JPH06213805A - Etching method in ultramicroanalysis of metal on surface of silicon wafer - Google Patents

Etching method in ultramicroanalysis of metal on surface of silicon wafer

Info

Publication number
JPH06213805A
JPH06213805A JP704793A JP704793A JPH06213805A JP H06213805 A JPH06213805 A JP H06213805A JP 704793 A JP704793 A JP 704793A JP 704793 A JP704793 A JP 704793A JP H06213805 A JPH06213805 A JP H06213805A
Authority
JP
Japan
Prior art keywords
silicon wafer
dew condensation
liquid
metal
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP704793A
Other languages
Japanese (ja)
Other versions
JP3477216B2 (en
Inventor
Kazuhiko Kubota
和彦 窪田
Hiroshi Arikane
宏 有金
Masayuki Yoshitomi
正行 吉富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP00704793A priority Critical patent/JP3477216B2/en
Publication of JPH06213805A publication Critical patent/JPH06213805A/en
Application granted granted Critical
Publication of JP3477216B2 publication Critical patent/JP3477216B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Weting (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To prevent contamination from chemical and to decrease contamination from a container by performing decomposition with the mixed vapor of nitric acid and hydrofluoric acid in a specified ratio, and analyzing liquid of dew condensation. CONSTITUTION:Aqueous solution containing nitric acid of 14.3-14.9mol/l and hydrofluoric acid of 1.1-0.2mol/l is heated. The very minute amount of metal in the layer down to the depth of 1mum from the oxide film of the surface of a wafer and a silicon-bulk surface layer is dissolved with the generated vapor and the liquid of dew condensation generated by the cooling at the surface of a silicon wafer. The liquid of dew condensation is analyzed. In order to perform the ultramicroanalysis of the metal on the surface of the wafer 1, the weight of the wafer 1 is measured. The amount of the liquid of the dew condensation is obtained based on the difference between the weight and the weight before the processing and the specific gravity of the liquid of the dew condensation, which is obtained beforehand. Then, the liquid of dew condensation is recovered with a micropipette and measured with a frameless atomic absorbing analyzer as a sample. The weight of the silicon wafer after drying is measured as required, and the etching amount is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はシリコンウェハ表面の酸
化膜及びシリコンバルク層に含有する超微量元素を定量
する前工程として、シリコンウェハの酸化膜およびシリ
コンバルク層をエッチングして超微量金属元素分析をす
るためのエッチング方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention, as a pre-process for quantifying ultra trace elements contained in an oxide film and a silicon bulk layer on the surface of a silicon wafer, etches the oxide film and the silicon bulk layer of a silicon wafer to obtain an ultra trace metal element. It relates to an etching method for making an analysis.

【0002】[0002]

【従来の技術】シリコンウェハ表面の超微量不純物金属
定量方法における表面分析方法としては次のようなもの
が挙げられる。密閉容器中にウェハを水平または垂直に
配置し、ふっ化水素酸を常温または加熱して気化させ、
約2時間放置させることによりふっ化水素ガスと酸化膜
が反応して分解されるというものである。(特開昭60
−69531号、特開平1−98944号)。しかしな
がらこの方法では、ふっ化水素酸ガスのみで表面を分解
するため分解に長持間を要し、シリコンよりイオン化傾
向の小さいCu等の金属は分解されないという問題があ
った。
2. Description of the Related Art The following are examples of surface analysis methods in the method for quantifying ultratrace impurity metals on the surface of a silicon wafer. Place the wafer horizontally or vertically in an airtight container and vaporize hydrofluoric acid at room temperature or by heating.
It is said that the hydrogen fluoride gas reacts with the oxide film to decompose when left for about 2 hours. (JP-A-60
-69531, JP-A-1-98944). However, this method has a problem in that the surface is decomposed only with hydrofluoric acid gas, which requires a long period of time for decomposition, and that metals such as Cu having a smaller ionization tendency than silicon are not decomposed.

【0003】またふっ化水素酸蒸気の変わりに混酸(2
0%ふっ化水素酸と30%硝酸)蒸気を用いてシリコン
ウェハ表面を分解し、試料溶液とする方法(特開平3−
188642号)があるが、この方法では定量するのに
十分な結露液が得られないために反応生成物を回収する
ための硝酸を加えている。これは、薬液からの汚染を防
止するための蒸気分解法と矛盾し、薬液の量が少ないと
はいえ汚染要因となるものである。
In addition to the hydrofluoric acid vapor, mixed acid (2
A method of decomposing the surface of a silicon wafer using a vapor of 0% hydrofluoric acid and 30% nitric acid to prepare a sample solution (JP-A-3-
No. 188642), but nitric acid for recovering the reaction product is added because a condensed liquid sufficient for quantification cannot be obtained by this method. This is inconsistent with the vapor decomposition method for preventing the contamination from the chemical liquid, and is a pollution factor even though the amount of the chemical liquid is small.

【0004】[0004]

【発明が解決しようとする課題】これら従来からの方法
では、ふっ化水素酸では酸化膜は分解されるがシリコ
ンバルク層が分解されないため真のシリコンウェハ表面
清浄度を評価できないこと、また、Cuなどの元素はシ
リコンウェハ表面に再析出し、測定ができないこと、
硝酸を添加することにより、薬液からの汚染が憂慮され
ることなどの問題があるものであった。従って、本発明
は上記したような問題を解消してなるシリコンウェハ表
面の超微量金属分析における改良されたエッチング方法
を提供することを目的とする。
In these conventional methods, the oxide film is decomposed by hydrofluoric acid, but the silicon bulk layer is not decomposed, so that the true cleanliness of the silicon wafer surface cannot be evaluated. Elements such as redeposit on the surface of the silicon wafer and cannot be measured,
The addition of nitric acid has a problem such as concern about contamination from the chemical solution. Therefore, an object of the present invention is to provide an improved etching method for ultra trace metal analysis of a silicon wafer surface, which solves the above problems.

【0005】[0005]

【課題を解決しようとするための手段】本発明は、硝酸
とふっ化水素酸とを混合した酸であって硝酸14.3〜
14.9mol/lおよびふっ化水素1.1〜0.2m
ol/lを含有する水溶液を加熱し発生する蒸気、及び
シリコンウェハ表面で冷却されて生じた結露液により、
シリコンウェハ表面酸化膜および/またはシリコンバル
ク表層から深さ1μmまでの層の超微量金属を溶解さ
せ、この結露液を分析することを特徴とするシリコンウ
ェハ表面の超微量金属分析におけるエッチング方法であ
る。
DISCLOSURE OF THE INVENTION The present invention is an acid obtained by mixing nitric acid and hydrofluoric acid.
14.9 mol / l and hydrogen fluoride 1.1-0.2 m
By the steam generated by heating the aqueous solution containing ol / l and the dew condensation liquid generated by cooling on the surface of the silicon wafer,
A method for etching ultra-trace amounts of metal on the surface of a silicon wafer, characterized in that an ultra-trace amount of metal in a layer from the silicon wafer surface oxide film and / or the silicon bulk surface layer to a depth of 1 μm is dissolved and the condensed liquid is analyzed. .

【0006】[0006]

【作用】このように本発明は、薬液からの汚染を回避
するために、薬液の蒸気を用いてシリコンウェハ表面を
分解する、分解ガスに酸化剤として硝酸を加え、硝酸
及びふっ化水素酸混合蒸気とすることによりシリコンを
エッチングする、同様に結露液中に硝酸を含むことに
より銅などの元素も溶解する、シリコンウェハ表面に
定量に必要十分な量(10〜1000μl)の反応分解
液を結露させる、薬剤を加えることなく結露液を分析
するというものであるため、装置、器具、薬液等の環境
からの汚染が排除され、超微量不純物金属を正確かつ迅
速に定量することができるものである。
As described above, according to the present invention, in order to avoid the contamination from the chemical solution, the surface of the silicon wafer is decomposed using the vapor of the chemical solution, nitric acid is added as an oxidant to the decomposition gas, and nitric acid and hydrofluoric acid are mixed. The vapor decomposes silicon, and the nitric acid contained in the dew condensation solution also dissolves elements such as copper. Dew condensation on the silicon wafer surface is sufficient (10-1000 μl) for the reaction decomposition solution. Since the condensation liquid is analyzed without adding chemicals, contamination from the environment such as devices, instruments, and chemical liquids is eliminated, and ultratrace impurity metals can be quantified accurately and quickly. .

【0007】本発明において、硝酸とふっ化水素酸とを
混合した酸における硝酸およびふっ化水素含有量をそれ
ぞれ上記のごとき特定範囲のものに限定するのは、この
特定範囲を逸脱すると、後述するように、シリコンウェ
ハ表面のエッチング量が適当なものとならない、あるい
は結露液の量がその後の定量分析に必要とされる量に満
たないものとなる虞れがあるためである。
In the present invention, the nitric acid and hydrogen fluoride contents in the mixed acid of nitric acid and hydrofluoric acid are limited to the above specific ranges, respectively, which will be described later when the specific ranges are exceeded. As described above, the amount of etching on the surface of the silicon wafer may not be appropriate, or the amount of the dew condensation liquid may be less than the amount required for the subsequent quantitative analysis.

【0008】また、本明細書において以後「混酸」と
は、硝酸とふっ化水素酸とを混合した酸であって硝酸1
4.3〜14.9mol/lおよびふっ化水素1.1〜
0.2mol/lを含有する水溶液をいい、また「シリ
コンバルク層」とはシリコンバルク表層から深さ1μm
までの層をいうものとする。
Further, in the present specification, the term "mixed acid" hereinafter means an acid obtained by mixing nitric acid and hydrofluoric acid, which means that nitric acid 1
4.3-14.9 mol / l and hydrogen fluoride 1.1-
It means an aqueous solution containing 0.2 mol / l, and the "silicon bulk layer" means a depth of 1 μm from the surface layer of the silicon bulk.
Up to layers.

【0009】本発明のシリコンウェハ表面のエッチング
方法は、具体的には例えば、(イ)底部及び側面底部を
十分加熱できる容器に硝酸とふっ化水素酸の混酸を入
れ、容器上部にシリコンウェハを水平に固定する、
(ロ)容器を加熱して硝酸とふっ化水素酸の混合蒸気を
発生させる、(ハ)混合蒸気はシリコンウェハ表面で冷
却されて結露し、この時シリコンウェハ表面の超微量金
属は結露液中に溶解する、そして(ニ)薬液を加えるこ
となく結露液を回収し分析試料とすることにより行なわ
れる。
The method for etching the surface of a silicon wafer according to the present invention is, for example, (a) placing a mixed acid of nitric acid and hydrofluoric acid in a container capable of sufficiently heating the bottom and the bottom of the side surface and placing the silicon wafer on the top of the container. Fixed horizontally,
(B) The container is heated to generate a mixed vapor of nitric acid and hydrofluoric acid. (C) The mixed vapor is cooled on the surface of the silicon wafer to cause dew condensation. At this time, the ultra-trace amount of metal on the surface of the silicon wafer is in the dew condensation liquid. And (d) collecting the condensed liquid as an analytical sample without adding a chemical liquid.

【0010】[0010]

【実施例】以下に本発明の一実施例を図面に基づき説明
する。図1は本発明の実施に用いる装置例の縦断面図で
ある。この装置を用いて本発明に係わるシリコンウェハ
表面の超微量金属分析を実施するには、以下のようにし
て行なわれる。まずシリコンウェハ1の重量を測定す
る。次いで、分解液加熱・蒸発容器2の底部及び側面
底部のヒータ3を加熱、混酸4を60〜65℃に保ち十
分な硝酸およびふっ化水素酸の混合蒸気を発生させる。
容器2上部の加熱されにくい位置に真空ピンセット6
によりシリコンウェハ1を水平に固定し、一定時間蒸気
に曝露する。シリコンウェハ1に接触した蒸気は表面
で冷却されて結露する。シリコンウェハ表面の結露液
をガス(清浄窒素等)を吹き付けて収集する。シリコ
ンウェハの重量を測定し、処理前の重量との差と予め求
めた結露液比重より結露液の量を求める。マイクロピ
ペットで結露液を回収、これを試料としてフレームレス
原子吸光分析(ICP−MS)装置で測定する。必要
に応じて乾燥後のシリコンウェハ重量を測定し、エッチ
ング量を求める。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a vertical sectional view of an example of an apparatus used for carrying out the present invention. To carry out ultratrace metal analysis on the surface of a silicon wafer according to the present invention using this apparatus, it is carried out as follows. First, the weight of the silicon wafer 1 is measured. Next, the heater 3 at the bottom of the decomposition liquid heating / evaporating vessel 2 and the bottom of the side surface are heated to keep the mixed acid 4 at 60 to 65 ° C. and generate a sufficient mixed vapor of nitric acid and hydrofluoric acid.
Vacuum tweezers 6 on the upper part of the container 2 where it is hard to heat
Then, the silicon wafer 1 is fixed horizontally and exposed to steam for a certain time. The vapor that has contacted the silicon wafer 1 is cooled on the surface and condenses. The condensation liquid on the surface of the silicon wafer is collected by spraying a gas (clean nitrogen or the like). The weight of the silicon wafer is measured, and the amount of the dew condensation liquid is obtained from the difference between the weight before the treatment and the previously determined specific gravity of the dew condensation liquid. The condensed liquid is collected with a micropipette, and this is used as a sample for measurement by a flameless atomic absorption spectrometry (ICP-MS) device. If necessary, the weight of the dried silicon wafer is measured to obtain the etching amount.

【0011】上記およびの工程における結果、シリ
コンウェハ表面の自然酸化膜及びシリコンバルク層の超
微量金属は、分解ガス及び結露液と反応し分解され、結
露液中に溶解する。従って、検出対象たる不純物は、
においてマイクロピペットで回収されるまでの間はシリ
コンウェハ表面の結露液中に存し、他の不純物を混入さ
せる要因となる位置変動を生じない。また、不純物の回
収に薬液を用いないので、薬液からの汚染を憂慮する必
要もない。
As a result of the above steps and, the ultra-trace amount metal of the native oxide film on the surface of the silicon wafer and the silicon bulk layer reacts with the decomposition gas and the dew condensation liquid to be decomposed and dissolved in the dew condensation liquid. Therefore, the impurities to be detected are
In (1), it remains in the dew condensation liquid on the surface of the silicon wafer until it is collected by the micropipette, and does not cause a positional change that causes mixing of other impurities. Further, since the chemical solution is not used for collecting impurities, it is not necessary to worry about the contamination from the chemical solution.

【0012】表1は、エッチング液として、硝酸水溶液
(68重量%硝酸)とふっ化水素酸(38重量%ふっ化
水素)との各種の混合比率の混合溶液を用い、これを加
熱し、蒸気を発生させて、シリコンウェハを蒸気エッチ
ングし、シリコンウェハ上に結露した結露液量とエッチ
ング量を観察した結果を示すものである。
Table 1 shows that, as an etching solution, a mixed solution of nitric acid aqueous solution (68% by weight nitric acid) and hydrofluoric acid (38% by weight hydrogen fluoride) having various mixing ratios was used. Fig. 3 shows the results of observing the amount of dew condensation on the silicon wafer and the etching amount by vapor-depositing the silicon wafer to vapor-etch it.

【0013】[0013]

【表1】 [Table 1]

【0014】表1に示すように、混合溶液におけるふっ
化水素酸の量が多いと瞬時に反応し多量にエッチングさ
れるがウェハ表面は乾燥し、結露液は得られなかった。
またふっ化水素酸を減少させると、徐々に結露液は増加
し、表1に示すように硝酸(68重量%)97:ふっ化
水素酸(37重量%)3の容積比率で混合した時が結露
液量が多く、エッチング量も適量で、また結露粒子の大
きさと分布も均一で最適であった。しかしながら、ふっ
化水素酸の量が極端に減少すると、エッチング量が不十
分なものとなってしまった。これらの結果から、本発明
おいて用いられる混酸における硝酸およびふっ化水素の
含有量は、それぞれ14.3〜14.9mol/lおよ
び1.1〜0.2mol/lと限定する。なお、図2
は、本発明に係わるこのような特定割合の混酸蒸気でエ
ッチングを行なった場合における曝露時間に対するエッ
チング深さ及び結露液量の一例を示したものである。
As shown in Table 1, when the amount of hydrofluoric acid in the mixed solution was large, it reacted instantly and a large amount was etched, but the wafer surface was dried and no dew condensation liquid was obtained.
When hydrofluoric acid was decreased, the amount of dew condensation liquid gradually increased, and as shown in Table 1, when mixed at a volume ratio of nitric acid (68% by weight) 97: hydrofluoric acid (37% by weight) 3. The amount of dew condensation liquid was large, the amount of etching was appropriate, and the size and distribution of dew condensation particles were uniform and optimum. However, when the amount of hydrofluoric acid was extremely reduced, the etching amount became insufficient. From these results, the contents of nitric acid and hydrogen fluoride in the mixed acid used in the present invention are limited to 14.3 to 14.9 mol / l and 1.1 to 0.2 mol / l, respectively. Note that FIG.
FIG. 4 shows an example of the etching depth and the amount of dew condensation liquid with respect to the exposure time when etching is performed with such a mixed acid vapor of a specific ratio according to the present invention.

【0015】[0015]

【発明の効果】以上説明したように、本発明は、薬品を
直接シリコンウェハ表面に滴下して分解するのではな
く、特定割合の硝酸及びふっ化水素酸混合蒸気で分解
し、結露液を分析するので、薬品からの汚染を防止で
き、更に全ての反応から回収に至るまで、測定しようと
するシリコンウェハ表面上で行い、別の容器に移すこと
がないので容器からの汚染を低減化できる。また混酸蒸
気により自然酸化膜のみならず、シリコンバルク層をも
分解し、測定対象とするのでシリコンウェハの清浄度管
理を向上できる。
As described above, according to the present invention, chemicals are not dropped directly on the surface of a silicon wafer for decomposition, but decomposed with a mixed vapor of nitric acid and hydrofluoric acid in a specific ratio to analyze the condensed liquid. Therefore, contamination from chemicals can be prevented, and further, from the reaction to the recovery, the contamination from the container can be reduced because it is not carried out on the surface of the silicon wafer to be measured and transferred to another container. Further, not only the natural oxide film but also the silicon bulk layer is decomposed by the mixed acid vapor to be a measurement target, so that the cleanliness control of the silicon wafer can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】は、本発明の実施に用いる表面分解装置の概略
縦断面図である。
FIG. 1 is a schematic vertical sectional view of a surface decomposition apparatus used for carrying out the present invention.

【図2】は、本発明の一実施例において得られた曝露時
間とエッチング深さ、結露液量の関係を示すグラフであ
る。
FIG. 2 is a graph showing the relationship between the exposure time, the etching depth, and the amount of dew condensation liquid obtained in one example of the present invention.

【符号の説明】[Explanation of symbols]

1…シリコンウェハ、2…加熱・蒸発容器、3…ヒータ
ー、4…硝酸+ふっ化水素酸、5…混酸蒸気、6…真空
ピンセット。
1 ... Silicon wafer, 2 ... Heating / evaporating container, 3 ... Heater, 4 ... Nitric acid + hydrofluoric acid, 5 ... Mixed acid vapor, 6 ... Vacuum tweezers.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年2月8日[Submission date] February 8, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図2[Name of item to be corrected] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図2】 ─────────────────────────────────────────────────────
[Fig. 2] ─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年2月26日[Submission date] February 26, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0010】[0010]

【実施例】以下に本発明の一実施例を図面に基づき説明
する。図1は本発明の実施に用いる装置例の縦断面図で
ある。この装置を用いて本発明に係わるシリコンウェハ
表面の超微量金属分析を実施するには、以下のようにし
て行なわれる。まずシリコンウェハ1の重量を測定す
る。次いで、分解液加熱・蒸発容器2の底部及び側面
底部のヒータ3を加熱、混酸4を75〜80℃に保ち十
分な硝酸およびふっ化水素酸の混合蒸気を発生させる。
容器2上部の加熱されにくい位置に真空ピンセット6
によりシリコンウェハ1を水平に固定し、一定時間蒸気
に曝露する。シリコンウェハ1に接触した蒸気は表面
で冷却されて結露する。シリコンウェハ表面の結露液
をガス(清浄窒素等)を吹き付けて収集する。シリコ
ンウェハの重量を測定し、処理前の重量との差と予め求
めた結露液比重より結露液の量を求める。マイクロピ
ペットで結露液を回収、これを試料としてフレームレス
原子吸光分析(ICP−MS)装置で測定する。必要
に応じて乾燥後のシリコンウェハ重量を測定し、エッチ
ング量を求める。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a vertical sectional view of an example of an apparatus used for carrying out the present invention. To carry out ultratrace metal analysis on the surface of a silicon wafer according to the present invention using this apparatus, it is carried out as follows. First, the weight of the silicon wafer 1 is measured. Then, the heater 3 at the bottom of the decomposition liquid heating / evaporating vessel 2 and the bottom of the side surface are heated to keep the mixed acid 4 at 75 to 80 ° C. and generate a sufficient mixed vapor of nitric acid and hydrofluoric acid.
Vacuum tweezers 6 on the upper part of the container 2 where it is hard to heat
Then, the silicon wafer 1 is fixed horizontally and exposed to steam for a certain time. The vapor that has contacted the silicon wafer 1 is cooled on the surface and condenses. The condensation liquid on the surface of the silicon wafer is collected by spraying a gas (clean nitrogen or the like). The weight of the silicon wafer is measured, and the amount of the dew condensation liquid is obtained from the difference between the weight before the treatment and the previously determined specific gravity of the dew condensation liquid. The condensed liquid is collected with a micropipette, and this is used as a sample for measurement by a flameless atomic absorption spectrometry (ICP-MS) device. If necessary, the weight of the dried silicon wafer is measured to obtain the etching amount.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 シリコンウェハ表面の超微量不純物金属
を定量するためのシリコンウェハ表面分解方法におい
て、硝酸とふっ化水素酸とを混合した酸であって硝酸1
4.3〜14.9mol/lおよびふっ化水素1.1〜
0.2mol/lを含有する水溶液を加熱し発生する蒸
気、及びシリコンウェハ表面で冷却されて生じた結露液
により、シリコンウェハ表面酸化膜および/またはシリ
コンバルク表層から深さ1μmまでの層の超微量金属を
溶解させ、この結露液を分析することを特徴とするシリ
コンウェハ表面の超微量金属分析におけるエッチング方
法。
1. A method for decomposing a silicon wafer surface for quantifying an ultratrace impurity metal on a surface of a silicon wafer, wherein the acid is a mixture of nitric acid and hydrofluoric acid.
4.3-14.9 mol / l and hydrogen fluoride 1.1-
Due to the vapor generated by heating an aqueous solution containing 0.2 mol / l, and the dew condensation liquid generated by cooling on the surface of the silicon wafer, the oxide film on the surface of the silicon wafer and / or the layer from the silicon bulk surface layer to a depth of 1 μm An etching method for ultra trace metal analysis of a silicon wafer surface, which comprises dissolving a trace amount of metal and analyzing the condensed liquid.
JP00704793A 1993-01-19 1993-01-19 Etching method for ultra-trace metal analysis on silicon wafer surface Expired - Fee Related JP3477216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00704793A JP3477216B2 (en) 1993-01-19 1993-01-19 Etching method for ultra-trace metal analysis on silicon wafer surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00704793A JP3477216B2 (en) 1993-01-19 1993-01-19 Etching method for ultra-trace metal analysis on silicon wafer surface

Publications (2)

Publication Number Publication Date
JPH06213805A true JPH06213805A (en) 1994-08-05
JP3477216B2 JP3477216B2 (en) 2003-12-10

Family

ID=11655147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00704793A Expired - Fee Related JP3477216B2 (en) 1993-01-19 1993-01-19 Etching method for ultra-trace metal analysis on silicon wafer surface

Country Status (1)

Country Link
JP (1) JP3477216B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003036706A1 (en) * 2001-10-24 2003-05-01 Sumitomo Mitsubishi Silicon Corporation Method and apparatus for etching silicon wafer and method for analysis of impurities
CN109772255A (en) * 2019-03-22 2019-05-21 核工业理化工程研究院 Reaction unit for rectangle stainless steel base metal coated plate
CN117168942A (en) * 2023-11-01 2023-12-05 山东有研艾斯半导体材料有限公司 Sampling method for detecting metal on surface of silicon wafer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003036706A1 (en) * 2001-10-24 2003-05-01 Sumitomo Mitsubishi Silicon Corporation Method and apparatus for etching silicon wafer and method for analysis of impurities
US7686973B2 (en) 2001-10-24 2010-03-30 Sumitomo Mitsubishi Silicon Corporation Silicon wafer etching method and apparatus, and impurity analysis method
CN109772255A (en) * 2019-03-22 2019-05-21 核工业理化工程研究院 Reaction unit for rectangle stainless steel base metal coated plate
CN117168942A (en) * 2023-11-01 2023-12-05 山东有研艾斯半导体材料有限公司 Sampling method for detecting metal on surface of silicon wafer

Also Published As

Publication number Publication date
JP3477216B2 (en) 2003-12-10

Similar Documents

Publication Publication Date Title
JP3051023B2 (en) Processing method and apparatus for high-precision analysis of impurities in siliconaceous analysis sample
KR100225832B1 (en) Method and apparatus for etching the silicon material
JP2002040009A (en) Micro impurity analytical method in silicon substrate
JP3487334B2 (en) Method for analyzing impurities in silicon substrate
JP3473699B2 (en) Silicon wafer etching method and apparatus and impurity analysis method
JP3755586B2 (en) Silicon desorption method and silicon wafer impurity analysis method
JP4857973B2 (en) Method for analyzing polishing slurry of silicon wafer
JPH06213805A (en) Etching method in ultramicroanalysis of metal on surface of silicon wafer
JP3753805B2 (en) Semiconductor sample decomposition apparatus and sample decomposition method
JP3286215B2 (en) Surface analysis method for silicon wafer
JP2973638B2 (en) Impurity analysis method
JP3804864B2 (en) Impurity analysis method
JP2001242052A (en) Method for analyzing impurity in semiconductor substrate or chemicals
EP0339561B1 (en) Impurity measuring method
JP4000027B2 (en) Semiconductor sample impurity analysis method and semiconductor sample impurity concentration apparatus
JP4760458B2 (en) Method for analyzing metal contamination of semiconductor wafer storage container
JP2001196432A (en) Method for measuring impurity on surface of semiconductor wafer and apparatus for recovering the impurity
JP4064819B2 (en) Method for determining the content of elements in a substrate for optics, electronics or optoelectronics
JPH10253511A (en) Container for sample for impurity analysis
JP2005326219A (en) Analysis sample preparing apparatus, analysis sample preparing method and semiconductor sample analysis method
JPH11190730A (en) Method for analyzing metallic impurity at surface of and inside of semiconductor substrate
JPH11183342A (en) Sample processing method for high-accuracy impurity analysis of silicon material and processing unit used for it
JP2000292326A (en) Method for manufacturing analyzing sample for metal impurity contained in synthetic resin, and measuring method of metal impurity using it
JP2000332072A (en) Surface analysis method of semiconductor substrate
US20050170524A1 (en) Impurity measuring method for Ge substrates

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees