JP2017096865A - Assaying method for trace chlorine content - Google Patents

Assaying method for trace chlorine content Download PDF

Info

Publication number
JP2017096865A
JP2017096865A JP2015231512A JP2015231512A JP2017096865A JP 2017096865 A JP2017096865 A JP 2017096865A JP 2015231512 A JP2015231512 A JP 2015231512A JP 2015231512 A JP2015231512 A JP 2015231512A JP 2017096865 A JP2017096865 A JP 2017096865A
Authority
JP
Japan
Prior art keywords
sample
chlorine
trace
halogen
bromine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015231512A
Other languages
Japanese (ja)
Other versions
JP6657851B2 (en
Inventor
由幸 小林
Yoshiyuki Kobayashi
由幸 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP2015231512A priority Critical patent/JP6657851B2/en
Publication of JP2017096865A publication Critical patent/JP2017096865A/en
Application granted granted Critical
Publication of JP6657851B2 publication Critical patent/JP6657851B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method to make possible accurate assaying of any trace chlorine content in a high-matrix containing sample with a combined 1 mass% content or more of halogen atoms and/or sulfur atoms selected from fluorine, bromine and iodine.SOLUTION: An assaying method for trace chlorine content comprises a pretreating step of decomposing a 1 mass% content or more of halogen selected from fluorine, bromine and iodine and a step of assaying the concentration of chlorine contained in the sample by analyzing the decomposed sample with an induction-combined plasma-triple quadrupole type analyzing device.SELECTED DRAWING: None

Description

本発明は、微量塩素成分の定量方法に関する。詳しくは、フッ素、臭素及びヨウ素から選ばれるハロゲン原子及び/又は硫黄原子を合計で1質量%以上含む試料中の微量塩素成分を高感度に定量する方法に関する。   The present invention relates to a method for quantifying trace chlorine components. Specifically, the present invention relates to a method for highly sensitive determination of trace chlorine components in a sample containing 1% by mass or more of halogen atoms and / or sulfur atoms selected from fluorine, bromine and iodine.

電気・電子機器等において、従来、難燃剤として塩素、臭素等のハロゲンを含む化合物が使用されてきた。このような難燃剤は、これらを焼却して廃棄する際にダイオキシン等が発生し、環境汚染を引き起こすことがあった。また、製造においては、原料中の塩素や臭素は、製造設備の劣化、腐食等の要因になりうる。そのため、ハロゲンフリーの代替品への移行が進められている。このように、電子材料分野においてハロゲンフリーに関心が高まっており、難燃剤だけでなく、電子機器の材料や原料にもハロゲンフリーの要求が高まりつつある。   Conventionally, compounds containing halogen such as chlorine and bromine have been used as flame retardants in electrical and electronic equipment. Such flame retardants sometimes cause dioxins when incinerated and discarded, causing environmental pollution. In production, chlorine and bromine in the raw material can cause deterioration of production equipment, corrosion, and the like. Therefore, the transition to halogen-free alternatives is in progress. Thus, interest in halogen-free is increasing in the field of electronic materials, and the demand for halogen-free is increasing not only for flame retardants but also for materials and raw materials of electronic devices.

試料中の微量塩素成分の定量は、一般的に、燃焼装置−イオンクロマトグラフ法で行われている。フッ素、臭素及びヨウ素から選ばれるハロゲン原子及び/又は硫黄原子を合計で1質量%未満しか含まない低マトリックス試料中の微量塩素成分の定量においては、分解量を増やすことで高感度な定量分析が可能である。一方、前記ハロゲン原子及び/又は硫黄原子を合計で1質量%以上含む高マトリックス試料では、分解量を増やすとイオンクロマトグラフ導入系の分離カラムにおけるイオン交換容量を超える場合があり、その際は目的元素の回収率が著しく低下する。そのため、分解量を抑え希釈率を高くする必要があり、高感度・高精度に定量することが困難であった。   The quantitative determination of the trace chlorine component in the sample is generally performed by a combustion apparatus-ion chromatograph method. In quantitative determination of trace chlorine components in low matrix samples containing less than 1% by mass of halogen atoms and / or sulfur atoms selected from fluorine, bromine and iodine, highly sensitive quantitative analysis can be achieved by increasing the amount of decomposition. Is possible. On the other hand, in the case of a high matrix sample containing 1% by mass or more of the halogen atoms and / or sulfur atoms, if the amount of decomposition is increased, the ion exchange capacity in the separation column of the ion chromatograph introduction system may be exceeded. Element recovery is significantly reduced. Therefore, it is necessary to suppress the amount of decomposition and increase the dilution rate, and it is difficult to quantify with high sensitivity and high accuracy.

本発明は、前記事情に鑑みてなされたものであり、高マトリックス試料においても微量塩素成分を精度よく定量できる方法を提供することを目的とする。   This invention is made | formed in view of the said situation, and it aims at providing the method which can quantify a trace amount chlorine component accurately also in a high matrix sample.

本発明者は、前記目的を達成するために鋭意検討を重ねた結果、検出器として誘導結合プラズマ−トリプル四重極型質量分析装置を用いることで、高マトリックス試料中の微量塩素成分を高感度・高精度に定量することができることを見出し、本発明を完成した。   As a result of intensive studies to achieve the above-mentioned object, the present inventor uses a inductively coupled plasma-triple quadrupole mass spectrometer as a detector to detect a small amount of chlorine components in a high matrix sample with high sensitivity. -The present invention has been completed by finding that it can be quantitatively determined with high accuracy.

したがって、本発明は、下記微量塩素成分の定量方法を提供する。
1.フッ素、臭素及びヨウ素から選ばれるハロゲン及び/又は硫黄原子を合計で1質量%以上含む試料を分解する前処理工程、及び
前記分解した試料を誘導結合プラズマ−トリプル四重極型質量分析装置によって分析することで、前記試料に含まれる塩素濃度を定量する工程
を含む微量塩素成分の定量方法。
2.前記試料が、有機材料である1の微量塩素成分の定量方法。
Accordingly, the present invention provides the following method for quantifying trace chlorine components.
1. A pretreatment step for decomposing a sample containing 1% by mass or more of halogen and / or sulfur atoms selected from fluorine, bromine and iodine, and analyzing the decomposed sample by an inductively coupled plasma-triple quadrupole mass spectrometer By doing so, the trace amount chlorine component quantification method including the process of quantifying the chlorine concentration contained in the sample.
2. The quantitative determination method of 1 trace chlorine component whose said sample is an organic material.

本発明の方法によれば、誘導結合プラズマ−トリプル四重極型質量分析法によって測定することで含有する高マトリックスの影響がなくなるため、前処理時の分解量について、低マトリックス試料と同等量を分解することができる。よって、試料中の微量塩素を高感度・高精度に分析することが可能となる。   According to the method of the present invention, since the influence of the high matrix contained is eliminated by measuring by inductively coupled plasma-triple quadrupole mass spectrometry, the amount of decomposition during pretreatment is equivalent to that of the low matrix sample. Can be disassembled. Therefore, it is possible to analyze a small amount of chlorine in the sample with high sensitivity and high accuracy.

本発明の微量塩素成分の定量方法は、フッ素、臭素及びヨウ素から選ばれるハロゲン及び/又は硫黄原子を合計で1質量%以上含む試料を分解する前処理工程、及び前記分解した試料を誘導結合プラズマ−トリプル四重極型質量分析装置によって分析することで、前記試料に含まれる塩素濃度を定量する工程を含む。   The method for quantifying a trace chlorine component of the present invention includes a pretreatment step for decomposing a sample containing 1% by mass or more of halogen and / or sulfur atoms selected from fluorine, bromine and iodine, and inductively coupled plasma of the decomposed sample. A step of quantifying the chlorine concentration contained in the sample by analyzing with a triple quadrupole mass spectrometer;

本発明の方法は、特にフッ素を1質量%以上含む試料に含まれる微量塩素成分の定量に好適である。   The method of the present invention is particularly suitable for the determination of trace chlorine components contained in a sample containing 1% by mass or more of fluorine.

本発明の方法による測定対象となる試料は、有機材料でも無機材料でもよい。前記有機材料としては、特に限定されないが、有機EL材料、半導体材料、機能性材料等として用いられる有機化合物が挙げられる。無機材料としては、特に限定されないが、フッ素含有ガラス、半導体製造や光学材料で使用される無機フッ化物製品等が挙げられる。これらのうち、本発明の方法は、有機材料中の微量塩素成分の定量に好適である。   The sample to be measured by the method of the present invention may be an organic material or an inorganic material. Although it does not specifically limit as said organic material, The organic compound used as an organic EL material, a semiconductor material, a functional material, etc. is mentioned. The inorganic material is not particularly limited, and examples thereof include fluorine-containing glass, inorganic fluoride products used in semiconductor manufacturing and optical materials, and the like. Of these, the method of the present invention is suitable for the determination of trace chlorine components in organic materials.

本発明の方法における第1の工程は、試料を分解する前処理工程である。試料を分解する方法としては、従来公知の方法でよく、加熱分解、酸分解、アルカリ分解等が挙げられる。前記前処理方法は、測定対象となる試料に応じて適宜選択すればよいが、精度がよく、かつ高感度な定量が可能な点から、加熱分解が好ましい。   The first step in the method of the present invention is a pretreatment step for decomposing a sample. The method for decomposing the sample may be a conventionally known method, and examples thereof include heat decomposition, acid decomposition, and alkali decomposition. The pretreatment method may be appropriately selected according to the sample to be measured. However, thermal decomposition is preferable from the viewpoint of high accuracy and high sensitivity.

前処理として加熱分解を行う場合、前処理は、燃焼炉中で試料を通常900〜1,100℃程度で加熱して気化させ、気化した試料を吸収液で回収することで行われる。加熱分解に要する時間は、試料を気化させるのに十分な時間であれば特に限定されないが、通常5〜20分程度である。前記吸収液としては、炭酸ナトリウム及び炭酸水素ナトリウムの混合水溶液、アンモニア水溶液や水酸化テトラメチルアンモニウム水溶液等のアルカリ吸収液、水等が挙げられる。   When heat decomposition is performed as pretreatment, the pretreatment is performed by heating the sample in a combustion furnace at about 900 to 1,100 ° C. for vaporization, and collecting the vaporized sample with an absorbing solution. The time required for the thermal decomposition is not particularly limited as long as it is sufficient to vaporize the sample, but it is usually about 5 to 20 minutes. Examples of the absorbing liquid include a mixed aqueous solution of sodium carbonate and sodium hydrogen carbonate, an alkaline absorbing liquid such as an aqueous ammonia solution and an aqueous tetramethylammonium hydroxide solution, and water.

次いで、誘導結合プラズマ−トリプル四重極型質量分析装置を用いて、前処理した試料中の塩素を定量する。誘導結合プラズマ−トリプル四重極型質量分析とは、誘導結合プラズマ(ICP)によって試料をイオン化し、2つの四重極質量分析計でコリジョン・リアクションセルを挟んで直列に連結したトリプル四重極型質量分析装置によって行われる質量分析である。   Next, chlorine in the pretreated sample is quantified using an inductively coupled plasma-triple quadrupole mass spectrometer. Inductively coupled plasma-triple quadrupole mass spectrometry is a triple quadrupole in which a sample is ionized by inductively coupled plasma (ICP) and connected in series with a collision reaction cell between two quadrupole mass spectrometers. This is mass spectrometry performed by a mass spectrometer.

塩素濃度の算出方法としては、内部標準法、外部標準法、標準添加法のいずれでもよい。内部標準法の場合、内部標準物質としては、リン酸イオン、酒石酸イオン、対象元素以外のハロゲン元素、硫黄等が挙げられる。   As a method for calculating the chlorine concentration, any of an internal standard method, an external standard method, and a standard addition method may be used. In the case of the internal standard method, examples of the internal standard substance include phosphate ions, tartrate ions, halogen elements other than the target element, and sulfur.

本発明の方法によれば、試料1g中、下限として100ng程度の微量の塩素を定量することが可能である。定量可能な塩素の上限は、特に限定されないが、試料1g中1mg程度が好ましい。   According to the method of the present invention, it is possible to quantify a trace amount of chlorine of about 100 ng as a lower limit in 1 g of a sample. The upper limit of quantifiable chlorine is not particularly limited, but about 1 mg per 1 g of sample is preferable.

以下、合成例、実施例及び比較例を示して本発明を具体的に説明するが、本発明は下記実施例に限定されない。なお、実施例で用いた測定装置及び測定サンプルは、以下のとおりである。   EXAMPLES Hereinafter, although a synthesis example, an Example, and a comparative example are shown and this invention is demonstrated concretely, this invention is not limited to the following Example. In addition, the measurement apparatuses and measurement samples used in the examples are as follows.

[自動燃焼装置]
三菱化学アナリティック社製AQF-2100H
[誘導結合プラズマ-トリプル四重極型質量分析計]
アジレント・テクノロジー社製、Agilent8800シリーズトリプル四重極ICP-MS
内部標準:リン酸イオン
[イオンクロマトグラフ]
サーモフィッシャーサイエンティフィック社製ICS-1600
分離カラム:サーモフィッシャーサイエンティフィック社製IonPac AS23(内径4mm)
ガードカラム:サーモフィッシャーサイエンティフィック社製IonPac AG23(内径4mm)
溶離液:4.5mmol/L炭酸ナトリウム及び0.8mmol/L炭酸水素ナトリウム混合水溶液
溶離液流量:1.0mL/min
検出器:電気伝導度(サプレッサ使用)
[測定サンプル]
下記式で表される有機化合物。前記有機化合物は、国際公開第2006/025342号に従って合成した。

Figure 2017096865
[Automatic combustion equipment]
Mitsubishi Chemical Analytic AQF-2100H
[Inductively coupled plasma-triple quadrupole mass spectrometer]
Agilent 8800 Series Triple Quadrupole ICP-MS from Agilent Technologies
Internal standard: Phosphate ion [ion chromatograph]
Thermo Fisher Scientific ICS-1600
Separation column: IonPac AS23 (4 mm inner diameter) manufactured by Thermo Fisher Scientific
Guard column: Thermo Fisher Scientific IonPac AG23 (inner diameter 4 mm)
Eluent: 4.5 mmol / L sodium carbonate and 0.8 mmol / L sodium bicarbonate mixed aqueous solution Eluent flow rate: 1.0 mL / min
Detector: Electrical conductivity (use suppressor)
[Measurement sample]
An organic compound represented by the following formula. The organic compound was synthesized according to International Publication No. 2006/025342.
Figure 2017096865

[実施例1]
測定サンプル25mgをセラミックスボート上で精秤した。その後、自動燃焼装置にセットし、1000℃の管状炉に入れ加熱分解させ、発生したハロゲンを吸収液(4.0mmol/L炭酸ナトリウム及び0.8mmol/L炭酸水素ナトリウム混合水溶液)3mLに吸収させた。その溶液を回収し、誘導結合プラズマ−トリプル四重極型質量分析(ICP−MS/MS)で塩素成分を測定した。
[Example 1]
A 25 mg sample was precisely weighed on a ceramic boat. After that, it is set in an automatic combustion device, put into a 1000 ° C. tubular furnace and thermally decomposed, and the generated halogen is absorbed in 3 mL of an absorbing solution (4.0 mmol / L sodium carbonate and 0.8 mmol / L sodium bicarbonate mixed aqueous solution). It was. The solution was recovered, and the chlorine component was measured by inductively coupled plasma-triple quadrupole mass spectrometry (ICP-MS / MS).

[比較例1]
測定サンプル25mgをセラミックスボート上で精秤した。その後、自動燃焼装置にセットし、1000℃の管状炉に入れ加熱分解させ、発生したハロゲンを吸収液(4.5mmol/L炭酸ナトリウム及び0.8mmol/L炭酸水素ナトリウム混合水溶液)5mLに吸収させた。その溶液中の塩素成分をイオンクロマトグラフ(IC)で測定した。
[Comparative Example 1]
A 25 mg sample was precisely weighed on a ceramic boat. After that, it is set in an automatic combustion device, put into a 1000 ° C. tube furnace and thermally decomposed, and the generated halogen is absorbed in 5 mL of an absorbing solution (4.5 mmol / L sodium carbonate and 0.8 mmol / L sodium bicarbonate mixed aqueous solution). It was. The chlorine component in the solution was measured by an ion chromatograph (IC).

実施例1及び比較例1において、測定を2回行い、その平均値を算出した。結果を表1に示す。   In Example 1 and Comparative Example 1, the measurement was performed twice and the average value was calculated. The results are shown in Table 1.

Figure 2017096865
Figure 2017096865

2つの分析法で定量値は異なった。イオンクロマトグラフ法では、分離カラムのイオン交換容量を超えたため、塩素が回収できず、精度よく定量することができなかった。一方、誘導結合プラズマ−トリプル四重極型質量分析法では、塩素が回収され、精度よく定量することができた。   The quantitative values were different between the two analytical methods. In the ion chromatography method, since the ion exchange capacity of the separation column was exceeded, chlorine could not be recovered and could not be accurately quantified. On the other hand, in the inductively coupled plasma-triple quadrupole mass spectrometry, chlorine was recovered and could be quantified with high accuracy.

Claims (2)

フッ素、臭素及びヨウ素から選ばれるハロゲン及び/又は硫黄原子を合計で1質量%以上含む試料を分解する前処理工程、及び
前記分解した試料を誘導結合プラズマ−トリプル四重極型質量分析装置によって分析することで、前記試料に含まれる塩素濃度を定量する工程
を含む微量塩素成分の定量方法。
A pretreatment step for decomposing a sample containing 1% by mass or more of halogen and / or sulfur atoms selected from fluorine, bromine and iodine, and analyzing the decomposed sample by an inductively coupled plasma-triple quadrupole mass spectrometer By doing so, the trace amount chlorine component quantification method including the process of quantifying the chlorine concentration contained in the sample.
前記試料が、有機材料である請求項1記載の微量塩素成分の定量方法。   The method for quantifying a trace chlorine component according to claim 1, wherein the sample is an organic material.
JP2015231512A 2015-11-27 2015-11-27 Determination of trace chlorine components Active JP6657851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015231512A JP6657851B2 (en) 2015-11-27 2015-11-27 Determination of trace chlorine components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015231512A JP6657851B2 (en) 2015-11-27 2015-11-27 Determination of trace chlorine components

Publications (2)

Publication Number Publication Date
JP2017096865A true JP2017096865A (en) 2017-06-01
JP6657851B2 JP6657851B2 (en) 2020-03-04

Family

ID=58817287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015231512A Active JP6657851B2 (en) 2015-11-27 2015-11-27 Determination of trace chlorine components

Country Status (1)

Country Link
JP (1) JP6657851B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3671206A4 (en) * 2017-08-18 2020-07-29 LG Chem, Ltd. Method for quantitatively analyzing residual cl in zinc ferrite

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344440A (en) * 1998-06-02 1999-12-14 Nec Corp Method and instrument for analyzing organic substance for impurity
JP2008064488A (en) * 2006-09-05 2008-03-21 National Institute Of Advanced Industrial & Technology Inductively coupled plasma mass spectrometry and emission analyzer
KR20090118501A (en) * 2008-05-14 2009-11-18 단국대학교 산학협력단 Apparatus of analyzing a solid sample
JP2010078592A (en) * 2008-08-28 2010-04-08 Sii Nanotechnology Inc Fluorescence x-ray analyzer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344440A (en) * 1998-06-02 1999-12-14 Nec Corp Method and instrument for analyzing organic substance for impurity
JP2008064488A (en) * 2006-09-05 2008-03-21 National Institute Of Advanced Industrial & Technology Inductively coupled plasma mass spectrometry and emission analyzer
KR20090118501A (en) * 2008-05-14 2009-11-18 단국대학교 산학협력단 Apparatus of analyzing a solid sample
JP2010078592A (en) * 2008-08-28 2010-04-08 Sii Nanotechnology Inc Fluorescence x-ray analyzer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杉山 尚樹: "「Agilent8800 トリプル四重極ICP-MSを用いた、NMP中の硫黄、リン、ケイ素、塩素の微量分析」", アプリケーションノート, PUB.NO. 5991-2303JAJP, JPN6019034167, 2013, ISSN: 0004109355 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3671206A4 (en) * 2017-08-18 2020-07-29 LG Chem, Ltd. Method for quantitatively analyzing residual cl in zinc ferrite
US11249060B2 (en) 2017-08-18 2022-02-15 Lg Chem, Ltd. Method for quantitatively analyzing residual Cl in zinc ferrite

Also Published As

Publication number Publication date
JP6657851B2 (en) 2020-03-04

Similar Documents

Publication Publication Date Title
Yang et al. Determination of methylmercury in fish tissues by isotope dilution SPME-GC-ICP-MS
Dane et al. Selective ionization of melamine in powdered milk by using argon direct analysis in real time (DART) mass spectrometry
KR101470363B1 (en) Method for elemental analysis by isotope dilution inductively-coupled plasma mass spectrometry coupled with combustion sample preparation
Shinotsuka et al. Simultaneous determination of platinum group elements and rhenium in rock samples using isotope dilution inductively coupled plasma mass spectrometry after cation exchange separation followed by solvent extraction
Pagliano et al. High-precision quadruple isotope dilution method for simultaneous determination of nitrite and nitrate in seawater by GCMS after derivatization with triethyloxonium tetrafluoroborate
CN103454351A (en) Ion chromatographic method for simultaneously measuring trace amount of anions in high-purity phosphoric acid
JP6416807B2 (en) Silicon quantitative analysis method
JP2009014512A (en) Method for determining quantity of halide in sample containing organic compound
CN110702773B (en) Method for measuring Pb isotope ratio in sulfide by using MC-ICP-MS
CN108593606B (en) Method for testing germanium content in coal by utilizing atomic fluorescence spectroscopy
JP6657851B2 (en) Determination of trace chlorine components
Ao et al. A sensitive and robust method for the simultaneous determination of thirty-three legacy and emerging per-and polyfluoroalkyl substances in human plasma and serum
Antes et al. Chlorine determination in petroleum coke using pyrohydrolysis and DRC-ICP-MS
Li et al. Detection of uranium in industrial and mines samples by microwave plasma torch mass spectrometry
JP2006208125A (en) Isotope ratio analysis method using plasma ion source mass spectroscope
Eggenkamp et al. A simple distillation method to extract bromine from natural water and salt samples for isotope analysis by multi‐collector inductively coupled plasma mass spectrometry
JP2006184109A (en) Method for analyzing ultratrace metal in polymer
Somoano-Blanco et al. Comparison of different mass spectrometric techniques for the determination of polychlorinated biphenyls by isotope dilution using 37 Cl-labelled analogues
Dash et al. Determination of trace metallic impurities in high-purity quartz by ion chromatography
Pan et al. Determination of nifedipine in dog plasma by high‐performance liquid chromatography with tandem mass spectrometric detection
CN108287155A (en) A kind of method of phosphorus content in efficient detection copper alloy
Yamada Feasibility Study of Fluorine Detection by ICPQQQ
JP6919360B2 (en) How to quantify the amount of silicon in metallic materials
WO2020090887A1 (en) Analysis method, adsorption prevention agent, and analysis kit
JP4233179B2 (en) Determination of nitrogen in organic compounds by Kjeldahl method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190910

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200120

R151 Written notification of patent or utility model registration

Ref document number: 6657851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151