JPH1167226A - Fuel electrode of fuel cell and its manufacture - Google Patents

Fuel electrode of fuel cell and its manufacture

Info

Publication number
JPH1167226A
JPH1167226A JP9227187A JP22718797A JPH1167226A JP H1167226 A JPH1167226 A JP H1167226A JP 9227187 A JP9227187 A JP 9227187A JP 22718797 A JP22718797 A JP 22718797A JP H1167226 A JPH1167226 A JP H1167226A
Authority
JP
Japan
Prior art keywords
electrode
fuel
electrolyte
metal element
fuel electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9227187A
Other languages
Japanese (ja)
Inventor
Toshio Matsushima
敏雄 松島
Naoki Kato
直樹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP9227187A priority Critical patent/JPH1167226A/en
Publication of JPH1167226A publication Critical patent/JPH1167226A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel electrode with high electrode activity and less difference in coefficient of thermal expansion with YSZ (stabilized zirconia), used in an SOFC (solid electrolyte fuel cell), and its manufacturing method. SOLUTION: In the fuel electrode of a solid electrolyte fuel cell using a zirconia material, the concentration of a metal element on the surface of the electrode, coming in contact with an electrolyte is made higher than that on the onside of the electrode. The fuel electrode is manufactured by mixing, sintering zirconia and an oxide of metal element to prepare a substrate, arranging the powder of the metal element or the powder of the oxide of the metal element on one side of the substrate, then heating them. While the difference in coefficient of thermal expansion with the electrolyte is suppressed within the allowable value, the electrode having high activity to the power generating reaction can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する分野】本発明は燃料電池の燃料電極およ
びその製造方法、さらに詳細には固体電解質型燃料電池
の燃料電極として使用される焼結体の構造と製造方法に
関するものである。
The present invention relates to a fuel electrode for a fuel cell and a method for producing the same, and more particularly to a structure and a method for producing a sintered body used as a fuel electrode for a solid oxide fuel cell.

【0002】[0002]

【従来の技術及び課題】固体電解質型燃料電池(以下、
SOFCと略)は、一般的に、酸素イオンの選択透過性
を有する物質からなる固体電解質を介して両側に2つの
電極(空気極と燃料極)を配置することで構成される。
そして、各電極に酸素と水素を流すことで化学反応が進
行し、発電が行なわれる。
2. Description of the Related Art Solid oxide fuel cells (hereinafter referred to as "solid electrolyte fuel cells").
In general, an SOFC is configured by arranging two electrodes (an air electrode and a fuel electrode) on both sides via a solid electrolyte made of a substance having a selective permeability for oxygen ions.
Then, by flowing oxygen and hydrogen through each electrode, a chemical reaction proceeds, and power generation is performed.

【0003】電解質材料としては、酸素イオン透過性を
持つ、酸化ジルコニウムに酸化イットリウムを添加して
結晶構造の安定化を図った安定化ジルコニア(YSZ)
が使用されている。そして、空気極には、ペロブスカイ
ト構造でランタンの一部をアルカリ土類金属で置換した
ランタンマンガナイト(La1-x(M)xyMnO
3(M:アルカリ土類金属))が、また燃料極として
は、YSZとニッケル金属の混合物を焼結させたニッケ
ルジルコニアサーメットが用いられている。
[0003] As an electrolyte material, stabilized zirconia (YSZ) having oxygen ion permeability, which is obtained by adding yttrium oxide to zirconium oxide to stabilize the crystal structure.
Is used. The air electrode has lanthanum manganite (La 1-x (M) x ) y MnO having a perovskite structure in which part of lanthanum is replaced with an alkaline earth metal.
3 (M: alkaline earth metal)), and a nickel zirconia cermet obtained by sintering a mixture of YSZ and nickel metal is used as the fuel electrode.

【0004】SOFCの構造には、いくつかの方式があ
る。たとえば図5(a)に示すように、電解質1をセル
(一個の発電単位のこと)Cの支持体とし、その両側に
空気極2と燃料極3を形成するもの、また、図5(b)
に示すように、一方の電極(この場合、燃料極基板6)
をセルCの支持体とし、その表面に電解質1と他の電極
(この場合、空気極2)を形成するものの2つの方式が
ある。なお、これらの図中、4はインタコネクタであ
り、5は空気極基板、7は燃料通路、8は空気通路を示
している。
There are several types of SOFC structures. For example, as shown in FIG. 5A, an electrolyte 1 is used as a support of a cell (one power generation unit) C, and an air electrode 2 and a fuel electrode 3 are formed on both sides thereof. )
As shown in the figure, one electrode (in this case, the fuel electrode substrate 6)
Is used as a support of the cell C, and an electrolyte 1 and another electrode (in this case, the air electrode 2) are formed on the surface thereof. In these figures, 4 is an interconnector, 5 is an air electrode substrate, 7 is a fuel passage, and 8 is an air passage.

【0005】ところで、SOFCの各部材は、先に示し
たようなセラミックス材料であり、その導電率は金属に
比べると非常に小さい。とりわけ、電解質の導電率は各
材料の中で最も低いので、実用的な発電特性を得るため
には、セル抵抗の低減が必要であり、電解質部での抵抗
の低滅が必須となっている。電解質の材料であるYSZ
の導電性は、温度の上昇につれて向上するが、この燃料
電池の運転温度である約1000℃という温度下におい
てもその導電率は小さい。従って、電解質の厚み低減に
よるセル抵抗の削減が実用的な性能を持ったセルの実現
に必要となっている。すなわち、良好な発電特性を有す
るSOFCの実現のためには、薄膜状の電解質の適用が
必須の課題である。
[0005] Each member of the SOFC is a ceramic material as described above, and its electric conductivity is very small as compared with that of a metal. In particular, since the conductivity of the electrolyte is the lowest among the materials, it is necessary to reduce the cell resistance in order to obtain practical power generation characteristics, and it is essential to reduce the resistance in the electrolyte part. . YSZ which is the material of the electrolyte
Although the conductivity of the fuel cell increases as the temperature rises, the conductivity is small even at a temperature of about 1000 ° C., which is the operating temperature of this fuel cell. Therefore, reduction of the cell resistance by reducing the thickness of the electrolyte is necessary for realizing a cell having practical performance. That is, in order to realize an SOFC having good power generation characteristics, application of a thin-film electrolyte is an essential issue.

【0006】しかるに、前者の方式のように電解質がセ
ル全体を支えるような構造では、電解質に機械的強度を
付与する必要があることから極端な薄膜は使用できず、
少なくとも200〜500μm程度の厚みが要求され、
電解質部での抵抗の低滅は困難である。一方、どちらか
一方の電極がセルの支持体となる後者の方式では、導電
率が電解質材料の1000〜10000倍も大きい電極
材料が支持体になるので、その厚みにはあまり制限が無
く、数mmの厚みの電極基板の使用も可能である。そし
て、このような導電率と強度が高い支持体上に数〜数1
0μmの厚みの電解質が形成可能となり、低抵抗で発電
特性の高いセルの実現が期待される。
However, in a structure in which the electrolyte supports the entire cell as in the former method, an extremely thin film cannot be used because mechanical strength must be imparted to the electrolyte.
A thickness of at least about 200 to 500 μm is required,
It is difficult to reduce the resistance in the electrolyte part. On the other hand, in the latter method in which one of the electrodes serves as a support for the cell, the electrode material having a conductivity 1000 to 10,000 times larger than the electrolyte material serves as the support. It is also possible to use an electrode substrate having a thickness of mm. Then, several to several tens on such a support having high conductivity and strength.
An electrolyte having a thickness of 0 μm can be formed, and the realization of a cell having low resistance and high power generation characteristics is expected.

【0007】ところで、電極をセルの支待体とする方式
のセルでは、支持体となる電極としては空気極と燃料極
の2つが考えられる。しかし、両者を比較すると、まず
強度は燃料極の方が空気極よりも約3倍程度大きく、さ
らに材料価格を見ると、燃料極の方が空気極よりも60
〜70%もコストが低い。従って、セル作製上、およぴ
経済性の観点から、セルの支持体としては燃料極材料の
方が有利である。
By the way, in a cell in which an electrode is used as a supporting body of the cell, two electrodes, i.e., an air electrode and a fuel electrode, are considered as electrodes to be a support. However, comparing the two, first, the strength of the fuel electrode is about three times greater than that of the air electrode, and the material price shows that the fuel electrode is 60 times stronger than the air electrode.
The cost is as low as ~ 70%. Therefore, from the viewpoints of cell fabrication and economy, the fuel electrode material is more advantageous as the cell support.

【0008】一方、燃料極は、先にも述べたように、現
在、ニッケルジルコニアサーメットが用いられており、
このサーメットは主に、YSZ粉末と酸化ニッケル(N
iO)粉末を混合したものの成形・焼結によって作製さ
れている。ところで、SOFCのセルの支待体として使
用される燃料極基板には、電極特性(多孔性、導電
性)、機械的強度が要求されるとともに、この表面に形
成される電解質(通常、YSZ)との熱膨張率差が少な
いことも要求される。
On the other hand, as described above, nickel zirconia cermet is currently used for the fuel electrode.
This cermet mainly consists of YSZ powder and nickel oxide (N
iO) It is produced by molding and sintering of a mixture of powders. By the way, the fuel electrode substrate used as a support for the cell of the SOFC is required to have electrode characteristics (porosity and conductivity) and mechanical strength, and an electrolyte (usually YSZ) formed on this surface. It is also required that the difference in thermal expansion coefficient from the above is small.

【0009】サーメットのこれらの物性は、主に、添加
したNiOの量に影響され、例えば、熱膨張率に関して
は、図3に示すように、NiOの添加によって単純な増
加を示す。YSZの膨張係数は、約10×10-6(1/
K)であり、少なくともサーメットはYSZの間で熱膨
張率差を有していることがわかる。SOFCの運転温度
は1000℃であるため、サーメットの熱膨張係数が1
4×10-6(1/K)の時、例えば20cm角の大きさ
の単セルにおいて、YSZが2mm膨張し、サーメット
は2.8mm膨張することになり、両者の間で少なから
ず剥離に繋がる応力が発生する。
These physical properties of the cermet are mainly affected by the amount of NiO added. For example, the coefficient of thermal expansion shows a simple increase by the addition of NiO as shown in FIG. The expansion coefficient of YSZ is about 10 × 10 -6 (1 /
K), indicating that at least the cermet has a difference in thermal expansion coefficient between YSZ. Since the operating temperature of the SOFC is 1000 ° C., the thermal expansion coefficient of the cermet is 1
In the case of 4 × 10 −6 (1 / K), for example, in a single cell having a size of 20 cm square, YSZ expands by 2 mm and cermet expands by 2.8 mm, which leads to a considerable separation between the two. Stress occurs.

【0010】一方、導電率は、図4に示すように、Ni
Oの添加量の増加に連れて大きく変化し、NiOを50
wt%添加すると極端に増加し、70wt%では、10
00S/cm以上の値が得られる(図中、●は焼結温度
1350℃、▲は1300℃のもの)。燃料極における
発電反応は、電極と電解質の界面に存在するニッケル金
属部で生じるので、NiO添加量が多いことは発電反応
に関与するYSZとの界面の増加を意味し、電極特性も
向上する。
On the other hand, as shown in FIG.
It changes greatly with an increase in the amount of O added.
At 70 wt%, it increases by 10%.
A value of not less than 00 S / cm is obtained (in the figure, ● indicates a sintering temperature of 1350 ° C, and ▲ indicates a value of 1300 ° C). Since the power generation reaction at the fuel electrode occurs at the nickel metal portion existing at the interface between the electrode and the electrolyte, a large amount of added NiO means an increase in the interface with YSZ involved in the power generation reaction, and the electrode characteristics are also improved.

【0011】しかし、NiOの増加は先にも示したよう
に、熱膨張率の増加を招くので、このような高いNiO
添加量の値を選定することは困難であり、主に、YSZ
との熱膨張率差の抑制の観点からNiO添加量には制限
が生じ、必ずしも十分に電極活性が高い支持体をえるこ
とは出来ずYSZを薄くしたにもかかわらずセル特性の
向上には限界が有った。
However, as described above, an increase in NiO causes an increase in the coefficient of thermal expansion.
It is difficult to select the value of the addition amount.
The amount of NiO added is limited from the viewpoint of suppressing the difference in the coefficient of thermal expansion from the above, and it is not always possible to obtain a support having sufficiently high electrode activity. There was.

【0012】そこで本発明では、SOFCに使用する、
電極活性が高く、YSZとの熱膨張率差も少ない燃料極
支持体の作製法を明らかにする。
In the present invention, therefore, the present invention is used for SOFCs.
A method for producing a fuel electrode support having high electrode activity and a small difference in thermal expansion coefficient from YSZ will be clarified.

【0013】[0013]

【課題を解決するための手段】上記課題を解決するた
め、本発明による燃料電池の燃料電極はジルコニア系の
材料を用いた固定電解質型燃料電池の燃料電極におい
て、電解質に接する側の表面における金属元素の濃度
が、電極内部よりも高くなるように分布していることを
特徴とする。
In order to solve the above-mentioned problems, a fuel electrode of a fuel cell according to the present invention is a fuel electrode of a fixed electrolyte type fuel cell using a zirconia-based material. It is characterized in that the element concentration is distributed so as to be higher than inside the electrode.

【0014】また本発明による燃料電池の燃料電極の製
造方法は、ジルコニアと金属元素の酸化物を混合し焼結
して基板を作製する工程と、該基板の片面に前記金属元
素の粉末または前記金属元素の酸化物の粉末を配置して
熱処理を行う工程を有することを特徴とする。
Further, a method of manufacturing a fuel electrode of a fuel cell according to the present invention comprises the steps of mixing and sintering zirconia and an oxide of a metal element to produce a substrate; A step of arranging a powder of an oxide of a metal element and performing a heat treatment.

【0015】すなわち、ジルコニアと金属元素の酸化物
との混合体から支持体となる焼結体を作製し、次に、こ
の基板の表面のうち電解質を形成する面に金属元素また
は金属元素の酸化物粉末を配置し、熱処理することで、
電解質を形成する側の電極表面、および表面近傍の内部
におけ金属の濃度を高くしていることを特徴としてい
る。
That is, a sintered body serving as a support is prepared from a mixture of zirconia and an oxide of a metal element, and then a metal element or a metal element is oxidized on a surface of the substrate on which an electrolyte is formed. By placing the material powder and heat treating,
It is characterized in that the concentration of the metal is increased on the surface of the electrode on which the electrolyte is formed and on the inside near the surface.

【0016】上述のように、本発明はSOFCに使用さ
れる燃料極の構造と作製法に関するもので、特にYSZ
とNiO粉末の混合体から支持体となる焼結体を作製
し、次に、この基板の表面のうち電解質を形成する面に
ニッケル(Ni)またはNiOを配置し、この状態で熱
処理し、これによってこの表面から内部に向かってNi
金属成分の拡散を起こさせ、これによって発電反応が進
行する電解質との界面におけるNi金属の濃度を向上さ
せるものである。この時、予め作製するサーメット焼結
体内のNiO濃度は、膨張率の許容値以内とし、かつ、
反応に関わる界面部でのNiの濃度を高めることができ
るので電極活性の高いセル支持体の作製が可能となる。
As described above, the present invention relates to a structure and a manufacturing method of an anode used in an SOFC, and in particular, to a YSZ
A sintered body to be a support is prepared from a mixture of NiO and NiO powder, and then nickel (Ni) or NiO is arranged on the surface of the substrate on which an electrolyte is formed, and heat treatment is performed in this state. From this surface to the inside
This is to cause diffusion of the metal component, thereby improving the concentration of Ni metal at the interface with the electrolyte in which the power generation reaction proceeds. At this time, the NiO concentration in the cermet sintered body to be prepared in advance is within the allowable value of the expansion coefficient, and
Since the concentration of Ni at the interface involved in the reaction can be increased, a cell support having high electrode activity can be manufactured.

【0017】これまで、SOFCの支持体として使用さ
れる燃料極の構造・組成について、本発明のような具体
的な提案は行われていない。
Heretofore, no specific proposal as in the present invention has been made on the structure and composition of the fuel electrode used as a support for the SOFC.

【0018】上述のようなジルコニア系材料としては、
たとえばイットリウム安定化ジルコニウム(YSZ)で
あることができる。また金属元素としてはニッケルを例
としてあげることができる。しかしながら、本発明にお
いて、上記ジルコニア系材料及び金属元素は、本発明の
効果を達成しえるかぎり、基本的に限定されるものでは
ない。
As the zirconia-based material as described above,
For example, it can be yttrium stabilized zirconium (YSZ). Nickel can be given as an example of the metal element. However, in the present invention, the zirconia-based material and the metal element are not basically limited as long as the effects of the present invention can be achieved.

【0019】上記金属元素の酸化物粉末の混合量は40
〜60重量%であるのが好ましい。発電時の電流が流れ
ても大きな電圧降下が生じず、かつ電解質との熱膨張率
差が許容値以内である範囲であるからである。
The mixing amount of the metal element oxide powder is 40
Preferably, it is 〜60% by weight. This is because a large voltage drop does not occur even when a current flows during power generation, and the difference in the coefficient of thermal expansion with the electrolyte is within an allowable range.

【0020】[0020]

【実施例】以下に、本発明の燃料極について、実施例に
より具体的に示す。
EXAMPLES The fuel electrode of the present invention will be specifically described below with reference to examples.

【0021】[0021]

【実施例1】本発明による、電極作製プロセスは図1に
示すようなもので、まず、YSZとNiO粉末を用意し
(工程a)、これらを混合し(工程b)混合粉末から所
定形状に成形した後(工程c)、焼結して焼結体を作製
する(工程d)。次いで、この焼結体表面のうちNi濃
度を高めたいところにNiまたはNiO粉末を載せ(工
程e)、次いで再度熱処理する(工程f)ことで、目的
とする表面とその内部に、Ni金属成分を拡散させるも
のである。なお工程aからdが焼結体作製プロセス、工
程eからfがNi拡散プロセスである。
Embodiment 1 An electrode manufacturing process according to the present invention is as shown in FIG. 1. First, YSZ and NiO powder are prepared (step a), and they are mixed (step b). After molding (step c), sintering is performed to produce a sintered body (step d). Next, Ni or NiO powder is placed on the surface of the sintered body where the Ni concentration is to be increased (step e), and then heat-treated again (step f), so that the target surface and the inside thereof have a Ni metal component. Is to diffuse. Steps a to d are a sintered body preparation process, and steps e to f are a Ni diffusion process.

【0022】ここではまず、粒径10〜40μmのイッ
トリア安定化ジルコニア粉末と平均粒径1μm以下の酸
化ニッケル粉末を原料に使用した例を示す。粒径10〜
40μmのイットリア安定化ジルコニア粉末は、市販の
粉末を熱処理することで作製し、この粉末と酸化ニッケ
ル粉末をポリエチレンポットに入れ、エタノールを加え
た後ボールミルで混合し、サーメットの原料粉末を作製
した。ここで作製した原料粉末中の、酸化ニッケル粉末
の添加量は、45重量%とした。次に、この原料粉末に
ポリビニルアルコール系バインダを添加して2t/cm
2でプレス成形(φ30mm)し、この後1400℃で
焼結した。作製した焼結体の多孔度は約25%で、熱膨
張係数は12.5×10-6(1/K)であった。なお、
この焼結体を、従来例1とする。
First, an example in which yttria-stabilized zirconia powder having a particle diameter of 10 to 40 μm and nickel oxide powder having an average particle diameter of 1 μm or less are used as raw materials will be described. Particle size 10
A 40 μm yttria-stabilized zirconia powder was prepared by heat-treating a commercially available powder, and this powder and nickel oxide powder were placed in a polyethylene pot, ethanol was added, and the mixture was mixed by a ball mill to prepare a cermet raw material powder. The amount of the nickel oxide powder added in the raw material powder prepared here was 45% by weight. Next, a polyvinyl alcohol-based binder was added to the raw material powder, and 2 t / cm
It was press-formed (φ30 mm) at 2 , and then sintered at 1400 ° C. The porosity of the produced sintered body was about 25%, and the coefficient of thermal expansion was 12.5 × 10 −6 (1 / K). In addition,
This sintered body is referred to as Conventional Example 1.

【0023】次に、本発明では、ここで作製したφ30
mmの焼結体の表面にNiO粉末を厚さ2mm程度で載
せ、この状態で再度1200℃で熱処理した。これによ
って焼結体上に載せたNiOからNi金属成分のみを焼
結体表面から内部に向かって拡散させた。本発明を実施
した焼結体(実施例1)と従来例1における断面でのN
i金属の分布を求めた。図2aは測定する上記焼結体の
基板断面を示したものであり、上面が電解質と接触する
側、下面が他方の側を示している。その結果、図2bに
示すように、従来例1では焼結体の断面での金属成分は
ほぼ一定であったが、本発明の実施品では、NiOを載
せた面のNiの分布が高く(B方向:上面方向)、内部
に向かって次第に減少する分布が確認された(B’方
向:下面方向)。
Next, in the present invention, the φ30
The NiO powder was placed on the surface of the sintered body having a thickness of about 2 mm with a thickness of about 2 mm, and again heat-treated at 1200 ° C. in this state. As a result, only the Ni metal component was diffused from the surface of the sintered body toward the inside from NiO placed on the sintered body. The sintered body embodying the present invention (Example 1) and the N
The distribution of i metal was determined. FIG. 2a shows a cross section of the substrate of the sintered body to be measured, wherein the upper surface indicates the side in contact with the electrolyte, and the lower surface indicates the other side. As a result, as shown in FIG. 2B, the metal component in the cross section of the sintered body was almost constant in Conventional Example 1, but in the embodiment of the present invention, the distribution of Ni on the surface on which NiO was placed was high ( A distribution that gradually decreases toward the inside was confirmed (B 'direction: lower surface direction).

【0024】次に、このようにして作製した2種の焼結
体を使用して発電試験用のセルを作製し、発電特性を求
めた。このセルの電解質は、材料にイットリア安定化ジ
ルコニアを用い、プラズマ溶射法によって、約200μ
mの厚みで形成した。次に、空気極を、平均粒径1μm
のLa0.8Sr0.2MnO3粉末から調製したスラリーの
塗布・焼結によって形成した。このセルにより、100
0℃での発電特性を求めた。この結果、両者のセルとも
開放電圧は1.0Vを示したが、発電特性には違いが現
れ、従来例1では0.7Vにおいて250mA/cm2
であったが、実施例1では0.7Vにおいて400mA
/cm2を示し、本発明による燃料電極の方が優れた発
電特性を有していることが確認された。これより、本発
明の実施によって、電解質との界面近傍におけるNi金
属の濃度が高まり、その効果が現れていることが分か
る。
Next, a cell for a power generation test was prepared using the two types of sintered bodies thus prepared, and the power generation characteristics were determined. The electrolyte of this cell is made of yttria-stabilized zirconia as a material, and is plasma-sprayed to about 200 μm.
m. Next, the air electrode was adjusted to an average particle size of 1 μm.
Formed by applying and sintering a slurry prepared from the La 0.8 Sr 0.2 MnO 3 powder of the above. With this cell, 100
The power generation characteristics at 0 ° C. were determined. As a result, the open-circuit voltage of both cells was 1.0 V, but the power generation characteristics differed. In Conventional Example 1, 250 mA / cm 2 at 0.7 V.
However, in Example 1, it was 400 mA at 0.7 V.
/ Cm 2 , confirming that the fuel electrode according to the present invention has more excellent power generation characteristics. From this, it can be seen that, according to the embodiment of the present invention, the concentration of Ni metal in the vicinity of the interface with the electrolyte is increased, and the effect is exhibited.

【0025】なお、多孔度、熱膨張率特性については、
これらの2つの試料には有意差は認められなかった。こ
の理由は、これらの特性が、最初に作製したYSZとN
iO粉末の焼結によって形成された構造体の組成と状態
で一義的に定まり、拡散によって付着したNiは、これ
らの骨格を形成している構造体の表面に付着して存在す
る程度のためと考えられる。
The porosity and the coefficient of thermal expansion are as follows:
No significant difference was observed between these two samples. The reason for this is that these characteristics are the first
The composition and state of the structure formed by sintering of the iO powder are uniquely determined, and the degree of the Ni attached by diffusion is due to the degree of attachment to the surface of the structure forming these skeletons. Conceivable.

【0026】燃料電極の活性は、一般的に添加したNi
O量で影響されているため、これまで、反応性の高い電
極作製するためには、NiOの添加量を高める必要があ
った。しかし、NiO量が増すと熱膨張率が大きくな
り、電解質との膨張率差が拡大するため、高温下の運転
によりセルの破損等が起こりやすくなり、信頼性が低下
するという問題があった。一方、本発明では、発電時の
電流が流れても大きな電圧降下が生じない程度の量(4
0重量%から60重量%)のNiOを添加した母材を使
用し、電解質の形成面にのみ、Niの濃度を高めてい
る。しかも、本発明で添加したNiは母材の多孔性や熱
膨張特性には影響しない。従って、電解質との熱膨張率
差を許容値以内に抑えた状態で、発電反応に対する活性
の高い電極の作製が可能になる。
The activity of the fuel electrode is generally determined by adding Ni
Since it is affected by the amount of O, it has been necessary to increase the amount of NiO to produce a highly reactive electrode. However, when the amount of NiO increases, the coefficient of thermal expansion increases, and the difference in expansion coefficient with the electrolyte increases. Therefore, there has been a problem that the cell is easily damaged by operation at a high temperature and the reliability is reduced. On the other hand, in the present invention, the amount (4
A base material to which NiO (0% to 60% by weight) is added is used, and the concentration of Ni is increased only on the surface on which the electrolyte is formed. Moreover, Ni added in the present invention does not affect the porosity and thermal expansion characteristics of the base material. Therefore, it is possible to produce an electrode having a high activity with respect to the power generation reaction in a state where the difference in thermal expansion coefficient with the electrolyte is kept within an allowable value.

【0027】[0027]

【実施例2】実施例1では、市販のYSZを熱処理する
ことで作製した粒径10〜40μmのイットリア安定化
ジルコニア粉未をサーメットの出発粉末として使用した
が、ここでは、このような熱処理を施さない市販のYS
Z粉末と酸化ニッケル粉末からサーメット焼結体を作製
した。原料となる両粉未の混合体(NiO添加量;45
重量%)は、先ほどと同様に各粉末をポリエチレンポッ
トにエタノールとともに入れ、ボールミルで混合するこ
とで調製した。次に、この粉未から押出し成形法によっ
てサーメットの成形体を作製した。この押出し成形で
は、粉未にメチルセルロース系のバインダ(メトロー
ズ)と水を、それぞれ10、20重量%添加して混練体
を作製し、この混練体から成形した。作製した成形体
は、幅50、厚み5、長さ50(mm)である。この成
形体を1300℃で焼結したものを徒来例2とする。こ
の従来例2の多孔度は、20%であった。
Example 2 In Example 1, a yttria-stabilized zirconia powder having a particle size of 10 to 40 μm produced by heat-treating a commercially available YSZ was used as a cermet starting powder. Commercial YS not applied
A cermet sintered body was prepared from Z powder and nickel oxide powder. Mixture of both powders as raw materials (NiO added amount: 45)
% By weight) was prepared by putting each powder together with ethanol in a polyethylene pot and mixing with a ball mill in the same manner as described above. Next, a molded body of cermet was prepared from the powder by an extrusion molding method. In this extrusion molding, a kneaded body was prepared by adding 10 and 20% by weight of a methylcellulose-based binder (Metroze) and water to the powder, respectively, and molded from the kneaded body. The produced molded body has a width of 50, a thickness of 5, and a length of 50 (mm). A compact obtained by sintering the compact at 1300 ° C. is referred to as Inventive Example 2. The porosity of Conventional Example 2 was 20%.

【0028】次に、本発明では、この焼結体の片面に、
NiO粉末を載せ、この状態で再度1200℃で熱処理
した。この実施例2と従来例2について、電極の厚み方
向でのNiの分布を求めた結果、実施例1と同様、本発
明品ではNiO粉末を載せた表面、およびその下部の表
面近傍部分でのNiの分布が大きくなっていることが確
認された。
Next, in the present invention, one side of this sintered body is
NiO powder was placed, and heat treatment was again performed at 1200 ° C. in this state. With respect to Example 2 and Conventional Example 2, the distribution of Ni in the thickness direction of the electrode was obtained. As a result, similarly to Example 1, in the present invention, the NiO powder was placed on the surface and on the lower portion in the vicinity of the surface. It was confirmed that the distribution of Ni was large.

【0029】このように、本発明によれば、NiO添加
量を抑えた状態で十分な電極活性を有する燃料電極基板
の実現が可能であるので、YSZとの熱膨張率差を抑え
ることが出来、高温下での運転を長時間行ってもセルの
破損やYSZの剥離の無い信頼性の高いSOFCセルの
作製が可能になる。
As described above, according to the present invention, it is possible to realize a fuel electrode substrate having a sufficient electrode activity in a state where the amount of NiO added is suppressed, so that a difference in thermal expansion coefficient from YSZ can be suppressed. In addition, it is possible to manufacture a highly reliable SOFC cell without breakage of the cell or peeling of YSZ even after long-time operation at high temperature.

【0030】[0030]

【発明の効果】以上説明したように本発明では、ジルコ
ニア系材料と金属元素の酸化物の粉末の混合体から支持
体となる焼結体を作製し、次に、この基板の表面のうち
電解質を形成する面に金属元素または金属元素の酸化物
粉未を配置し、熱処理することで、電解質を形成する側
の電極表面、および表面近傍の内部におけるニッケル金
属の濃度を高くしている。
As described above, according to the present invention, a sintered body as a support is produced from a mixture of a zirconia-based material and a powder of an oxide of a metal element. The metal element or the oxide powder of the metal element is arranged on the surface on which is formed, and heat treatment is performed to increase the concentration of nickel metal on the electrode surface on the side where the electrolyte is formed and on the inside near the surface.

【0031】燃料電極の活性は金属酸化物添加量で影響
されるため、これまで、反応性の高い電極作製するため
には、金属酸化物の添加量を高める必要があった。しか
し、金属酸化物の量が増すと燃料電極基板の熱膨張率が
大きくなり、電解質との膨張率差が拡大するため、高温
下での運転によりセルの破損等が起こりやすくなり、信
頼性が低下するという問題があった。しかし、本発明で
は、発電時の電流が流れても大きな電圧降下が生じない
程度にNiOを添加した母材を使用し、電解質の形成面
のみでNi濃度を高めている。従って、電解質との熱膨
張率差を許容値以内に抑えた状態で、発電反応に対する
活性の高い電極の作製が可能になる。これまで、このよ
うな相反する2つの要求物性を満足する焼結体は得られ
ておらず、このため、長期間使用していると電極と電解
質の剥離等が発生し、信頼性の高いSOFCセルは実現
されていなかった。
Since the activity of the fuel electrode is affected by the amount of the metal oxide added, it has been necessary to increase the amount of the metal oxide to produce a highly reactive electrode. However, when the amount of metal oxide increases, the coefficient of thermal expansion of the fuel electrode substrate increases, and the difference in expansion coefficient between the electrolyte and the electrolyte increases. There was a problem of lowering. However, in the present invention, the base material to which NiO is added is used to the extent that a large voltage drop does not occur even when a current flows during power generation, and the Ni concentration is increased only on the surface on which the electrolyte is formed. Therefore, it is possible to produce an electrode having a high activity with respect to the power generation reaction in a state where the difference in thermal expansion coefficient with the electrolyte is kept within an allowable value. Until now, a sintered body that satisfies these two contradictory physical properties has not been obtained. For this reason, if used for a long period of time, separation of the electrode and the electrolyte will occur, and a highly reliable SOFC The cell was not realized.

【0032】本発明により、信頼性の高いSOFCが実
現可能となり、産業上、極めて大きな利点を得ることが
できる。
According to the present invention, a highly reliable SOFC can be realized, and an extremely large industrial advantage can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の燃料極の製造プロセスを説明する図。FIG. 1 is a diagram for explaining a fuel electrode manufacturing process of the present invention.

【図2a】燃料極(基板)の断面を示す図。FIG. 2A is a diagram showing a cross section of a fuel electrode (substrate).

【図2b】燃料極の断面のNi金属の分布を実施例1及
び比較例1と共に示した図。
FIG. 2B is a diagram showing the distribution of Ni metal on the cross section of the fuel electrode together with Example 1 and Comparative Example 1.

【図3】燃料極の熱膨張係数とNiO添加量の関係を示
す図。
FIG. 3 is a diagram showing the relationship between the thermal expansion coefficient of a fuel electrode and the amount of NiO added.

【図4】燃料極の導電率とNiO添加量の関係示す図。FIG. 4 is a graph showing the relationship between the conductivity of the fuel electrode and the amount of NiO added.

【図5a】従来の固体電解質型燃料電池の構造を示す斜
視図。
FIG. 5a is a perspective view showing the structure of a conventional solid oxide fuel cell.

【図5b】従来の他の固体電解質型燃料電池の構造を示
す斜視図。
FIG. 5B is a perspective view showing the structure of another conventional solid oxide fuel cell.

【符号の説明】[Explanation of symbols]

C 単セル 1 固体電解質 2 空気極 3 燃料極 4 インタコネクタ 5 空気極基板 6 燃料極基板 7 燃料通路 8 空気通路 C single cell 1 solid electrolyte 2 air electrode 3 fuel electrode 4 interconnector 5 air electrode substrate 6 fuel electrode substrate 7 fuel passage 8 air passage

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】ジルコニア系の材料を用いた固定電解質型
燃料電池の燃料電極において、電解質に接する側の表面
における金属元素の濃度が、電極内部よりも高くなるよ
うに分布していることを特徴とする燃料電池の燃料電
極。
In a fuel electrode of a fixed electrolyte fuel cell using a zirconia-based material, the concentration of a metal element on the surface in contact with the electrolyte is distributed so as to be higher than inside the electrode. The fuel electrode of the fuel cell.
【請求項2】請求項1記載の燃料電池の燃料電極におい
て、前記金属元素がニッケルであることを特徴とする燃
料電池の燃料電極。
2. The fuel electrode for a fuel cell according to claim 1, wherein said metal element is nickel.
【請求項3】請求項1または請求項2記載の燃料電池の
燃料電極において、前記ジルコニアがイットリウム安定
化ジルコニアであることを特徴とする燃料電池の燃料電
極。
3. The fuel electrode for a fuel cell according to claim 1, wherein the zirconia is yttrium-stabilized zirconia.
【請求項4】ジルコニアと金属元素の酸化物を混合し焼
結して基板を作製する工程と、該基板の片面に前記金属
元素の粉末または前記金属元素の酸化物の粉末を配置し
て熱処理を行う工程を有することを特徴とする燃料電池
の燃料電極の製造方法。
4. A process for preparing a substrate by mixing and sintering zirconia and an oxide of a metal element, and arranging a powder of the metal element or a powder of an oxide of the metal element on one surface of the substrate. A method for producing a fuel electrode for a fuel cell, comprising the step of:
【請求項5】請求項4記載の燃料電池の燃料電極の製造
方法において、前記ジルコニアと前記金属元素の酸化物
を混合し焼結する際に、前記金属元素の酸化物の混合比
を40重量%から60重量%とすることを特徴とする燃
料電池の燃料電極の製造方法。
5. The method for manufacturing a fuel electrode for a fuel cell according to claim 4, wherein the mixing ratio of the oxide of the metal element is 40% by weight when the zirconia and the oxide of the metal element are mixed and sintered. % To 60% by weight of the fuel cell.
【請求項6】請求項4または請求項5記載の燃料電池の
燃料電極の製造方法において、前記金属元素がニッケル
であることを特徴とする燃料電池の燃料電極の製造方
法。
6. The method for manufacturing a fuel electrode for a fuel cell according to claim 4, wherein said metal element is nickel.
【請求項7】請求項4から請求項6記載のいずれかの燃
料電池の燃料電極の製造方法において、前記ジルコニア
がイットリウム安定化ジルコニアであることを特徴とす
る燃料電池の燃料電極の製造方法。
7. The method for manufacturing a fuel electrode for a fuel cell according to claim 4, wherein said zirconia is yttrium stabilized zirconia.
JP9227187A 1997-08-08 1997-08-08 Fuel electrode of fuel cell and its manufacture Pending JPH1167226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9227187A JPH1167226A (en) 1997-08-08 1997-08-08 Fuel electrode of fuel cell and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9227187A JPH1167226A (en) 1997-08-08 1997-08-08 Fuel electrode of fuel cell and its manufacture

Publications (1)

Publication Number Publication Date
JPH1167226A true JPH1167226A (en) 1999-03-09

Family

ID=16856863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9227187A Pending JPH1167226A (en) 1997-08-08 1997-08-08 Fuel electrode of fuel cell and its manufacture

Country Status (1)

Country Link
JP (1) JPH1167226A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008054774A3 (en) * 2006-10-31 2008-06-26 Corning Inc Micromachined electrolyte sheet, fuel cell devices utilizing such, and micromachining method for making fuel cell devices
US8703362B2 (en) 2007-09-25 2014-04-22 Corning Incorporated Micromachined electrolyte sheet, fuel cell devices utilizing such, and micromachining method for making fuel cell devices
JP5507729B1 (en) * 2013-04-01 2014-05-28 日本碍子株式会社 Solid oxide fuel cell
JP5536271B1 (en) * 2013-12-13 2014-07-02 株式会社リケン Fuel electrode supported solid oxide fuel cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008054774A3 (en) * 2006-10-31 2008-06-26 Corning Inc Micromachined electrolyte sheet, fuel cell devices utilizing such, and micromachining method for making fuel cell devices
US8703362B2 (en) 2007-09-25 2014-04-22 Corning Incorporated Micromachined electrolyte sheet, fuel cell devices utilizing such, and micromachining method for making fuel cell devices
JP5507729B1 (en) * 2013-04-01 2014-05-28 日本碍子株式会社 Solid oxide fuel cell
JP5536271B1 (en) * 2013-12-13 2014-07-02 株式会社リケン Fuel electrode supported solid oxide fuel cell
JP2015115274A (en) * 2013-12-13 2015-06-22 株式会社リケン Solid oxide fuel battery of fuel-electrode-support type

Similar Documents

Publication Publication Date Title
US7659025B2 (en) Electrode-supported solid state electrochemical cell
KR100437498B1 (en) Anode-supported tubular solid oxide fuel cell stack and fabrication method of it
US20030175573A1 (en) Single cell and stack structure for solid oxide fuel cell stacks
EP1768208A2 (en) High performance anode-supported solid oxide fuel cell
US5244753A (en) Solid electrolyte fuel cell and method for manufacture of same
Guo et al. Electrical and stability performance of anode-supported solid oxide fuel cells with strontium-and magnesium-doped lanthanum gallate thin electrolyte
US5314508A (en) Solid electrolyte fuel cell and method for manufacture of same
US5676806A (en) Method for applying a cermet electrode layer to a sintered electrolyte and electrochemical reactor
KR101179130B1 (en) Segment-in-series type sofc sub-module, preparation method thereof and segment-in-series type sofc module using the same
Liu et al. Fabrication and characterization of a co-fired La0. 6Sr0. 4Co0. 2Fe0. 8O3− δ cathode-supported Ce0. 9Gd0. 1O1. 95 thin-film for IT-SOFCs
JP4534188B2 (en) Fuel cell electrode material and solid oxide fuel cell using the same
KR101341969B1 (en) Segment-in-series type sofc sub-module, manufacturing method thereof and segment-in-series type sofc module using the same
JPH11219710A (en) Electrode of solid electrolyte fuel cell and manufacture thereof
Han et al. Fabrication and properties of anode-supported solid oxide fuel cell
KR100941976B1 (en) Thick-film electrolyte-supported solid oxide fuel cells and manufacturing method thereof
Kikuta et al. Fabrication and characterization of microtubular and flattened ribbed SOFCs prepared by the multi-dip coating and co-firing
JP2007250266A (en) Solid oxide fuel cell stack and its manufacturing method
JPH09259895A (en) Electrode base of solid electrolytic fuel cell
JPH1167226A (en) Fuel electrode of fuel cell and its manufacture
EP2333888B1 (en) Low-Resistance ceramic electrode for a solid oxide fuel cell
JP2947495B2 (en) Fuel electrode fabrication method for solid oxide fuel cells
JPH1186886A (en) Solid electrolyte fuel cell
US20060240314A1 (en) Electrode for fuel cell and solid oxide fuel cell using the same
JP3257363B2 (en) Solid oxide fuel cell
JPH10144337A (en) Fuel electrode of solid electrolytic fuel cell and manufacture thereof