JPH1169768A - Magnet prime mover - Google Patents
Magnet prime moverInfo
- Publication number
- JPH1169768A JPH1169768A JP21611497A JP21611497A JPH1169768A JP H1169768 A JPH1169768 A JP H1169768A JP 21611497 A JP21611497 A JP 21611497A JP 21611497 A JP21611497 A JP 21611497A JP H1169768 A JPH1169768 A JP H1169768A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- rotating
- rotating shaft
- rotating body
- magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
- Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は磁石と磁束の擬固
定体、磁極片等により構成された回転体及び同期歯車等
を利用して磁気エネルギーを機械回転エネルギーへ変換
する磁石原動機に係る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnet prime mover for converting magnetic energy into mechanical rotational energy by utilizing a rotating body constituted by a magnet and a magnetic flux pseudo-fixed body, a magnetic pole piece, a synchronous gear, and the like.
【0002】[0002]
【従来の技術】磁石の磁気エネルギーを機械回転エネル
ギーとして取り出す2軸式の同期歯車を使った装置に
(特開昭62−196062号)公開等があるが回転体
の磁石または磁極の配置方向において複数の磁石要素の
一方の磁極を回転体の径方向外側を向きとなっている。
また磁気エネルギーを機械回転エネルギーへ効率的に変
換するための擬固定体は配置されていない。また複数の
磁石要素は永久磁石であるために大型装置での製作と制
御性に困難を伴っていた。2. Description of the Related Art An apparatus using a two-axis synchronous gear for extracting magnetic energy of a magnet as mechanical rotational energy is disclosed in Japanese Patent Application Laid-Open No. Sho 62-196062. One magnetic pole of the plurality of magnet elements is oriented radially outward of the rotating body.
In addition, no pseudo-fixed body for efficiently converting magnetic energy into mechanical rotational energy is provided. In addition, since a plurality of magnet elements are permanent magnets, it is difficult to manufacture and control a large-sized device.
【0003】[0003]
【発明が解決しようとする課題】永久磁石または直流励
磁された電磁石間の吸引または反発を利用した回転装置
は1周での回転ベクトル和はゼロとなり連続回転しない
ものと一般的に認識されている。また磁石の磁場には電
子スピンによる一定方向の連続的な運動エネルギーがあ
るがその運動エネルギーを機械回転エネルギーに変換す
ることは困難とされている。It is generally recognized that a rotating device utilizing attraction or repulsion between a permanent magnet or a DC-excited electromagnet does not rotate continuously because the sum of the rotation vectors in one round becomes zero. . The magnetic field of the magnet has continuous kinetic energy in a certain direction due to electron spin, but it is considered difficult to convert the kinetic energy into mechanical rotational energy.
【0004】磁気エネルギーを機械回転エネルギーへ変
換する装置の回転体の磁極部は、通常の同期電動機また
は同期発電機等の回転子の磁極部と比較すると、外部磁
極からの磁束との相互作用において方向及び強さが大き
く変化し、その変化への対応が要求される。このため渦
電流損失及びヒステリシス損失の増加が起こりやすくそ
の結果出力低下を招き装置または磁石の重量の割に出力
が低く実用性が低かった。この問題を解決するために磁
気エネルギーを機械回転エネルギーへ変換する機構に沿
った形態及び磁気回路を持った電磁回転機械の開発が求
められている。[0004] The magnetic pole portion of a rotating body of a device that converts magnetic energy into mechanical rotational energy has an interaction with a magnetic flux from an external magnetic pole as compared with a magnetic pole portion of a rotor such as an ordinary synchronous motor or a synchronous generator. The direction and strength change significantly, and it is necessary to respond to the change. For this reason, the eddy current loss and the hysteresis loss are likely to increase, and as a result, the output is reduced, and the output is low for the weight of the device or the magnet, and the practicability is low. In order to solve this problem, it is required to develop an electromagnetic rotating machine having a form and a magnetic circuit along a mechanism for converting magnetic energy into mechanical rotational energy.
【0005】この発明は従来の2軸式の回転装置とは異
なる磁石配置方法及び銅、アルミニウム等の金属による
擬固定体を採用した新しい回転体を用い、効率的に磁気
エネルギーを回転エネルギーへ変換できる磁石原動機の
構造及び実施例を提供することである。The present invention efficiently converts magnetic energy into rotational energy by using a magnet rotating method different from the conventional two-axis type rotating device and a new rotating body employing a pseudo-fixed body made of a metal such as copper or aluminum. It is an object of the present invention to provide a structure and an embodiment of a magnet motor that can be used.
【0006】[0006]
【課題を解決するための手段】内部損失が小さく高効率
な回転体及び合理的な構造をもつ磁石原動機とするため
には次ぎの事項を満足する必要がある。 (イ)磁極方向は回転軸と平行な配置であり、磁石及び
磁極片には基本的に円柱状を使用が容易な構造にする。 (ロ)磁極周辺部の電磁損失を減らすために磁石、磁極
片、磁束の擬固定体の表面は磁束が流動しやすいなめら
かな曲線に仕上げることが可能な構造にする。 (ハ)各回転体の磁石または磁極の数を1個または2
個、3個等の少数配置で効率的となる構造にする。 (ニ)磁石には電磁石も使用可能かつ使用しやすい構造
とすることにより特に大型の磁石原動機の製作と制御性
の向上を図る。 これらの条件を満足する構造にすれば磁極部の電磁損失
が小さく、変換効率が高い回転体を備えた実用的かつ経
済的な磁石原動機とすることができる。In order to provide a highly efficient rotating body with a small internal loss and a magnet motor having a reasonable structure, the following items must be satisfied. (A) The magnetic pole direction is arranged parallel to the rotation axis, and the magnet and the pole piece are basically formed in a columnar shape so that they can be easily used. (B) In order to reduce the electromagnetic loss at the periphery of the magnetic pole, the surface of the magnet, the magnetic pole piece, and the pseudo-fixed body of the magnetic flux should have a structure capable of finishing a smooth curve through which the magnetic flux easily flows. (C) The number of magnets or magnetic poles of each rotating body is one or two.
A structure that is efficient with a small number of pieces, such as three pieces, is made. (D) By using a structure in which an electromagnet can be used and is easy to use, a particularly large-sized magnet motor can be manufactured and controllability can be improved. By adopting a structure that satisfies these conditions, it is possible to provide a practical and economical magnet prime mover equipped with a rotating body having a small electromagnetic loss at the magnetic pole portion and a high conversion efficiency.
【0007】この発明によれば、図1及び図3に示すよ
うに、軸受け1Aで支えられた第1回転軸2Aと、該回
転軸の偏心した位置に1つの永久磁石または電磁石3A
が磁極方向を回転軸と平行に配置され、該磁石から発散
し収束する磁束のうち両磁極面方向及び回転軸側を通る
磁束の通路に非磁性かつ電気良導体よりなる磁束変動を
抑制する働きを持つ擬固定体4Aが配置され、これらを
一体として第1回転軸に固定した第1回転体5Aと、他
方の軸受け6Aで支えられ前記第1回転軸と平行で所要
の軸間隔を設けた第2回転軸7Aと、該回転軸に第1回
転体と等しい回転体を磁極の方向と軸方向位置を第1回
転体に一致させ固定した第2回転体8Aと、それぞれの
回転軸に各回転体を互いに逆回転させるとともに回転の
際一方の回転体の磁極が他方の回転体の磁極に対して進
み側となる関係を作る目的の同期歯車9Aと、始動及び
停止させるための慣用の始動手段及び制動手段等を具備
してなる外磁型磁石原動機が提供される。According to the present invention, as shown in FIGS. 1 and 3, a first rotating shaft 2A supported by a bearing 1A and one permanent magnet or electromagnet 3A at an eccentric position of the rotating shaft.
The magnetic pole direction is arranged parallel to the rotation axis, and the magnetic flux diverging and converging from the magnet has a function of suppressing magnetic flux fluctuations composed of non-magnetic and electric good conductors in a magnetic flux path passing through both magnetic pole surface directions and the rotation axis side. A pseudo-fixed body 4A is disposed, and the first fixed body 4A is integrally fixed to the first rotating shaft. The first rotating body 5A is supported by the other bearing 6A, and the first fixed rotating body is parallel to the first rotating shaft and has a required shaft interval. A two-rotation shaft 7A, a second rotation body 8A in which a rotation body equal to the first rotation body is fixed to the first rotation body with the same rotation direction as the first rotation body, and each rotation shaft A synchronous gear 9A for the purpose of rotating the bodies in opposite directions and establishing a relationship in which the magnetic poles of one rotating body are on the leading side with respect to the magnetic poles of the other rotating body during rotation, and conventional starting means for starting and stopping And external magnet type comprising braking means, etc. The prime mover is provided.
【0008】またこの発明によれば、図2に示すよう
に、軸受け1Bで支えられた第1回転軸2Bと、該回転
軸に軸方向の磁極を持つ永久磁石または電磁石3Bが同
軸に配置され、該磁石の両磁極にそれぞれ磁束を通し回
転軸から偏心した位置に1つの軸方向空隙を作るための
軟質磁性材による継鉄10B及び磁極片11Bが配置さ
れ、該磁極片から発散し収束する磁束のうち軸方向空隙
部及び回転軸側を通る磁束の通路に非磁性かつ電気良導
体よりなる磁束変動を抑制する働きを持つ擬固定体4B
が配置され、これらを一体として第1回転軸に固定した
第1回転体5Bと、他方の軸受け6Bで支えられ前記第
1回転軸と平行で所要の軸間隔を設けた第2回転軸7B
と、該回転軸に第1回転体と等しい回転体を磁極の方向
と軸方向位置を第1回転体に一致させ固定した第2回転
体8Bと、それぞれの回転軸に各回転体を互いに逆回転
させるとともに回転の際一方の回転体の磁極が他方の回
転体の磁極に対して進み側となる関係を作る目的の同期
歯車9Bと、始動及び停止させるための慣用の始動手段
及び制動手段等を具備してなる内磁型磁石原動機が提供
される。Further, according to the present invention, as shown in FIG. 2, a first rotating shaft 2B supported by a bearing 1B and a permanent magnet or electromagnet 3B having an axial magnetic pole on the rotating shaft are coaxially arranged. A yoke 10B and a pole piece 11B made of a soft magnetic material for forming one axial gap are disposed at positions eccentric from the rotation axis by passing magnetic fluxes through both magnetic poles of the magnet, and diverge and converge from the pole piece. Pseudo-fixed body 4B having a function of suppressing magnetic flux fluctuations made of non-magnetic and good electric conductors in the magnetic flux passage passing through the axial gap and the rotating shaft side of the magnetic flux.
And a first rotating body 5B integrally fixed to the first rotating shaft, and a second rotating shaft 7B supported by the other bearing 6B and provided in parallel with the first rotating shaft at a required axial interval.
A second rotating body 8B in which a rotating body equal to the first rotating body is fixed to the rotating shaft so that the direction of the magnetic pole and the axial direction are aligned with the first rotating body, and each rotating body is reversed to each rotating shaft. A synchronous gear 9B for rotating and rotating the magnetic pole of one rotating body on the leading side with respect to the magnetic pole of the other rotating body; conventional starting means and braking means for starting and stopping; An internal magnet type magnetic motor comprising:
【0009】またこの発明によれば、軸受けで支えられ
た第1回転軸と、該回転軸の軸芯から同半径かつ周方向
等間隔の位置に複数の永久磁石または電磁石が磁極方向
を等しくかつ回転軸と平行に配置され、該複数の磁石か
ら発散し収束する磁束のうち各磁石の両磁極面方向及び
回転軸側を通る磁束の通路に非磁性かつ電気良導体より
なる磁束変動を抑制する働きを持つ擬固定体が配置さ
れ、これらを一体として第1回転軸に固定した第1回転
体と、他方の軸受けで支えられ前記第1回転軸と平行で
所要の軸間隔を設けた第2回転軸と、該回転軸に第1回
転体と等しい回転体を磁極の方向と軸方向位置を第1回
転体に一致させ固定した第2回転体と、それぞれの回転
軸に各回転体を互いに逆回転させるとともに回転の際一
方の回転体の磁極が他方の回転体の対応する磁極に対し
て進み側となる関係を作る目的の同期歯車と、始動及び
停止させるための慣用の始動手段及び制動手段等を具備
してなる多極外磁型磁石原動機が提供される。Further, according to the present invention, the first rotating shaft supported by the bearing and the plurality of permanent magnets or electromagnets at the same radius and at equal intervals in the circumferential direction from the axis of the rotating shaft have the same magnetic pole direction. The magnetic flux is arranged in parallel with the rotation axis, and of the magnetic flux diverging and converging from the plurality of magnets, a function of suppressing a magnetic flux variation made of a non-magnetic and electric good conductor in a magnetic flux path passing through both magnetic pole surface directions of each magnet and the rotation axis side. A first rotating body integrally fixed to the first rotating shaft, and a second rotating body supported by the other bearing and provided with a required shaft interval in parallel with the first rotating shaft. Shaft, a rotating body equal to the first rotating body on the rotating shaft, a second rotating body in which the direction of the magnetic pole and the axial position are matched with the first rotating body and fixed, and each rotating body on the respective rotating shaft is opposite to each other. When rotating, the magnetic pole of one rotating body A multi-pole external magnet type motor comprising: a synchronous gear for establishing a relation of being on the leading side with respect to a corresponding magnetic pole of one of the rotating bodies; and conventional starting means and braking means for starting and stopping. Is provided.
【0010】さらにこの発明によれば、軸受けで支えら
れた第1回転軸と、該回転軸に軸方向の磁極を持つ永久
磁石または電磁石が同軸に配置され、磁石の両磁極にそ
れぞれ磁束を通し回転軸から同半径かつ周方向等間隔の
位置に複数の軸方向空隙を作るための軟質磁性材による
継鉄及び複数の磁極片が配置され、該複数の磁極片から
発散し収束する磁束のうち各軸方向空隙部及び回転軸側
を通る磁束の通路に非磁性かつ電気良導体よりなる磁束
変動を抑制する働きを持つ擬固定体が配置され、これら
を一体として第1回転軸に固定した第1回転体と、他方
の軸受けで支えられ前記第1回転軸と平行で所要の軸間
隔を設けた第2回転軸と、該回転軸に第1回転体と等し
い回転体を磁極の方向と軸方向位置を第2回転体に一致
させ固定した第2回転体と、それぞれの回転軸に各回転
体を互いに逆回転させるとともに回転の際一方の回転体
の磁極が他方の回転体の対応する磁極に対して進み側と
なる関係を作る目的の同期歯車と、始動及び停止させる
ための慣用の始動手段及び制動手段等を具備してなる多
極内磁型磁石原動機が提供される。Further, according to the present invention, the first rotating shaft supported by the bearing and the permanent magnet or electromagnet having the magnetic poles in the axial direction on the rotating shaft are coaxially arranged, and the magnetic flux passes through both magnetic poles of the magnet. A yoke and a plurality of pole pieces made of a soft magnetic material for creating a plurality of axial gaps at the same radius and circumferentially equidistant positions from the rotation axis are arranged, and of the magnetic flux diverging and converging from the plurality of pole pieces. A pseudo-fixed body having a function of suppressing magnetic flux fluctuation made of a non-magnetic and good electric conductor is arranged in a passage of magnetic flux passing through each axial gap and the rotating shaft side, and a first fixed body integrally fixed to the first rotating shaft is provided. A rotating body, a second rotating shaft supported by the other bearing and parallel to the first rotating shaft and provided with a required axial interval, and a rotating body that is the same as the first rotating body on the rotating shaft, in the direction of the magnetic pole and in the axial direction. The second position where the position matches the second rotating body and is fixed A synchronous gear for the purpose of rotating a rotating body and rotating each rotating body in a direction opposite to each other on the respective rotating shafts and creating a relationship in which the magnetic pole of one rotating body is on the leading side with respect to the corresponding magnetic pole of the other rotating body during rotation. And a multi-pole internal-magnet type prime mover provided with conventional starting means and braking means for starting and stopping.
【0011】[0011]
【発明の実施の形態】本発明の磁石原動機の回転体は大
きく分けて、図4に示すように回転軸に複数の磁石3が
同半径で周方向等間隔の位置に磁極方向が等しくかつ回
転軸と平行になるように配置され、磁石の両磁極面方向
と回転軸側方向を通る磁束の通路に磁束変動を抑制する
非磁性かつ電気良導体による擬固定体4を配置した外磁
型磁気回路の回転体と、図5に示すように磁石を回転軸
に同軸に配置して外磁型磁気回路の回転体の磁石部分を
軸方向空隙に置き換え同様に磁束変動を抑制する擬固定
体を配置した構造の内磁型磁気回路の回転体の2つがあ
る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A rotating body of a magnet motor according to the present invention is broadly divided into a plurality of magnets 3 having the same radius and the same magnetic pole direction at circumferentially equally spaced positions on a rotating shaft as shown in FIG. An outer-magnet-type magnetic circuit in which a pseudo-fixed body 4 made of a non-magnetic and good electric conductor for suppressing magnetic flux fluctuation is arranged in a magnetic flux path passing through both magnetic pole surface directions of the magnet and the direction of the rotating shaft side so as to be parallel to the axis. And a quasi-fixed body that suppresses magnetic flux fluctuations by disposing a magnet coaxially with the rotation axis and replacing the magnet part of the rotator of the external magnetic circuit with an axial gap as shown in FIG. There are two rotating bodies of the inner magnet type magnetic circuit having the above-mentioned structure.
【0012】擬固定体とは非磁性かつ電気良導体である
金属(たとえば銅、アルミニウム等)で作られたもの
で、回転体の磁極に外部の別の磁極を作用させたとき回
転体の磁極からの磁力線のうち部分的に磁束の変動を抑
制する目的のために、その部位からの磁束をあらかじめ
金属に通過させておくことにより、金属を通過している
磁石部位からの磁束の急激な変動を抑制する働きをおこ
なうものであり、レンツの法則の下に働く。一般的な名
称が見当らないため磁束の変動を抑制するもの、という
意味において擬固定体と呼称した。The pseudo-fixed body is made of a non-magnetic metal having good electric conductivity (eg, copper, aluminum, etc.). When another external magnetic pole acts on the magnetic pole of the rotating body, the pseudo-fixed body is separated from the magnetic pole of the rotating body. For the purpose of partially suppressing the fluctuation of magnetic flux among the lines of magnetic force, the magnetic flux from that part is passed through the metal in advance, so that the sudden fluctuation of the magnetic flux from the magnet part passing through the metal can be suppressed. It acts to control and works under Lenz's law. Since no general name was found, it was called a pseudo-fixed body in the sense of suppressing fluctuations in magnetic flux.
【0013】外磁型の回転体の各磁石からの磁束は磁極
のNからSに向けて発散、収束しており、回転軸側から
見て外側向きに発散し収束している磁束は回転体の外側
の空間を通り、一方、両磁極面方向及び回転軸側を向い
ている磁束は動的な変動を防ぐ擬固定内を通っている。The magnetic flux from each magnet of the external magnet type rotating body diverges and converges from the magnetic poles N to S, and the magnetic flux diverging outward and converging outward from the rotating shaft side is the rotating body. , While the magnetic flux directed toward both pole faces and the rotation axis passes through a pseudo-fixation which prevents dynamic fluctuations.
【0014】内磁型の回転体の各空隙部の磁極片から発
散し収束する磁束も回転軸から見て外側向きに発散し収
束している磁束は回転体の外側の空間を通り、両磁極面
方向及び回転軸側を向いている磁束は動的な変動を防ぐ
擬固定体を通っているのは外磁型と同様である。The magnetic flux that diverges and converges from the pole pieces in the respective gaps of the inner magnet type rotating body also diverges outward as viewed from the rotation axis, and the converging magnetic flux passes through the space outside the rotator, As in the case of the external magnet type, the magnetic flux directed to the surface direction and the rotation axis side passes through a pseudo-fixed body that prevents dynamic fluctuation.
【0015】図6に示すように両回転体は回転に伴い周
期的に互いに相手側の磁極と距離が変化し相互作用をお
こない磁極周囲の磁界または磁力線分布は密と疎を繰り
返す。擬固定体がない場合は図7(a)に示すように互
いの磁極が接近時の磁極周囲の磁力線分布は磁極の左右
側で対称になりやすいが、擬固定体を配置し磁極面方向
及び回転軸側を向いている磁力線の動的な変動を抑制す
ることにより周期的には図7(b)に示すような非対称
状態が可能となり、各回転体の磁極から外側を向いてい
る磁力線間での相互作用がおこなわれ、その結果回転方
向をもつ磁気エネルギーが機械的回転エネルギーへ効率
的に変換される。また互いの磁極が相手の磁極と作用を
与え合う方向は、それぞれの回転体における各磁極間で
結ばれている磁力線方向に対して横方向かつ一方向であ
り、しかも脈動的である。このため動作時の擬固定体内
の磁束分布は磁極が接近時の横方向からのピーク成分は
離反時の定常磁束帯により平均化されて傾斜方向をもつ
形となる。As shown in FIG. 6, the distance between the two rotating bodies changes periodically with the magnetic poles on the other side as they rotate, and the two rotating bodies interact with each other, and the magnetic field or the magnetic field lines around the magnetic poles repeats dense and sparse. When there is no pseudo-fixed body, as shown in FIG. 7 (a), the distribution of lines of magnetic force around the magnetic pole when the magnetic poles approach each other tends to be symmetrical on the left and right sides of the magnetic pole. By suppressing the dynamic fluctuation of the magnetic field lines facing the rotation axis side, an asymmetric state as shown in FIG. 7B can be periodically realized, and the magnetic field lines facing outward from the magnetic poles of each rotating body can be interposed. At which the magnetic energy having a rotational direction is efficiently converted into mechanical rotational energy. Further, the direction in which the magnetic poles exert an action with the other magnetic pole is transverse and unidirectional to the direction of the lines of magnetic force connected between the magnetic poles of the respective rotating bodies, and is pulsating. For this reason, the magnetic flux distribution in the pseudo-fixed body during operation is such that the peak component from the lateral direction when the magnetic pole approaches is averaged by the steady magnetic flux band when the magnetic pole separates, and has a form of inclination.
【0016】このような構造をもつ回転体が回転時に磁
極部へ外部から相対的に角速度が異なる別の磁極または
磁力線を周期的または間欠的に作用させ、吸引または反
発を一方向から与えて回転体の回転を加速あるいは減速
させるとき、磁気エネルギーの機械的回転エネルギーへ
の変換または、逆に機械的回転エネルギーの磁気エネル
ギーへの変換がおこなわれる。同期歯車を介して2つの
回転体を逆回転させ互いに相手側の対応する磁極と反発
するように対向させ、互いの磁極間が回転方向に対して
進み及び遅れとなる関係で回転させると、周期的に進み
側の磁極は遅れ側の磁極から加速させられ遅れ側の磁極
は進み側の磁極により減速させられるトルクを受け非駆
動側回転体と駆動側回転体の関係となるとともに、互い
の対応する磁極間が接近しつつある時と離反しつつある
時には互いの対応する相手の磁極との間には相対的に角
速度の差が発生する。When the rotating body having such a structure is rotated, another magnetic pole or a line of magnetic force having a relatively different angular velocity is applied to the magnetic pole portion from the outside periodically or intermittently to apply suction or repulsion from one direction to rotate. When the rotation of the body is accelerated or decelerated, the conversion of magnetic energy into mechanical rotation energy or, conversely, the conversion of mechanical rotation energy into magnetic energy is performed. When two rotating bodies are rotated in reverse by a synchronous gear and opposed to each other so as to repel corresponding magnetic poles on the other side, and the two magnetic poles are rotated in a relationship of leading and lagging in the rotational direction, the cycle becomes The magnetic pole on the leading side is accelerated from the magnetic pole on the lag side, and the magnetic pole on the lag side receives a torque decelerated by the magnetic pole on the leading side, and the relationship between the non-driving side rotating body and the driving side rotating body is established. When the adjacent magnetic poles are approaching and moving away from each other, there is a relative difference in angular velocity between the corresponding magnetic poles.
【0017】このとき磁石の磁極方向と、左右の回転体
のいずれを進み側とするかで決まる組み合わせ方によ
り、加速される側である被駆動側の回転体のトルクと減
速される側である駆動側の反トルクを合成した回転ベク
トル和はゼロとはならず、加速される側である被駆動側
の回転体のトルクが大きく、減速される側である駆動側
の反トルクが小さいプラス側になったり、または逆の組
み合わせでは反対のマイナス側になったりする。図6、
8、9のような合成の回転ベクトル和がプラス側になる
組み合わせ方を選べば、磁気エネルギーが回転平均トル
クと周速の積で表される機械回転エネルギーへ変換され
る。即ち各回転体の対応する両磁極において接近しつつ
あるとき及び離反しつつあるときに、対応する磁極間の
回転方向での作用と反作用において回転方向のモーメン
トが残るようなプラス側の組み合わせ方を磁石原動機に
おいては利用するとよい。また図6で回転方向を逆にし
た場合には進み側及び遅れ側の関係が逆になるが左右の
関係も入れ替わるために組み合わせ方の変化はない。At this time, the torque of the driven rotating body, which is the accelerating side, and the decelerating side are determined by the combination determined by the direction of the magnetic pole of the magnet and which of the left and right rotating bodies is the leading side. The sum of the rotation vectors obtained by combining the drive side reaction torques does not become zero, and the torque of the driven rotating body that is accelerated is large, and the reaction side torque that is decelerated is small. Or the opposite combination would be the opposite minus side. FIG.
If a combination is selected such that the sum of the combined rotational vectors is positive, such as 8, 9, the magnetic energy is converted into mechanical rotational energy expressed by the product of the rotational average torque and the peripheral speed. That is, when approaching and moving away from the corresponding two magnetic poles of each rotating body, the combination of the positive side such that the moment in the rotating direction remains in the action and reaction between the corresponding magnetic poles in the rotational direction. It is good to use in a magnet motor. When the rotation direction is reversed in FIG. 6, the relationship between the leading side and the lagging side is reversed, but since the relationship between the left and right is switched, there is no change in the combination.
【0018】またマイナス側になる組み合わせ方を選べ
ば逆に回転エネルギーが磁気エネルギーへ変換されるた
めに制動装置となり、回転を続行させようとすれば機械
回転エネルギーの投入が必要となる。図6及び極数が2
極または3極の回転体及び磁極方向との組み合わせの図
8、9はすべて紙面の手前側をS極、奥側をN極で表し
ている。If the combination on the minus side is selected, the rotational energy is converted into magnetic energy, so that it becomes a braking device. To continue the rotation, it is necessary to input the mechanical rotational energy. Fig. 6 and 2 poles
In FIGS. 8 and 9 showing the combination of the rotating body with three poles or three poles and the magnetic pole direction, the front side of the drawing is represented by the S pole, and the rear side is represented by the N pole.
【0019】2本の回転軸には非磁性であるステンレス
材等を用いるのが好ましく、小型の磁石原動機では磁石
に円柱状ネオジウム・鉄・ボロン磁石または円柱状フェ
ライト磁石を用いた外磁型磁石原動機または中空円柱状
のネオジウム・鉄・ボロン磁石を用いた内磁型磁石原動
機が適している。回転体の磁石は一方を永久磁石とし他
方を直流励磁の電磁石にすれば制御性が良くなる。大型
の磁石原動機の磁石には各回転体共に直流励磁の電磁石
を用いるのがよい。磁極数を1個とするときは回転バラ
ンスを取る作用も兼ねる擬固定体の形状に注意する必要
があるが、2個あるいはそれ以上のときは回転軸を中心
に対称に作るとよい。It is preferable to use a non-magnetic stainless steel or the like for the two rotating shafts. In the case of a small magnet motor, an external magnet type magnet using a cylindrical neodymium / iron / boron magnet or a cylindrical ferrite magnet for the magnet. A prime mover or an inner magnet type prime mover using a hollow cylindrical neodymium / iron / boron magnet is suitable. The controllability is improved if one of the rotating magnets is a permanent magnet and the other is a DC-excited electromagnet. It is preferable to use a DC-excited electromagnet for each rotating body as the magnet of the large magnet motor. When the number of magnetic poles is one, it is necessary to pay attention to the shape of the pseudo-fixed body, which also has the function of balancing the rotation, but when the number is two or more, it is preferable to form the pseudo-fixed body symmetrically about the rotation axis.
【0020】極数の増加に応じ進み及び遅れの角度の差
を小さくする必要があるため磁極数が多すぎると効率が
低下する。磁石は直径と厚みの寸法比が大切で細いまた
は薄い形状はよくなく最適バランスで利用率が良くなり
出力も大きくなる。形状は円柱状、中空円柱状に制限さ
れるものではなく多角柱状等でもよい。あるいは変形例
として図10及び図11で示すような回転軸と同軸方向
に磁極方向を持ち外周方向に複数の凸部を設けた1つの
磁石3を使い、両磁極面に磁極片11を配置し、さらに
擬固定体4を配置した外磁型と内磁型の磁気回路の特徴
をあわせもった構造の回転体としてもよい。また外磁型
磁石原動機の磁石の両磁極にはその磁石と同じ断面の軟
質磁性材による磁極片11、11Aをそれぞれ配置して
も好ましい。If the number of magnetic poles is too large, the efficiency is reduced because it is necessary to reduce the difference between the leading and lag angles as the number of poles increases. As for the magnet, the dimensional ratio of the diameter to the thickness is important, and a thin or thin shape is not good. The shape is not limited to a cylindrical shape or a hollow cylindrical shape, but may be a polygonal column shape or the like. Alternatively, as a modified example, one magnet 3 having a magnetic pole direction coaxial with the rotation axis and having a plurality of convex portions in the outer circumferential direction as shown in FIGS. 10 and 11 is used, and the magnetic pole pieces 11 are arranged on both magnetic pole surfaces. Further, a rotating body having a structure combining the characteristics of the outer-magnet type and the inner-magnet type magnetic circuit in which the pseudo-fixed body 4 is arranged may be used. Further, it is preferable that magnetic pole pieces 11 and 11A made of a soft magnetic material having the same cross section as the magnet are arranged on both magnetic poles of the magnet of the external magnet type motor.
【0021】擬固定体の別の作用として、磁束の短絡
板、短絡環として磁石内部の磁束の変動を防ぎ渦電流損
失、ヒステリシス損失を減らす働きもおこなう、電気抵
抗の小さい材質を用いれば損失が小さくなる。なお外磁
型磁石原動機で磁石が1つ配置の場合と内磁型磁石原動
機で軸方向空隙部が1つの場合、回転軸側を通る磁束は
回転軸を越えた領域にも及ぶために擬固定体も延長した
方が好ましく、また回転バランスを取る重りの役も兼ね
る。Another effect of the pseudo-fixed body is that if a material having a small electric resistance is used as a short-circuit plate or short-circuit ring for the magnetic flux, it also prevents the fluctuation of the magnetic flux inside the magnet and reduces the eddy current loss and the hysteresis loss. Become smaller. In addition, when one magnet is arranged in the outer magnet type magnet prime mover and when there is one axial gap in the inner magnet type magnet prime mover, the magnetic flux passing through the rotating shaft side extends to a region beyond the rotating shaft, so it is pseudo-fixed. It is preferable to extend the body, and it also serves as a weight to balance rotation.
【0022】擬固定体は銅、アルミニウム等の部材によ
る塊状が好ましいが、軸方向に幅をもつ銅板等で、各磁
石、各磁極片、各軸方向空隙部の周囲を取り囲むだけで
も磁束の擬固定体としての効果があり、また、その各回
転体の磁極周囲を取り囲む板のうち互いに他方の回転体
の対応する磁極に近い側面にそれぞれ銅板等を配置する
のみでも効果はある。また回転エネルギーへの変換に重
要な役割である各磁石または磁極から外側を向いている
磁力線の動きを悪くしないために磁力線が外側を向いて
いる磁石及び磁極片の部分の銅板等(短絡板として作
用)は厚くなりすぎないようにする。擬固定体の形状に
ついては使用する磁石の形状、内部抵抗、残留磁束密
度、擬固定体の電気抵抗、装置の大きさ、重量等を考慮
し損失が少なく効率が良く経済的な形状を決定する。The pseudo-fixed body is preferably a lump made of a member such as copper or aluminum. However, the pseudo-fixed body is made of a copper plate or the like having a width in the axial direction, and the magnetic flux is simulated simply by surrounding each magnet, each magnetic pole piece, and each axial gap. There is an effect as a fixed body, and there is also an effect only by arranging a copper plate or the like on the side surface near the corresponding magnetic pole of the other rotating body among the plates surrounding the magnetic pole of each rotating body. Also, in order not to impair the movement of the magnetic field lines facing outward from each magnet or magnetic pole, which is an important role in the conversion to rotational energy, the magnet whose magnetic field lines face outward and the copper plate etc. of the pole piece (such as a short-circuit plate) Action) should not be too thick. For the shape of the pseudo-fixed body, consider the shape of the magnet to be used, the internal resistance, the residual magnetic flux density, the electric resistance of the pseudo-fixed body, the size and weight of the device, etc. .
【0023】外磁型磁石原動機の擬固定体の軸方向の幅
は磁石の磁極方向の長さより大きくする必要があり効率
をよくするためには磁石の長さの2倍以上にするのが望
ましい。内磁型磁石原動機の場合の空隙は磁石の磁極間
の長さの半分程度となるように軟質磁性材による継鉄と
磁極片の形状を決定し、擬固定体の幅は空隙部と両磁極
片と両継鉄を含めた長さと同じ幅位とし、板状のもので
継鉄及び磁極片及び空隙部を同時に取り巻くようにし、
各軸方向空隙部及び板状のもので取り巻いた内側の空間
部にも擬抵抗体と同材質を流し込んだ構造とすると好ま
しい。The width in the axial direction of the pseudo-fixed body of the external magnet type magnetic motor must be larger than the length in the magnetic pole direction of the magnet, and is preferably at least twice the length of the magnet in order to improve the efficiency. . In the case of an internal magnet type magnet motor, the shape of the yoke and the pole piece made of soft magnetic material is determined so that the gap is about half the length between the magnetic poles of the magnet, and the width of the pseudo fixed body is determined by the gap and both poles. The width is the same as the length including the piece and both yoke, and the plate yoke surrounds the yoke, pole piece and gap at the same time,
It is preferable to adopt a structure in which the same material as that of the pseudo-resistor is poured into each of the axial gaps and the inner space surrounded by the plate-like material.
【0024】2枚の同期歯車はそれぞれの回転体の磁極
数が同じならば同じ歯数の平歯車等を用いる。大きさは
回転体の磁石または磁極片から回転軸までをおよその半
径とするものを用いるが好ましく、大きいと各回転体間
は広がり、小さめでは互いに相手の磁極の内側に入り込
み過ぎて磁束の有効な相互作用は低下する。材質は磁界
の影響が無視できれば鉄でもよいがステンレス、真鍮、
ナイロン等でもよい。回転時にトルクが進み側である被
駆動側から遅れ側である駆動側へ脈動として伝達するた
めに両回転体の慣性を大きめにすると歯車の寿命は長く
なる。出力は進み側である非駆動側の軸から取り出すの
がよい。各回転体の進み側と遅れ側の各磁極間の空隙は
最接近時にも接触しない程度で狭くする方が好ましい。As the two synchronous gears, spur gears having the same number of teeth are used if the number of magnetic poles of each rotating body is the same. It is preferable to use a magnet whose radius is approximately the radius from the magnet or pole piece of the rotating body to the rotation axis.If the size is large, the space between the rotating bodies spreads. Interaction decreases. The material may be iron as long as the effect of the magnetic field can be ignored, but stainless steel, brass,
Nylon or the like may be used. If the inertia of both rotating bodies is made large in order to transmit the torque as a pulsation from the driven side, which is the leading side, to the driving side, which is the lag side, the life of the gear is prolonged. The output is preferably taken from the non-drive side shaft, which is the leading side. It is preferable that the gap between the magnetic poles on the leading side and the lagging side of each rotating body is narrowed so as not to contact even at the time of closest approach.
【0025】第1回転軸と第2回転軸の駆動側と被駆動
側の回転体にさらに駆動側と被駆動側を入れ替えた別の
組の回転体を追加配置すること及び取り付け角度をずら
して配置すること並びに平行な3軸、4軸式として駆動
側または非駆動側の回転体を追加すると、伝達トルクや
脈動トルクが小さくなるとともに磁力線の指向性も改善
でき出力の増加及び歯車の摩耗減少等に効果がある。ま
た各回転体にそれぞれ同期発電機または同期電動機を接
続し発電機と電動機を電気的に接続し同期歯車を省略あ
るいは簡素化することも可能である。Another set of rotating bodies in which the driving side and the driven side are interchanged are additionally arranged on the driving side and the driven side rotating bodies of the first rotating shaft and the second rotating shaft, and the mounting angle is shifted. By adding a rotating body on the driving side or non-driving side as a parallel 3-axis or 4-axis type, transmission torque and pulsation torque can be reduced and the directivity of the magnetic field lines can be improved, so that output can be increased and gear wear can be reduced. Etc. are effective. It is also possible to connect a synchronous generator or a synchronous motor to each rotating body and electrically connect the generator and the motor to omit or simplify the synchronous gear.
【0026】始動装置は小さな磁石原動機では手回し方
式でもよいが大きい場合は始動用電動機等を用いるとよ
い。磁石原動機のトルク回転数特性は通常の電動機の特
性と異なり同期回転数に相当するものが存在しなく回転
数の上限を制限する要素が少ない。永久磁石を使用した
磁石原動機では回転数が上昇しても発生トルクは減少し
ないために発電機等の負荷及び制動の装置を必ず配置す
る必要がある。停止時のトルクの発生はないが、回転を
始めるとトルクが発生し始める。回転方向は始動時に回
転を与えた方向で決定される。The starting device may be of a manual type with a small magnet motor, but if it is large, a starting motor or the like may be used. Unlike the characteristics of an ordinary electric motor, the torque rotation speed characteristic of a magnet motor does not have a synchronous rotation speed, and there are few factors that limit the upper limit of the rotation speed. In the case of a magnet prime mover using a permanent magnet, since the generated torque does not decrease even when the rotation speed increases, it is necessary to arrange a load and braking device such as a generator. No torque is generated at the time of stop, but torque starts to be generated when rotation is started. The direction of rotation is determined by the direction in which rotation was given at the start.
【0027】発電所等に用いる大きな磁石原動機では、
製作と制御及び保守の容易さと経済性から磁石には永久
磁石を用いる方式よりも直流励磁の電磁石を用いる方が
有利である。特に電磁石式では回転軸部を中心にそれぞ
れ1個の配置で済む内磁型磁石原動機が好ましく、励磁
電流の強弱及び方向等を変化させることにより制御と制
動が簡単におこなえる。電磁石への給電はブラシとスリ
ップリングを用いるか回転体に発電コイルと整流器等を
組み込んでブラシレス型としてもよい。磁石の磁極方向
か左右各回転体の進みと遅れの関係のいずれかを逆にす
ると発熱の少ない制動装置として働き、回転エネルギー
は磁気エネルギーへ変換される。In a large magnet motor used in a power plant or the like,
It is more advantageous to use a DC-excited electromagnet than to use a permanent magnet as the magnet because of the ease of manufacture, control, maintenance, and economy. In particular, in the case of the electromagnet type, it is preferable to use an inner-magnet type motor that requires only one arrangement around the rotating shaft. Control and braking can be easily performed by changing the intensity and direction of the exciting current. The power supply to the electromagnet may be of a brushless type using a brush and a slip ring or by incorporating a power generating coil and a rectifier into a rotating body. Reversing either the direction of the magnetic pole of the magnet or the relationship between the advance and delay of the left and right rotating bodies acts as a braking device that generates less heat, and the rotational energy is converted to magnetic energy.
【0028】[0028]
【実施例1】外磁型磁石原動機の例を以下に示す。外磁
型磁石原動機はアクリルの支持部材に軸受けを配置し、
直径12mmの非磁性の回転軸がそれぞれ平行に配置さ
れる。各回転体は外形40mm、内径10mm×厚み2
0mmの円柱状フェライト磁石を回転軸から40mmの
位置に対称に2個用いて2極とした。磁束の擬固定体は
幅60mm厚み1mmの銅板を使い各磁石を取り巻くよ
うに配置する。磁石の回転軸への固定はステンレスの
板、ボルト、ナット、セットカラー等を使用する。同期
歯車は歯数65、モジュール1.25の鉄製を2個用い
た。各回転体の磁極間は最接近時に1mm位に調整す
る。手で回転軸をいずれかの方向に回せば回転を始める
が、起動せず回転が重い時は磁極方向に対して各回転体
の進み側と遅れ側の関係が逆である。[Embodiment 1] An example of an external magnet type magnet motor is shown below. The outer magnet type magnet motor arranges bearings on an acrylic support member,
Non-magnetic rotating shafts each having a diameter of 12 mm are arranged in parallel. Each rotating body has an outer diameter of 40 mm, an inner diameter of 10 mm and a thickness of 2
Two 0-mm cylindrical ferrite magnets were used symmetrically at a position 40 mm from the rotation axis to form two poles. The magnetic flux pseudo-fixed body is a copper plate having a width of 60 mm and a thickness of 1 mm, and is arranged so as to surround each magnet. For fixing the magnet to the rotating shaft, a stainless plate, bolt, nut, set collar, etc. are used. Two synchronous gears made of iron having 65 teeth and a module of 1.25 were used. The distance between the magnetic poles of each rotating body is adjusted to about 1 mm at the time of closest approach. If the rotation shaft is rotated in either direction by hand, the rotation starts. However, when the rotation is heavy without starting, the relationship between the leading side and the lagging side of each rotating body is opposite to the magnetic pole direction.
【0029】[0029]
【実施例2】内磁型磁石原動機の例を以下に示す。内磁
型磁石原動機は前記の外磁型磁石原動機と同様のアクリ
ル支持部材及び回転軸、歯車であり、各回転体には外形
48mm×内径15.4mm厚み45mmのネオジウム
・鉄・ボロン磁石を用い、継鉄及び磁極片は軟鉄材を使
い継鉄は厚み10mmをフライス盤で加工を行い、磁極
片は直径25mmの円柱状の1極とし、軸方向空隙は1
5mmとした。擬固定体は厚み15mmの銅材をフライ
ス盤により加工をおこない継鉄の磁極片の反対側を延長
した形でさらに全体の動的バランスが取れるようにし、
中央に磁石が通る丸穴を空けた形状のもの及び1mmの
銅板を囲い用とした。このタイプは各回転体の磁極間は
最接近時に10mm位に調整した。手で回転軸をいずれ
かの方向へ回し起動させれば回転を始める。実施例1、
2共に回転数が上昇しすぎないように負荷設備を配置す
る。[Embodiment 2] An example of an inner-magnet type magnet motor will be described below. The inner magnet type magnet motor is an acrylic support member, a rotating shaft and a gear similar to the outer magnet type magnet motor described above, and each rotating body uses a neodymium / iron / boron magnet having an outer diameter of 48 mm × an inner diameter of 15.4 mm and a thickness of 45 mm. The yoke and the pole piece are made of a soft iron material, and the yoke is machined to a thickness of 10 mm with a milling machine. The pole piece is a cylindrical pole having a diameter of 25 mm, and the axial gap is 1 mm.
5 mm. The pseudo-fixed body is made by processing a 15 mm thick copper material with a milling machine to extend the opposite side of the yoke pole piece so that the whole dynamic balance can be taken,
One having a round hole through which a magnet passes in the center and a 1 mm copper plate were used for surrounding. In this type, the distance between the magnetic poles of each rotating body was adjusted to about 10 mm at the time of closest approach. Rotate the rotating shaft in any direction by hand to start it. Example 1,
2 In both cases, load equipment is arranged so that the number of rotations does not increase too much.
【0030】[0030]
【発明の効果】同期歯車を使用するものであるが磁束の
擬固定体の採用及び磁極方向の回転軸と平行な配置によ
り回転体の表面をなめらかな曲線に仕上げることがで
き、さらに互いの磁極が相手の磁極の前後に入り込める
構造により磁極部の損失が小さく効率的な回転体を持つ
単純な構造の磁石原動機となる。According to the present invention, a synchronous gear is used, but the surface of the rotating body can be finished in a smooth curve by adopting a pseudo-fixed body of magnetic flux and disposing it in parallel with the rotation axis in the magnetic pole direction. The structure is such that the magnetic poles can enter the front and back of the magnetic pole of the other party, so that the loss of the magnetic pole portion is small and the magnet motor has a simple structure having an efficient rotating body.
【0031】[0031]
【図1】外磁型磁石原動機の側面図FIG. 1 is a side view of an external magnet type magnetic motor.
【図2】内磁型磁石原動機の側面図FIG. 2 is a side view of an inner magnet type magnetic motor.
【図3】外磁型磁石原動機の軸方向図FIG. 3 is an axial view of an external magnet type motor.
【図4】外磁型回転体及び磁力線分布を表す図FIG. 4 is a diagram showing an outer-magnet-type rotating body and a magnetic field line distribution.
【図5】内磁型回転体及び磁力線分布を表す図FIG. 5 is a diagram showing an inner-magnet-type rotating body and a magnetic field line distribution.
【図6】回転トルクが発生する磁極方向と進み及び遅れ
の組み合わせ図FIG. 6 is a diagram showing a combination of a magnetic pole direction in which a rotational torque is generated, and a lead and a lag.
【図7】擬固定体がない場合及び、ある場合の磁極接近
時の磁束分布図FIG. 7 is a diagram showing a magnetic flux distribution when a magnetic pole is approached when there is no pseudo-fixed body and when there is a pseudo fixed body
【図8】2極外磁型回転体の進み及び遅れの組み合わせ
図FIG. 8 is a combination diagram of lead and lag of a two-pole external-magnet type rotating body.
【図9】3極外磁型回転体の進み及び遅れの組み合わせ
図FIG. 9 is a combination diagram of advance and delay of a three-pole extra-magnetic rotating body.
【図10】単一磁石使用の4極回転体の縦断面図FIG. 10 is a longitudinal sectional view of a four-pole rotating body using a single magnet.
【図11】単一磁石使用の4極回転体の横断面図FIG. 11 is a cross-sectional view of a four-pole rotating body using a single magnet.
1A、1B・・・軸受け 2、2A、2B・・・第1回転軸 3、3A、3B・・・永久磁石または電磁石 4、4A、4B・・・擬固定体 5、5A、5B・・・第1回転体 6A、6B・・・他方の軸受け 7、7A、7B・・・第2回転軸 8、8A、8B・・・第2回転体 9A、9B・・・同期歯車 10、10A、10B・・・継鉄 11、11A、11B・・・磁極片 1A, 1B: Bearing 2, 2A, 2B: First rotating shaft 3, 3A, 3B: Permanent magnet or electromagnet 4, 4A, 4B: Pseudo-fixed body 5, 5A, 5B ... 1st rotating body 6A, 6B ... the other bearing 7, 7A, 7B ... 2nd rotating shaft 8, 8A, 8B ... 2nd rotating body 9A, 9B ... synchronous gear 10, 10A, 10B ... Yoke 11, 11A, 11B ... Magnetic pole piece
Claims (4)
(2A)と、該回転軸の偏心した位置に1つの永久磁石
または電磁石(3A)が磁極方向を回転軸と平行に配置
され、該磁石から発散し収束する磁束のうち両磁極面方
向及び回転軸側を通る磁束の通路に非磁性かつ電気良導
体よりなる磁束変動を抑制する働きを持つ擬固定体(4
A)が配置され、これらを一体として第1回転軸に固定
した第1回転体(5A)と、他方の軸受け(6A)で支
えられ前記第1回転軸と平行で所要の軸間隔を設けた第
2回転軸(7A)と、該回転軸に第1回転体と等しい回
転体を磁極の方向と軸方向位置を第1回転体に一致させ
固定した第2回転体(8A)と、それぞれの回転軸に各
回転体を互いに逆回転させるとともに回転の際一方の回
転体の磁極が他方の回転体の磁極に対して進み側となる
関係を作る目的の同期歯車(9A)と、始動及び停止さ
せるための慣用の始動手段及び制動手段等を具備してな
る外磁型磁石原動機。1. A first rotating shaft (2A) supported by a bearing (1A), and one permanent magnet or electromagnet (3A) is disposed at an eccentric position of the rotating shaft so that its magnetic pole direction is parallel to the rotating shaft. A pseudo-fixed body (4) having a function of suppressing magnetic flux fluctuations composed of non-magnetic and good conductors in a magnetic flux path passing through both magnetic pole surface directions and the rotating shaft side among magnetic fluxes diverging and converging from the magnet.
A) are arranged, these are integrally fixed to a first rotating shaft, and a first rotating body (5A) is supported by the other bearing (6A), and a required shaft interval is provided in parallel with the first rotating shaft. A second rotating shaft (7A), a second rotating body (8A) in which a rotating body equal to the first rotating body is fixed to the rotating shaft so that the direction of the magnetic pole and the axial position match the first rotating body, and A synchronous gear (9A) for rotating the rotating bodies in opposite directions to each other on the rotating shaft and for establishing a relationship in which the magnetic pole of one rotating body is on the leading side with respect to the magnetic pole of the other rotating body during rotation; An external-magnet-type prime mover comprising conventional starting means, braking means, and the like.
(2B)と、該回転軸に軸方向の磁極を持つ永久磁石ま
たは電磁石(3B)が同軸に配置され、該磁石の両磁極
にそれぞれ磁束を通し回転軸から偏心した位置に1つの
軸方向空隙を作るための軟質磁性材による継鉄(10
B)及び磁極片(11B)が配置され、該磁極片から発
散し収束する磁束のうち軸方向空隙部及び回転軸側を通
る磁束の通路に非磁性かつ電気良導体よりなる磁束変動
を抑制する働きを持つ擬固定体(4B)が配置され、こ
れらを一体として第1回転軸に固定した第1回転体(5
B)と、他方の軸受け(6B)で支えられ前記第1回転
軸と平行で所要の軸間隔を設けた第2回転軸(7B)
と、該回転軸に第1回転体と等しい回転体を磁極の方向
と軸方向位置を第1回転体に一致させ固定した第2回転
体(8B)と、それぞれの回転軸に各回転体を互いに逆
回転させるとともに回転の際一方の回転体の磁極が他方
の回転体の磁極に対して進み側となる関係を作る目的の
同期歯車(9B)と、始動及び停止させるための慣用の
始動手段及び制動手段等を具備してなる内磁型磁石原動
機。2. A first rotating shaft (2B) supported by a bearing (1B) and a permanent magnet or an electromagnet (3B) having an axial magnetic pole on the rotating shaft are coaxially arranged, and both magnetic poles of the magnet are arranged. And a yoke (10) made of a soft magnetic material for forming one axial gap at a position eccentric from the rotation axis by passing a magnetic flux through the yoke.
B) and a magnetic pole piece (11B) are arranged, and among magnetic fluxes diverging and converging from the magnetic pole piece, a function of suppressing a magnetic flux change made of a non-magnetic and electric good conductor in a magnetic flux passage passing through an axial gap and a rotating shaft side. A pseudo-fixed body (4B) having a first rotating body (5B) integrally fixed to the first rotating shaft is provided.
B) and a second rotating shaft (7B) supported by the other bearing (6B) and parallel to the first rotating shaft and provided with a required shaft interval.
And a second rotating body (8B) in which a rotating body equal to the first rotating body is fixed to the rotating shaft so that the direction of the magnetic pole and the axial position coincide with the first rotating body, and each rotating body is attached to each rotating shaft. A synchronous gear (9B) for rotating the magnetic poles of one rotating body on the leading side with respect to the magnetic poles of the other rotating body when rotating in opposite directions, and conventional starting means for starting and stopping And an inner-magnet-type prime mover comprising braking means and the like.
転軸の軸芯から同半径かつ周方向等間隔の位置に複数の
永久磁石または電磁石が磁極方向を等しくかつ回転軸と
平行に配置され、該複数の磁石から発散し収束する磁束
のうち各磁石の両磁極面方向及び回転軸側を通る磁束の
通路に非磁性かつ電気良導体よりなる磁束変動を抑制す
る働きを持つ擬固定体が配置され、これらを一体として
第1回転軸に固定した第1回転体と、他方の軸受けで支
えられ前記第1回転軸と平行で所要の軸間隔を設けた第
2回転軸と、該回転軸に第1回転体と等しい回転体を磁
極の方向と軸方向位置を第1回転体に一致させ固定した
第2回転体と、それぞれの回転軸に各回転体を互いに逆
回転させるとともに回転の際一方の回転体の磁極が他方
の回転体の対応する磁極に対して進み側となる関係を作
る目的の同期歯車と、始動及び停止させるための慣用の
始動手段及び制動手段等を具備してなる多極外磁型磁石
原動機。3. A first rotating shaft supported by a bearing, and a plurality of permanent magnets or electromagnets having the same magnetic pole direction and being parallel to the rotating shaft at a position of the same radius and at equal circumferential intervals from the axis of the rotating shaft. A pseudo-fixed body that is disposed and has a function of suppressing magnetic flux fluctuations composed of non-magnetic and good electrical conductors in a magnetic flux path passing through both magnetic pole surface directions of the magnets and the rotating shaft side among magnetic fluxes diverging and converging from the plurality of magnets. A first rotating body integrally fixed to the first rotating shaft, a second rotating shaft supported by the other bearing and parallel to the first rotating shaft and provided with a required axial interval, A second rotating body in which the rotating body equal to the first rotating body is fixed to the first rotating body so that the direction of the magnetic pole and the axial direction coincide with the first rotating body, and the rotating bodies are rotated in the respective rotating shafts in the opposite directions. When the magnetic pole of one rotating body corresponds to that of the other rotating body A multi-pole external magnet type prime mover comprising: a synchronous gear for the purpose of establishing a relationship on the leading side with respect to magnetic poles; and conventional starting means and braking means for starting and stopping.
転軸に軸方向の磁極を持つ永久磁石または電磁石が同軸
に配置され、磁石の両磁極にそれぞれ磁束を通し回転軸
から同半径かつ周方向等間隔の位置に複数の軸方向空隙
を作るための軟質磁性材による継鉄及び複数の磁極片が
配置され、該複数の磁極片から発散し収束する磁束のう
ち各軸方向空隙部及び回転軸側を通る磁束の通路に非磁
性かつ電気良導体よりなる磁束変動を抑制する働きを持
つ擬固定体が配置され、これらを一体として第1回転軸
に固定した第1回転体と、他方の軸受けで支えられ前記
第1回転軸と平行で所要の軸間隔を設けた第2回転軸
と、該回転軸に第1回転体と等しい回転体を磁極の方向
と軸方向位置を第2回転体に一致させ固定した第2回転
体と、それぞれの回転軸に各回転体を互いに逆回転させ
るとともに回転の際一方の回転体の磁極が他方の回転体
の対応する磁極に対して進み側となる関係を作る目的の
同期歯車と、始動及び停止させるための慣用の始動手段
及び制動手段等を具備してなる多極内磁型磁石原動機。4. A first rotating shaft supported by a bearing and a permanent magnet or an electromagnet having an axial magnetic pole on the rotating shaft are coaxially arranged, and a magnetic flux is passed through both magnetic poles of the magnet, and the same radius from the rotating shaft. In addition, a yoke made of a soft magnetic material and a plurality of pole pieces for forming a plurality of axial gaps at circumferentially equal intervals are arranged, and each of the axial gap portions out of magnetic flux diverging and converging from the plurality of pole pieces. And a pseudo-fixed body having a function of suppressing magnetic flux fluctuation made of a non-magnetic and good electric conductor is disposed in a magnetic flux passage passing through the rotating shaft side, and a first rotating body integrally fixed to the first rotating shaft and the other, A second rotating shaft which is supported by a bearing and is parallel to the first rotating shaft and is provided with a required shaft interval; and a rotating body which is the same as the first rotating body is rotated by the second rotating shaft in the direction of the magnetic pole and the second rotating shaft. The second rotating body fixed to the body and its rotation A synchronous gear for rotating the respective rotating bodies in opposite directions to each other and for establishing a relationship in which a magnetic pole of one rotating body is on the leading side with respect to a corresponding magnetic pole of the other rotating body during rotation, and for starting and stopping. A multi-pole internal-magnet type motor comprising the conventional starting means and braking means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21611497A JPH1169768A (en) | 1997-08-11 | 1997-08-11 | Magnet prime mover |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21611497A JPH1169768A (en) | 1997-08-11 | 1997-08-11 | Magnet prime mover |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1169768A true JPH1169768A (en) | 1999-03-09 |
Family
ID=16683471
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21611497A Pending JPH1169768A (en) | 1997-08-11 | 1997-08-11 | Magnet prime mover |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1169768A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001001551A1 (en) * | 1999-06-24 | 2001-01-04 | Yoshihito Kamegawa | Magnetic force drive device |
WO2001057993A1 (en) * | 2000-02-03 | 2001-08-09 | John Edward Maher | Magnetic drive mechanism |
WO2002058215A1 (en) * | 2001-01-19 | 2002-07-25 | Yukinobu Nariishi | Magnetic force rotation power generator |
KR20020062244A (en) * | 2002-06-11 | 2002-07-25 | 김성환 | Natural energy |
WO2004093297A1 (en) * | 2003-04-17 | 2004-10-28 | Man-Suk Park | Rotating apparatus using a magnet and rotating decoration employing the same |
KR20040096994A (en) * | 2004-10-13 | 2004-11-17 | 권순태 | The Principle of Torque Amplification |
US7400075B2 (en) * | 2005-10-14 | 2008-07-15 | Moon Kim | Rotating apparatus using a magnet and rotating decoration employing the same |
US7471024B2 (en) * | 2002-09-20 | 2008-12-30 | Man-suk Park | Apparatus for power transmission by magnetic force and method thereof |
-
1997
- 1997-08-11 JP JP21611497A patent/JPH1169768A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001001551A1 (en) * | 1999-06-24 | 2001-01-04 | Yoshihito Kamegawa | Magnetic force drive device |
WO2001057993A1 (en) * | 2000-02-03 | 2001-08-09 | John Edward Maher | Magnetic drive mechanism |
WO2002058215A1 (en) * | 2001-01-19 | 2002-07-25 | Yukinobu Nariishi | Magnetic force rotation power generator |
KR20020062244A (en) * | 2002-06-11 | 2002-07-25 | 김성환 | Natural energy |
US7471024B2 (en) * | 2002-09-20 | 2008-12-30 | Man-suk Park | Apparatus for power transmission by magnetic force and method thereof |
WO2004093297A1 (en) * | 2003-04-17 | 2004-10-28 | Man-Suk Park | Rotating apparatus using a magnet and rotating decoration employing the same |
KR20040096994A (en) * | 2004-10-13 | 2004-11-17 | 권순태 | The Principle of Torque Amplification |
US7400075B2 (en) * | 2005-10-14 | 2008-07-15 | Moon Kim | Rotating apparatus using a magnet and rotating decoration employing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4980595A (en) | Multiple magnetic paths machine | |
US11330938B2 (en) | Non-contact magnetic coupler for food processing appliance having small brushless permanent magnet motor | |
US5955811A (en) | Electromagnetic rotary machine having magnetic bearing | |
EP2209188B1 (en) | Multi-rotor electric machine | |
EP2828962B1 (en) | An improved dc electric motor/generator with enhanced permanent magnet flux densities | |
US5436518A (en) | Motive power generating device | |
TWI525963B (en) | A rotor for an inner-rotor modulated pole machine and an electrical machine comprising the same | |
US6977454B2 (en) | Hybrid-secondary uncluttered permanent magnet machine and method | |
KR101820998B1 (en) | Rotating electromechanical converter | |
EP1003267A2 (en) | A magnet type electric motor and generator | |
EP0762600B1 (en) | Power generating device | |
EP1964242A2 (en) | Rotor assembly for use in line start permanent magnet synchronous motor | |
US8482181B2 (en) | Three phase synchronous reluctance motor with constant air gap and recovery of inductive field energy | |
US20130187586A1 (en) | Multi-Pole Switched Reluctance D.C. Motor with a Constant Air Gap and Recovery of Inductive Field Energy | |
US20110074232A1 (en) | Pulsed multi-rotor constant air gap switched reluctance motor | |
EP3726711A1 (en) | Brushless motor-generator | |
JPH1169768A (en) | Magnet prime mover | |
Kumashiro et al. | Investigation of a combined electro magnetic structure of bearingless motor and magnetic gear | |
KR102195432B1 (en) | One Body Electric Driving and Electric Power Generating Apparatus | |
US7791246B2 (en) | Axial motor | |
EP0630096B1 (en) | Motive power generating device | |
JP2003164125A (en) | Both sided air gap type rotary electric machine | |
WO2023100274A1 (en) | Rotor and magnetic wave gear device | |
RU2246168C1 (en) | Face-type electrical machine | |
CN116317421B (en) | Single-stator double-rotor axial magnetic flux hybrid excitation counter-rotating motor |