the multilayer coating obtained by the method of the present invention and the material having the multilayer coating, iridium as an intermetallic compound and C / C are particularly excellent in adhesion, and therefore, peeling at the interface between them. However, it is extremely unlikely to occur, and oxidation of iridium is suppressed in a high-temperature environment, and therefore, it has excellent oxidation resistance in a high-temperature environment of 1700 ° C. or more.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の耐酸化多層被膜の模式図である。FIG. 1 is a schematic view of an oxidation-resistant multilayer coating of the present invention.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】炭素繊維強化炭素複合材料の耐酸化多層被
膜形成方法において、該炭素繊維強化炭素複合材料の表
面に、炭化物を生成させ、該炭化物上に貴金属の被膜を
成膜し、熱処理により該炭化物と該貴金属とを反応させ
て金属間化合物の被膜を生成させ、この上に該貴金属被
膜を成膜し、この被膜上に第一の酸化物被膜を成膜し、
次いで第二の酸化物被膜を成膜することを特徴とする被
膜形成方法。
1. A method for forming an oxidation-resistant multilayer coating of a carbon fiber reinforced carbon composite material, comprising: forming a carbide on the surface of the carbon fiber reinforced carbon composite material; forming a film of a noble metal on the carbide; Reacting the carbide and the noble metal to form a coating of an intermetallic compound, forming the noble metal coating thereon, forming a first oxide coating on the coating,
Next, a second oxide film is formed.
【請求項2】前記炭化物の生成は、ゾルゲル法による酸
化ハフニウムの被膜を熱処理することにより行うことを
特徴とする請求項1記載の方法。
2. The method according to claim 1, wherein the carbide is formed by heat-treating a hafnium oxide film by a sol-gel method.
【請求項3】前記貴金属が、イリジウムであることを特
徴とする請求項1または2記載の方法。
3. The method according to claim 1, wherein the noble metal is iridium.
【請求項4】前記金属間化合物が、イリジウム−ハフニ
ウム系の金属間化合物であることを特徴とする請求項3
記載の方法。
4. The method according to claim 3, wherein the intermetallic compound is an iridium-hafnium-based intermetallic compound.
The described method.
【請求項5】前記第一の酸化物が、安定化させた酸化ハ
フニウムであることを特徴とする請求項1乃至4のいず
れかに記載の方法。
5. The method according to claim 1, wherein the first oxide is stabilized hafnium oxide.
【請求項6】前記第二の酸化物の成膜が、ゾルゲル法に
より行われた酸化ハフニウムまたは酸化アルミニウムで
あることを特徴とする請求項1乃至5のいずれかに記載
の方法。
6. The method according to claim 1, wherein said second oxide film is formed of hafnium oxide or aluminum oxide formed by a sol-gel method.
【請求項7】炭素繊維強化炭素複合材料に耐酸化多層被
膜を成膜した耐酸化複合材料において、該炭素繊維強化
炭素複合材料上に金属間化合物の被膜、金属間化合物の
被膜上に貴金属の被膜、貴金属の被膜上に第一の酸化物
の被膜および第一の酸化物の被膜上に第二の酸化物の被
膜を成膜したことを特徴とする耐酸化複合材料。
7. An oxidation-resistant composite material in which an oxidation-resistant multilayer film is formed on a carbon fiber-reinforced carbon composite material, wherein an intermetallic compound film is formed on the carbon fiber-reinforced carbon composite material and a noble metal film is formed on the intermetallic compound film. An oxidation-resistant composite material comprising a first oxide film formed on a film and a noble metal film, and a second oxide film formed on the first oxide film.
【請求項8】前記貴金属が、イリジウムであることを特
徴とする請求項7記載の材料。
8. The material according to claim 7, wherein said noble metal is iridium.
【請求項9】前記金属間化合物が、イリジウム−ハフニ
ウム系の金属間化合物であることを特徴とする請求項8
記載の材料。
9. The intermetallic compound according to claim 8, wherein the intermetallic compound is an iridium-hafnium-based intermetallic compound.
The described material.
【請求項10】前記第一の酸化物が、安定化された酸化
ハフニウムであることを特徴とする請求項7乃至9のい
ずれかに記載の材料。
10. The material according to claim 7, wherein the first oxide is stabilized hafnium oxide.
【請求項11】前記第二の酸化物が、酸化ハフニウムま
たは酸化アルミニウムであることを特徴とする請求項7
乃至10のいずれかに記載の材料。
11. The method according to claim 7, wherein said second oxide is hafnium oxide or aluminum oxide.
11. The material according to any one of items 1 to 10.
JP23386397A 1997-08-29 1997-08-29 COATING METHOD AND COATING MATERIAL FOR OXIDATION-RESISTANT MULTILAYER COATING OF CARBON FIBER REINFORCED CARBON COMPOSITE Expired - Fee Related JP3967797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23386397A JP3967797B2 (en) 1997-08-29 1997-08-29 COATING METHOD AND COATING MATERIAL FOR OXIDATION-RESISTANT MULTILAYER COATING OF CARBON FIBER REINFORCED CARBON COMPOSITE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23386397A JP3967797B2 (en) 1997-08-29 1997-08-29 COATING METHOD AND COATING MATERIAL FOR OXIDATION-RESISTANT MULTILAYER COATING OF CARBON FIBER REINFORCED CARBON COMPOSITE

Publications (2)

Publication Number Publication Date
JPH1170617A true JPH1170617A (en) 1999-03-16
JP3967797B2 JP3967797B2 (en) 2007-08-29

Family

ID=16961759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23386397A Expired - Fee Related JP3967797B2 (en) 1997-08-29 1997-08-29 COATING METHOD AND COATING MATERIAL FOR OXIDATION-RESISTANT MULTILAYER COATING OF CARBON FIBER REINFORCED CARBON COMPOSITE

Country Status (1)

Country Link
JP (1) JP3967797B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131728A1 (en) * 2017-12-28 2019-07-04 積水化学工業株式会社 Layered sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131728A1 (en) * 2017-12-28 2019-07-04 積水化学工業株式会社 Layered sheet

Also Published As

Publication number Publication date
JP3967797B2 (en) 2007-08-29

Similar Documents

Publication Publication Date Title
US6632762B1 (en) Oxidation resistant coating for carbon
US6686048B1 (en) Composite carbonaceous heat insulator
WO2018212139A1 (en) Silicon carbide ceramic
CN110284097B (en) Environmental barrier coating and coating method and application thereof
CN212451221U (en) System for connecting silicon carbide materials, multilayer composite film structure and connecting structure
JPH0543364A (en) Oxidation-resistant corbon fiber-reinforced carbon composite material and its production
JPH1170617A (en) Coating method for oxidation-resistant multilayered coating film of carbon fiber reinforced carbon composite material, and coated material
US6121169A (en) Porous interfacial coating for fiber reinforced ceramic matrix composites
CN110894164B (en) Rare earth silicate laminar-distributed silicon carbide ceramic matrix composite and preparation method thereof
JP2651386B2 (en) Thermal protection structure for space equipment
JP2867536B2 (en) Corrosion and oxidation resistant materials
JP2976368B2 (en) Heat and oxidation resistant carbon fiber reinforced carbon composite material
JPH04187583A (en) Oxidation-resistant carbon fiber reinforced carbon composite material and production thereof
JPH11314985A (en) Heat resistant/oxidation resistant carbon fiber reinforced carbon material
JP3042821B2 (en) Heat-resistant and oxidation-resistant carbon material and method for producing the same
JP2976369B2 (en) Oxidation resistant carbon fiber reinforced carbon composite material
JP2827388B2 (en) Corrosion-resistant and oxidation-resistant material and method for producing the same
JP2685151B2 (en) Coating structural material
JP3224601B2 (en) Oxidation resistant carbon-based materials
JPH05124884A (en) Carbon fiber/carbon composite material
CN112174698B (en) Carbon material surface antioxidant protective coating and preparation method thereof
JPH03253497A (en) Manufacture of thermal protecting member for space shuttle
JP2007106644A (en) Ceramic member and its manufacturing method
JPH08253876A (en) High adhesion oxidation resistant coating film for c/c composite material and its formation
JP3198157B2 (en) Method for producing oxidation resistant C / C composite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20070524

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070601

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20120608

LAPS Cancellation because of no payment of annual fees