JPH1164318A - Method for determining element contained in liquid chemical - Google Patents

Method for determining element contained in liquid chemical

Info

Publication number
JPH1164318A
JPH1164318A JP23081697A JP23081697A JPH1164318A JP H1164318 A JPH1164318 A JP H1164318A JP 23081697 A JP23081697 A JP 23081697A JP 23081697 A JP23081697 A JP 23081697A JP H1164318 A JPH1164318 A JP H1164318A
Authority
JP
Japan
Prior art keywords
liquid chemical
liquid
analyzed
aqueous solution
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23081697A
Other languages
Japanese (ja)
Inventor
Kikuo Takeda
菊男 竹田
Satoru Watanabe
悟 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUMIKA BUNSEKI CENTER KK
Sumitomo Chemical Co Ltd
Original Assignee
SUMIKA BUNSEKI CENTER KK
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUMIKA BUNSEKI CENTER KK, Sumitomo Chemical Co Ltd filed Critical SUMIKA BUNSEKI CENTER KK
Priority to JP23081697A priority Critical patent/JPH1164318A/en
Publication of JPH1164318A publication Critical patent/JPH1164318A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method by which a trace element contained in a liquid chemical used in the field of electronic industry at a level of 10 wt.ppt can be determined accurately. SOLUTION: In a method for determining element contained in liquid chemical, at least one kind of trace element selected from among zinc, germanium, zirconium, cadmium, tin, and antimony contained in a liquid chemical is determined. The method comprises a first step of collecting a sample from the liquid chemical in a container, a second step of adding sulfuric acid and/or phosphoric acid to the sample, and a third step of obtaining a concentrated residue by evaporating the sample by heating the container containing the sample. The method also comprises a fourth step of obtaining an aqueous solution by dissolving the residue in water or an acidic solution by adding the water or acidic solution to the residue, and a fifth step of carrying out quantitative analysis on the aqueous solution for determining the element.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液体薬品中の元素
の定量方法に関するものである。更に詳しくは、本発明
は、液体薬品に存在する、亜鉛、ゲルマニウム、ジルコ
ニウム、カドミウム、スズ及びアンチモンからなる群か
ら選ばれる少なくとも一種の元素を定量分析する方法で
あって、分析の前工程において液体薬品中の元素の一部
が飛散又は不溶化等の原因で損失するという重大な問題
を解消し、よって、例えば電子工業分野で使用される液
体薬品中に存在する100重量pptレベル以下の超微
量の元素を、正確に定量し得る液体薬品中の元素の定量
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for determining an element in a liquid drug. More specifically, the present invention relates to a method for quantitatively analyzing at least one element selected from the group consisting of zinc, germanium, zirconium, cadmium, tin and antimony, which is present in a liquid chemical, wherein the liquid is used in a pre-analysis step. Eliminates the serious problem that some of the elements in the chemicals are lost due to scattering or insolubilization, etc., so that, for example, very small amounts of 100 wt. TECHNICAL FIELD The present invention relates to a method for quantifying an element in a liquid drug capable of accurately quantifying the element.

【0002】[0002]

【従来の技術】電子工業で使用する薬品は不純物元素を
可能な限り低減した高純度の薬品が必要である。特に半
導体の集積度が増すに従って、より不純物元素の少ない
高純度薬品が必要になっている。従って、これら高純度
薬品中の不純物元素を正確に定量することは重要なこと
である。これまで、高純度薬品中の不純物元素の定量法
としては、例えば高純度薬品を容器中で加熱濃縮したの
ち、誘導結合プラズマ質量分析法、原子吸光法、誘導結
合プラズマ発光分析法などで定量する方法が知られてい
る。しかしながら、従来の方法は、100重量ppt以
下のレベルでの正確な定量を行うという点において、必
ずしも満足し得るものではなかった。特に、分析の前処
理工程において、液体薬品中の元素の一部が、飛散や不
溶化等により損失するという重大な問題があった。
2. Description of the Related Art Chemicals used in the electronics industry require high-purity chemicals in which impurity elements are reduced as much as possible. In particular, as the degree of integration of semiconductors increases, high-purity chemicals with fewer impurity elements are required. Therefore, it is important to accurately determine the impurity elements in these high-purity chemicals. Heretofore, as a method for quantifying impurity elements in high-purity chemicals, for example, high-purity chemicals are heated and concentrated in a container, and then quantified by inductively coupled plasma mass spectrometry, atomic absorption spectrometry, inductively coupled plasma emission spectrometry, or the like. Methods are known. However, the conventional method has not always been satisfactory in that accurate quantification at a level of 100 weight ppt or less is performed. In particular, there is a serious problem that some of the elements in the liquid chemical are lost due to scattering, insolubilization, and the like in the pretreatment step of the analysis.

【0003】[0003]

【発明が解決しようとする課題】かかる状況のもと、本
発明が解決しようとする課題は、液体薬品中に存在す
る、亜鉛、ゲルマニウム、ジルコニウム、カドミウム、
スズ及びアンチモンからなる群から選ばれる少なくとも
一種の元素を定量分析する方法であって、分析の前処理
工程において、液体薬品中の元素の一部が、飛散や不溶
化等により損失するという重大な問題を解消し、よっ
て、例えば電子工業分野で使用される液体薬品中に存在
する100重量pptレベル以下の超微量の元素を、正
確に定量し得る液体薬品中の元素の定量方法を提供する
点に存するものである。
Under these circumstances, the problem to be solved by the present invention is to solve the problems of zinc, germanium, zirconium, cadmium,
This is a method for quantitatively analyzing at least one element selected from the group consisting of tin and antimony, and in the pretreatment step of analysis, a serious problem that some of the elements in the liquid chemical are lost due to scattering or insolubilization. Accordingly, the present invention provides a method for quantitatively determining an element in a liquid chemical capable of accurately determining an ultra-trace element having a level of 100 wt. Ppt or less present in a liquid chemical used in the electronics industry, for example. It exists.

【0004】[0004]

【課題を解決するための手段】すなわち、本発明は、液
体薬品中に存在する、亜鉛、ゲルマニウム、ジルコニウ
ム、カドミウム、スズ及びアンチモンからなる群から選
ばれる少なくとも一種の元素を定量分析する方法であっ
て、下記[第一工程]〜[第五工程]を含む液体薬品中
の元素の定量方法に係るものである。 [第一工程]:分析に供する液体薬品を容器に採取する
工程 [第二工程]:第一工程において採取した液体薬品に、
硫酸及び/又はリン酸を添加する工程 [第三工程]:第二工程後の液体薬品を含む容器を加熱
し、液体を蒸発濃縮し、濃縮残渣を得る工程 [第四工程]:第三工程で得た濃縮残渣に、水又は酸性
水溶液を添加し、濃縮残渣を溶解した水溶液を得る工程 [第五工程]:第四工程で得た水溶液について、前記元
素の定量分析を行う工程
That is, the present invention is a method for quantitatively analyzing at least one element selected from the group consisting of zinc, germanium, zirconium, cadmium, tin and antimony, which is present in a liquid chemical. Thus, the present invention relates to a method for quantifying an element in a liquid chemical, comprising the following [first step] to [fifth step]. [First step]: a step of collecting a liquid medicine to be analyzed in a container [Second step]: A step of collecting the liquid medicine collected in the first step
Step of adding sulfuric acid and / or phosphoric acid [Third step]: heating the container containing the liquid chemical after the second step, evaporating and concentrating the liquid to obtain a concentrated residue [Fourth step]: Third step Step of adding water or an acidic aqueous solution to the concentrated residue obtained in the above to obtain an aqueous solution in which the concentrated residue is dissolved [Fifth step]: a step of performing quantitative analysis of the above-mentioned elements in the aqueous solution obtained in the fourth step

【0005】[0005]

【発明の実施の形態】本発明において分析に供される液
体薬品としては、特に制限はないが、本発明の優れた効
果を十分に享有し得るもののひとつとして、電子工業薬
品用液体薬品をあげることができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Liquid chemicals to be analyzed in the present invention are not particularly limited. One of the liquid chemicals that can fully enjoy the excellent effects of the present invention is a liquid chemical for electronic industrial chemicals. be able to.

【0006】液体薬品の具体例として、過酸化水素水、
塩酸、硝酸、アンモニア水若しくは純水又はこれらの混
合物をあげることができる。この場合、薬品中に存在す
る分析すべき各元素の各含有量は100重量ppt以下
であることが好ましい。
[0006] Specific examples of liquid chemicals include aqueous hydrogen peroxide,
Examples include hydrochloric acid, nitric acid, aqueous ammonia or pure water or a mixture thereof. In this case, it is preferable that each content of each element to be analyzed present in the chemical is not more than 100 weight ppt.

【0007】本発明が分析の対象とする元素は、亜鉛、
ゲルマニウム、ジルコニウム、カドミウム、スズ及びア
ンチモンからなる群から選ばれる少なくとも一種の元素
である。
The elements analyzed by the present invention are zinc,
At least one element selected from the group consisting of germanium, zirconium, cadmium, tin and antimony.

【0008】本発明の第一工程は、分析に供する液体薬
品を容器に採取する工程である。容器としては、石英製
又はフッ素樹脂製のビーカー、三角フラスコ、蒸発皿等
が好ましい。液体薬品が塩酸、硝酸、過酸化水素水、純
水、すなわち酸性から中性の場合は石英を、アルカリ性
であるアンモニア水の場合にはフッ素樹脂製を使用した
方がよいが、これに限定されるものではない。フッ素樹
脂としては特にPTFEやPFAが推奨される。特に合
成石英製のビーカー、三角フラスコ、蒸発皿を使用する
と加熱容器からの汚染(コンタミネーション)がより防
止でき、一層正確な定量が実施できる。なお、容器全体
が石英又はフッ素樹脂であることは必ずしも必要ではな
く、液体と接触する容器内表面が石英又はフッ素樹脂で
加工されておればよい。採取する液体薬品の量は、特に
限定されないが、操作の容易さからの観点から、10〜
2000gであることが好ましい。
The first step of the present invention is a step of collecting a liquid chemical to be analyzed in a container. As the container, a beaker made of quartz or fluororesin, an Erlenmeyer flask, an evaporating dish, and the like are preferable. It is better to use quartz if the liquid chemical is hydrochloric acid, nitric acid, aqueous hydrogen peroxide, pure water, that is, from acidic to neutral, and to use fluorine resin if the aqueous ammonia is alkaline, but it is limited to this. Not something. PTFE and PFA are particularly recommended as the fluororesin. In particular, when a synthetic quartz beaker, an Erlenmeyer flask, and an evaporating dish are used, contamination from the heating vessel can be further prevented, and more accurate quantification can be performed. It is not always necessary that the entire container is made of quartz or fluororesin, and it is sufficient that the inner surface of the container that comes into contact with the liquid is processed with quartz or fluororesin. The amount of the liquid chemical to be collected is not particularly limited, but from the viewpoint of easiness of operation, 10 to
Preferably, it is 2000 g.

【0009】本発明の第二工程は、第一工程において採
取した液体薬品に、硫酸及び/又はリン酸を添加する工
程である。硫酸とリン酸の添加は、単独で添加してもよ
く、混合して用いてもよい。添加する硫酸とリン酸の濃
度は特に制限されるものではない。96重量%硫酸又は
85重量%リン酸の場合は、添加量として、0.005
〜0.1mlであることが好ましい。該添加量が過少で
あると第三工程時に液体薬品中の元素の一部が損失し、
分析の正確さが失われる場合があり、一方該添加量が過
多であると硫酸中やリン酸中の不純物が定量を妨害する
場合がある。
The second step of the present invention is a step of adding sulfuric acid and / or phosphoric acid to the liquid chemical collected in the first step. Sulfuric acid and phosphoric acid may be added alone or as a mixture. The concentrations of sulfuric acid and phosphoric acid to be added are not particularly limited. In the case of 96% by weight sulfuric acid or 85% by weight phosphoric acid, 0.005%
Preferably it is ~ 0.1 ml. If the amount is too small, some of the elements in the liquid drug are lost during the third step,
The accuracy of the analysis may be lost, while if the amount is too large, impurities in the sulfuric acid or phosphoric acid may interfere with the quantification.

【0010】本発明の第三工程は、第二工程後の液体薬
品を含む容器を加熱し、液体を蒸発濃縮し、濃縮残渣を
得る工程である。加熱は、通常、クリーンドラフト中に
設置したホットプレート上で実施される。加熱温度は特
に限定されないが、通常は60〜250℃で実施するの
が、経済的分析時間の点から望ましい。加熱濃縮の雰囲
気圧力は特に限定されない。
The third step of the present invention is a step of heating the container containing the liquid chemical after the second step, evaporating and concentrating the liquid to obtain a concentrated residue. The heating is usually performed on a hot plate installed in a clean draft. The heating temperature is not particularly limited, but it is usually preferable to carry out the heating at 60 to 250 ° C. from the viewpoint of economic analysis time. The atmospheric pressure of the heat concentration is not particularly limited.

【0011】本発明の第四工程は、第三工程で得た濃縮
残渣に、水又は酸性水溶液を添加し、濃縮残渣を溶解し
た水溶液を得る工程である。すなわち、第三工程で得た
濃縮残渣を冷却した後、水又は酸性水溶液を添加するの
であるが、酸性水溶液としては硝酸水溶液が好ましい。
水又は酸性水溶液の添加量は、通常1〜50g程度であ
る。
The fourth step of the present invention is a step of adding water or an acidic aqueous solution to the concentrated residue obtained in the third step to obtain an aqueous solution in which the concentrated residue is dissolved. That is, after cooling the concentrated residue obtained in the third step, water or an acidic aqueous solution is added, and the acidic aqueous solution is preferably a nitric acid aqueous solution.
The amount of water or acidic aqueous solution is usually about 1 to 50 g.

【0012】本発明の第五工程は、第四工程で得た水溶
液について、前記元素の定量分析を行う工程である。定
量分析は、通常、誘導結合プラズマ質量分析法(Induct
ively Coupled Plasma Mass Spectrometry)、誘導結合
プラズマ発光分析法(Inductively Coupled Plasma Ato
mic Emission Spectrometry)又は原子吸光法(Atomic
Absorption Spectrometry)で行われる。なお、元素の
濃度算出は外部標準を用いる絶対検量線法、内部標準法
又は標準添加法のいずれでもよい。
The fifth step of the present invention is a step of quantitatively analyzing the above-mentioned elements in the aqueous solution obtained in the fourth step. Quantitative analysis is usually performed by inductively coupled plasma mass spectrometry (Induct
actively Coupled Plasma Mass Spectrometry, Inductively Coupled Plasma Ato
mic Emission Spectrometry or atomic absorption method (Atomic
Absorption Spectrometry). The element concentration may be calculated by any of an absolute calibration method using an external standard, an internal standard method and a standard addition method.

【0013】本発明の最大の特徴は、液体薬品中に含ま
れる前記の特定の元素を極めて正確に定量分析する際
に、第二工程において、硫酸及び/又はリン酸を用いる
点にある。このことにより、続く第三工程で行われる加
熱による液体の蒸発濃縮に伴う元素の損失を極めて効率
的に防止し、正確な定量分析をなし得るのである。
The most important feature of the present invention resides in that sulfuric acid and / or phosphoric acid is used in the second step when the specific element contained in the liquid chemical is quantitatively analyzed with high accuracy. This makes it possible to extremely efficiently prevent the loss of elements due to the evaporation and concentration of the liquid due to the heating performed in the subsequent third step, and perform accurate quantitative analysis.

【0014】なお、本発明の実施にあたっては、前記の
全元素を同時に測定してもよく、これらの内から選ばれ
た特定の元素のみを定量してもよい。また、上記の元素
以外の他の元素を平行して測定することもできる。
In practicing the present invention, all of the above elements may be measured simultaneously, or only a specific element selected from these elements may be determined. Further, other elements other than the above elements can be measured in parallel.

【0015】[0015]

【実施例】次に、実施例により本発明を説明する。な
お、「ppt」は「重量ppt」である。
Next, the present invention will be described by way of examples. Note that “ppt” is “weight ppt”.

【0016】実施例1 超純水300gを合成石英製三角フラスコに採り、表1
に示した元素を超純水に対して10重量pptに相当す
る量を添加し、これに96重量%硫酸0.01mlを添
加し、クリーンドラフト内に設置したホットプレート上
で加熱し、試料の水を蒸発させた。蒸発残渣を3%硝酸
で溶解し、全体を5mlに調節した後、誘導結合プラズ
マ質量分析法で定量した。得られた定量値から回収率
〔(定量された量/添加した量)×100〕を表1に示
した。試験した6元素全てが定量的に回収され分析でき
ることがわかった。
Example 1 300 g of ultrapure water was placed in a synthetic quartz Erlenmeyer flask.
Was added to the ultrapure water in an amount corresponding to 10 wt. Ppt, 0.01 ml of 96 wt% sulfuric acid was added thereto, and the mixture was heated on a hot plate installed in a clean draft to obtain a sample. The water was evaporated. The evaporation residue was dissolved in 3% nitric acid, the whole was adjusted to 5 ml, and quantified by inductively coupled plasma mass spectrometry. Table 1 shows the recovery rate ((quantified amount / added amount) × 100) from the obtained quantitative value. It was found that all six tested elements could be quantitatively recovered and analyzed.

【0017】実施例2 96重量%硫酸の添加量を0.03mlに変更した以外
は実施例1と同様に試験した。得られた結果を表1に示
した。試験した6元素全てが定量的に回収され分析でき
ることがわかった。
Example 2 A test was conducted in the same manner as in Example 1 except that the amount of 96% by weight sulfuric acid was changed to 0.03 ml. Table 1 shows the obtained results. It was found that all six tested elements could be quantitatively recovered and analyzed.

【0018】実施例3 超純水300gを合成石英製三角フラスコに採り、表1
に示した元素を超純水に対して10重量pptに相当す
る量を添加し、これに85重量%リン酸0.01mlを
添加し、クリーンドラフト内に設置したホットプレート
上で加熱し、試料の水を蒸発させた。蒸発残渣を3%硝
酸で溶解し、全体を5mlに調節した後、誘導結合プラ
ズマ質量分析法で定量した。得られた定量値から回収率
〔(定量された量/添加した量)×100〕を表1に示
した。アンチモンを除いて試験した5元素全てが定量的
に回収され分析できることがわかった。試験に使用した
リン酸中にアンチモンが存在していた為、アンチモンは
定量しなかった。
Example 3 300 g of ultrapure water was placed in a synthetic quartz Erlenmeyer flask.
Was added to the ultrapure water in an amount corresponding to 10 wt. Ppt, 0.01 ml of 85 wt.% Phosphoric acid was added thereto, and the mixture was heated on a hot plate installed in a clean draft to obtain a sample. Water was evaporated. The evaporation residue was dissolved in 3% nitric acid, the whole was adjusted to 5 ml, and quantified by inductively coupled plasma mass spectrometry. Table 1 shows the recovery rate ((quantified amount / added amount) × 100) from the obtained quantitative value. It was found that all the five tested elements except for antimony could be quantitatively recovered and analyzed. Antimony was not quantified because antimony was present in the phosphoric acid used in the test.

【0019】実施例4 85重量%リン酸の添加量を0.03mlに変更した以
外は実施例1と同様に試験した。得られた結果を表1に
示した。アンチモンを除いて試験した5元素全てが定量
的に回収され分析できることがわかった。試験に使用し
たリン酸中にアンチモンが存在していた為、アンチモン
は定量しなかった。
Example 4 A test was conducted in the same manner as in Example 1 except that the amount of 85% by weight phosphoric acid was changed to 0.03 ml. Table 1 shows the obtained results. It was found that all the five tested elements except for antimony could be quantitatively recovered and analyzed. Antimony was not quantified because antimony was present in the phosphoric acid used in the test.

【0020】比較例1 超純水300gを合成石英製三角フラスコに採り、表1
に示した元素を超純水に対して10重量pptに相当す
る量を添加し、クリーンドラフト内に設置したホットプ
レート上で加熱し、試料の水を蒸発させた。蒸発残渣を
3%硝酸で溶解し、全体を5mlに調節した後、誘導結
合プラズマ質量分析法で定量した。得られた定量値から
回収率〔(定量された量/添加した量)×100〕を表
1に示した。
Comparative Example 1 300 g of ultrapure water was placed in a synthetic quartz Erlenmeyer flask.
Was added to the ultrapure water in an amount corresponding to 10 wt. Ppt, and heated on a hot plate installed in a clean draft to evaporate the water of the sample. The evaporation residue was dissolved in 3% nitric acid, the whole was adjusted to 5 ml, and quantified by inductively coupled plasma mass spectrometry. Table 1 shows the recovery rate ((quantified amount / added amount) × 100) from the obtained quantitative value.

【0021】実施例5 超純水50gを合成石英製蒸発皿に採り、表2に示した
元素を超純水に対して50重量pptに相当する量を添
加し、これに96重量%硫酸0.01mlを添加し、ク
リーンドラフト内に設置したホットプレート上で加熱
し、試料の水を蒸発させた。蒸発残渣を3%硝酸で溶解
し、全体を5mlに調節した後、誘導結合プラズマ質量
分析法で定量した。得られた定量値から回収率〔(定量
された量/添加した量)×100〕を表2に示した。試
験した6元素全てが定量的に回収され分析できることが
わかった。
Example 5 50 g of ultrapure water was placed in an evaporating dish made of synthetic quartz, and the elements shown in Table 2 were added to the ultrapure water in an amount corresponding to 50 weight parts per weight (ppt). .01 ml was added and heated on a hot plate set in a clean draft to evaporate water of the sample. The evaporation residue was dissolved in 3% nitric acid, the whole was adjusted to 5 ml, and quantified by inductively coupled plasma mass spectrometry. Table 2 shows a recovery rate ((quantified amount / added amount) × 100) from the obtained quantitative value. It was found that all six tested elements could be quantitatively recovered and analyzed.

【0022】実施例6 96重量%硫酸の添加量を0.03mlに変更した以外
は実施例2と同様に試験した。得られた結果を表2に示
した。試験した6元素全てが定量的に回収され分析でき
ることがわかった。
Example 6 A test was conducted in the same manner as in Example 2 except that the amount of 96% by weight sulfuric acid was changed to 0.03 ml. Table 2 shows the obtained results. It was found that all six tested elements could be quantitatively recovered and analyzed.

【0023】実施例7 高純度薬品として、35%過酸化水素水、20%塩酸、
68%硝酸を各々表3に示した量を合成石英製ビーカー
に採り、96重量%硫酸0.01mlを添加し、クリー
ンドラフト内に設置したホットプレート上で加熱して蒸
発させた。蒸発残渣を3%硝酸で溶解し、全体を5ml
に調節した後、誘導結合プラズマ質量分析法で定量し
た。得られた結果を表3に示した。本方法によりいずれ
の高純度薬品についても極めて精度よく定量できること
がわかった。
Example 7 As high purity chemicals, 35% aqueous hydrogen peroxide, 20% hydrochloric acid,
68% nitric acid was placed in a synthetic quartz beaker in the amount shown in Table 3, and 0.01 ml of 96% by weight sulfuric acid was added thereto, and the mixture was heated and evaporated on a hot plate installed in a clean draft. Dissolve the evaporation residue with 3% nitric acid,
, And quantified by inductively coupled plasma mass spectrometry. Table 3 shows the obtained results. It was found that this method allows extremely high-precision quantification of any high-purity chemical.

【0024】実施例8 30%アンモニア水を表3に示した量をPTFE製ビー
カーに採り、85重量%リン酸0.01mlを添加し、
クリーンドラフト内に設置したホットプレート上で加熱
して蒸発させた。蒸発残渣を3%硝酸で溶解し、全体を
5mlに調節した後、誘導結合プラズマ質量分析法で定
量した。得られた結果を表3に示した。本方法によりの
高純度アンモニア水についても極めて精度よく定量でき
ることがわかった。
Example 8 30% ammonia water was placed in a PTFE beaker in the amount shown in Table 3, and 0.01 ml of 85% by weight phosphoric acid was added.
It was heated and evaporated on a hot plate installed in a clean draft. The evaporation residue was dissolved in 3% nitric acid, the whole was adjusted to 5 ml, and quantified by inductively coupled plasma mass spectrometry. Table 3 shows the obtained results. It was found that high-purity aqueous ammonia could be quantified with high accuracy by this method.

【0025】[0025]

【表1】 表1の各元素の添加量は10重量pptである[Table 1] The addition amount of each element in Table 1 is 10 weight parts per weight.

【0026】[0026]

【表2】 表2の各元素の添加量は50重量pptである[Table 2] The addition amount of each element in Table 2 is 50 weight ppt.

【0027】[0027]

【表3】 [Table 3]

【0028】[0028]

【発明の効果】以上説明したとおり、本発明により、液
体薬品中に存在する、亜鉛、ゲルマニウム、ジルコニウ
ム、カドミウム、スズ及びアンチモンからなる群から選
ばれる少なくとも一種の元素を定量分析する方法であっ
て、分析の前処理工程において液体薬品中の元素の一部
が飛散や不溶化等の原因で損失するという重大な問題を
解消し、よって、例えば電子工業分野で使用される液体
薬品中に存在する10重量pptレベルの超微量の元素
を、正確に定量し得る液体薬品中の元素の定量方法を提
供することができた。
As described above, according to the present invention, there is provided a method for quantitatively analyzing at least one element selected from the group consisting of zinc, germanium, zirconium, cadmium, tin and antimony, which is present in a liquid chemical. It eliminates the serious problem that some of the elements in the liquid chemical are lost due to scattering, insolubilization, etc. in the pretreatment step of the analysis. It is possible to provide a method for quantifying an element in a liquid chemical, which can accurately determine an ultra-trace element at a weight level of ppt.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 液体薬品中に存在する、亜鉛、ゲルマニ
ウム、ジルコニウム、カドミウム、スズ及びアンチモン
からなる群から選ばれる少なくとも一種の元素を定量分
析する方法であって、下記[第一工程]〜[第五工程]
を含む液体薬品中の元素の定量方法。 [第一工程]:分析に供する液体薬品を容器に採取する
工程 [第二工程]:第一工程において採取した液体薬品に、
硫酸及び/又はリン酸を添加する工程 [第三工程]:第二工程後の液体薬品を含む容器を加熱
し、液体を蒸発濃縮し、濃縮残渣を得る工程 [第四工程]:第三工程で得た濃縮残渣に、水又は酸性
水溶液を添加し、濃縮残渣を溶解した水溶液を得る工程 [第五工程]:第四工程で得た水溶液について、前記元
素の定量分析を行う工程
1. A method for quantitatively analyzing at least one element selected from the group consisting of zinc, germanium, zirconium, cadmium, tin and antimony, which is present in a liquid chemical, comprising the following [first step] to [ Fifth step]
For the determination of elements in liquid chemicals containing [First step]: a step of collecting a liquid medicine to be analyzed in a container [Second step]: A step of collecting the liquid medicine collected in the first step
Step of adding sulfuric acid and / or phosphoric acid [Third step]: heating the container containing the liquid chemical after the second step, evaporating and concentrating the liquid to obtain a concentrated residue [Fourth step]: Third step Step of adding water or an acidic aqueous solution to the concentrated residue obtained in the above to obtain an aqueous solution in which the concentrated residue is dissolved [Fifth step]: a step of performing quantitative analysis of the above-mentioned elements in the aqueous solution obtained in the fourth step
【請求項2】 分析に供する液体薬品が、電子工業薬品
用液体薬品である請求項1記載の方法。
2. The method according to claim 1, wherein the liquid chemical to be analyzed is a liquid chemical for electronic industrial chemicals.
【請求項3】 分析に供する液体薬品が、過酸化水素
水、塩酸、硝酸、アンモニア水若しくは純水又はこれら
の混合物である請求項1記載の方法。
3. The method according to claim 1, wherein the liquid chemical to be analyzed is aqueous hydrogen peroxide, hydrochloric acid, nitric acid, aqueous ammonia, pure water, or a mixture thereof.
【請求項4】 分析に供する液体薬品が、過酸化水素
水、塩酸、硝酸、アンモニア水若しくは純水又はこれら
の混合物であり、その中に存在する被定量各元素の各含
有量が100重量ppt以下である請求項1記載の方
法。
4. A liquid chemical to be analyzed is aqueous hydrogen peroxide, hydrochloric acid, nitric acid, ammonia water or pure water or a mixture thereof, and the content of each element to be determined present therein is 100 weight parts per weight (ppt). The method of claim 1, wherein:
【請求項5】 第一工程の容器が、石英製又はフッ素樹
脂製である請求項1記載の方法。
5. The method according to claim 1, wherein the container in the first step is made of quartz or fluororesin.
【請求項6】 第五工程で行う定量が、誘導結合プラズ
マ質量分析法、誘導結合プラズマ発光分析法又は原子吸
光法により行われる請求項1記載の方法。
6. The method according to claim 1, wherein the quantification performed in the fifth step is performed by inductively coupled plasma mass spectrometry, inductively coupled plasma optical emission spectrometry, or atomic absorption spectrometry.
JP23081697A 1997-08-27 1997-08-27 Method for determining element contained in liquid chemical Pending JPH1164318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23081697A JPH1164318A (en) 1997-08-27 1997-08-27 Method for determining element contained in liquid chemical

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23081697A JPH1164318A (en) 1997-08-27 1997-08-27 Method for determining element contained in liquid chemical

Publications (1)

Publication Number Publication Date
JPH1164318A true JPH1164318A (en) 1999-03-05

Family

ID=16913734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23081697A Pending JPH1164318A (en) 1997-08-27 1997-08-27 Method for determining element contained in liquid chemical

Country Status (1)

Country Link
JP (1) JPH1164318A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075310A (en) * 2001-09-03 2003-03-12 Mitsubishi Gas Chem Co Inc Method for analyzing of metal component in high-purity admantanes
CN111579349A (en) * 2020-06-09 2020-08-25 福建天甫电子材料有限公司 Method for preparing ICP-MS sample by concentration

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075310A (en) * 2001-09-03 2003-03-12 Mitsubishi Gas Chem Co Inc Method for analyzing of metal component in high-purity admantanes
JP4671012B2 (en) * 2001-09-03 2011-04-13 三菱瓦斯化学株式会社 Method for analyzing metal components of high purity adamantanes
CN111579349A (en) * 2020-06-09 2020-08-25 福建天甫电子材料有限公司 Method for preparing ICP-MS sample by concentration

Similar Documents

Publication Publication Date Title
Ridout et al. Determination of trace elements in a marine reference material of lobster hepatopancreas (TORT-1) using inductively coupled plasma mass spectrometry
Balcone‐Boissard et al. Simultaneous determination of fluorine, chlorine, bromine and iodine in six geochemical reference materials using pyrohydrolysis, ion chromatography and inductively coupled plasma‐mass spectrometry
Adeloju Comparison of some wet digestion and dry ashing methods for voltammetric trace element analysis
Prange et al. Determination of trace element impurities in ultrapure reagents by total reflection X-ray spectrometry
JPH1164318A (en) Method for determining element contained in liquid chemical
JP2008216211A (en) Method of determining quantity of trace element using inductively coupled plasma mass spectrometer
JPH10319008A (en) Quantitative analyzing method of element in liquid chemical
Paulsen et al. Analysis of ultrapure reagents from a large sub-boiling still made of Teflon PFA
JP3804864B2 (en) Impurity analysis method
JP4424831B2 (en) Sample concentration method for measuring trace metals in liquids
JP3495885B2 (en) Quantitative analysis of arsenic in liquid chemicals
Fuchs-Pohl et al. Determination of silicon traces in process chemicals for semiconductor production by ETAAS
Held et al. Determination of scandium in high-purity titanium using inductively coupled plasma mass spectrometry and glow discharge mass spectrometry as part of its certification as a reference material
Busheina et al. Determination of trace elements in gallium arsenide by graphite-furnace atomic absorption spectrometry after pretreatment in gas streams
JP3144066B2 (en) Determination of boron in sulfuric acid
Liu et al. Spectrophotometric and polarographic methods for the determination of silicon at ng/g levels in gallium arsenide
JP2002267634A (en) Method of analyzing impurity in silicon material
JP2017096865A (en) Assaying method for trace chlorine content
JP3824158B2 (en) Urea detection method
JP3810645B2 (en) Measuring method of nitrogen isotope ratio
JP2018009981A (en) Method for quantifying amount of silicon in metal material, method for dissolving metal material including silicon component, and metal material dissolution liquid
JPH06213805A (en) Etching method in ultramicroanalysis of metal on surface of silicon wafer
JPS622259B2 (en)
JP2004325380A (en) Quantitative determination method for micro amount of boron
JP3144065B2 (en) Determination of boron in sulfuric acid