JPH1157469A - Denitrification catalyst - Google Patents

Denitrification catalyst

Info

Publication number
JPH1157469A
JPH1157469A JP9214630A JP21463097A JPH1157469A JP H1157469 A JPH1157469 A JP H1157469A JP 9214630 A JP9214630 A JP 9214630A JP 21463097 A JP21463097 A JP 21463097A JP H1157469 A JPH1157469 A JP H1157469A
Authority
JP
Japan
Prior art keywords
oxide
activated carbon
iron oxide
added
denitration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9214630A
Other languages
Japanese (ja)
Inventor
Megumi Shida
惠 志田
Kazuki Nishizawa
和樹 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9214630A priority Critical patent/JPH1157469A/en
Publication of JPH1157469A publication Critical patent/JPH1157469A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a denitrification catalyst for reducing and removing nitrogen oxides included in exhaust gas from burning waste in a low temperature range of 100-200 deg.C in the presence of ammonia. SOLUTION: The denitrification catalyst is provided, wherein active carbon supporting 5-15 wt.% of vanadium oxide or chromium oxide to which an iron oxide is added as an active component is used, wherein the iron oxide to which the iron oxide is added is that Cr2 O3 to which Fe2 O3 is added, and a weight ratio of the denitrification catalyst is Cr2 O3 : Fe2 O3 =9:1-1:1, and the active carbon of which acidity is increased by acid treatment has a specific surface area of 1,000 m<2> /g or more.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、都市ごみまたは産
業廃棄物の焼却排ガス中に含まれる窒素酸化物を還元除
去するために用いられる脱硝触媒に関する。
The present invention relates to a denitration catalyst used for reducing and removing nitrogen oxides contained in incineration exhaust gas of municipal waste or industrial waste.

【0002】[0002]

【従来の技術】都市ごみまたは産業廃棄物等の焼却炉か
ら発生する排ガス中の窒素酸化物を除去する方法とし
て、アンモニアを還元剤とした触媒による脱硝が主とし
て行われている。触媒として酸化チタンを担体とし、酸
化バナジウムを活性成分としたハニカム触媒が用いられ
ている。しかし、本触媒の活性温度領域は210〜45
0℃であり、近年注目を浴びつつあるダイオキシンまた
は水銀等の除去を目的に150℃まで低温化されたバグ
フィルターによる除塵が上流側にて行われた後は、少な
くとも210℃まで再加熱を行い、脱硝しなければなら
ないという欠点がある。
2. Description of the Related Art As a method for removing nitrogen oxides from exhaust gas generated from incinerators such as municipal waste or industrial waste, denitration using a catalyst using ammonia as a reducing agent is mainly performed. As the catalyst, a honeycomb catalyst using titanium oxide as a carrier and vanadium oxide as an active component is used. However, the activation temperature range of the present catalyst is 210-45.
It is 0 ° C, and after dust has been removed by a bag filter cooled to 150 ° C for the purpose of removing dioxin or mercury, which has been receiving attention in recent years, it is reheated to at least 210 ° C. However, there is a disadvantage that the denitration must be performed.

【0003】[0003]

【発明が解決しようとする課題】本発明は、これらの欠
点を克服するため、比表面積が大きい活性炭に、酸性度
の増大を施したものを担体として用い、100℃〜20
0℃の低温で活性を有する脱硝触媒を提供することにあ
る。
SUMMARY OF THE INVENTION In order to overcome these drawbacks, the present invention uses activated carbon having a large specific surface area and increased acidity as a carrier, and is used at a temperature of 100.degree.
It is to provide a denitration catalyst having activity at a low temperature of 0 ° C.

【0004】[0004]

【課題を解決するための手段】廃棄物焼却排ガス中に含
む窒素酸化物を、アンモニアの存在下100〜200℃
の温度域で還元除去する脱硝触媒において、活性炭を担
体として、該担体に活性成分として、酸化バナジウム、
または、酸化鉄を加えた酸化クロムを、5〜15wt%担
持することを特徴とする脱硝触媒を提供する。また、酸
化鉄を加えた酸化クロムが、Fe2 3 を加えたCr2
3 であり、重量比がCr2 3 :Fe2 3 =9:1
〜1:1であることを特徴とする脱硝触媒を提供する。
さらに、活性炭が、酸処理により酸性度を増大させた比
表面積が1000m2/g以上の活性炭であることを特
徴とする脱硝触媒を提供する。
Means for Solving the Problems Nitrogen oxides contained in waste incineration exhaust gas are heated at 100 to 200 ° C. in the presence of ammonia.
In a denitration catalyst for reduction and removal in the temperature range of, activated carbon as a carrier, vanadium oxide as an active component on the carrier,
Alternatively, there is provided a denitration catalyst characterized in that 5 to 15% by weight of chromium oxide to which iron oxide is added is supported. In addition, chromium oxide to which iron oxide is added becomes Cr 2 to which Fe 2 O 3 is added.
O 3 and a weight ratio of Cr 2 O 3 : Fe 2 O 3 = 9: 1.
To 1: 1 is provided.
Further, the present invention provides a denitration catalyst characterized in that the activated carbon is an activated carbon whose acidity is increased by acid treatment and whose specific surface area is 1000 m 2 / g or more.

【0005】[0005]

【発明の実施の形態】低温(100〜200℃)での脱
硝活性を向上させるためには、反応に供する触媒表面上
の活性点を増大させる必要があり、比表面積の大きい担
体として適用できる活性炭を用いる。本発明では、Si
2 、アルミナ等の担体より高比表面積でなければなら
ず、少なくとも1000m2 /g以上が必要となる。1
000m2 /g未満の活性炭では、シリカ、アルミナな
どの担体との優位差がなくなるからである。また、活性
炭の比表面積は、1000m2 /g以上であれば、特に
上限はない。なお、活性炭の比表面積は、酸処理によっ
てもほとんど変わらないと考えられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to improve the denitration activity at a low temperature (100 to 200 ° C.), it is necessary to increase the active sites on the surface of the catalyst used for the reaction, and activated carbon applicable as a carrier having a large specific surface area is required. Is used. In the present invention, Si
The specific surface area must be higher than that of a carrier such as O 2 and alumina, and at least 1000 m 2 / g or more is required. 1
This is because activated carbon of less than 000 m 2 / g does not have a significant difference from carriers such as silica and alumina. There is no particular upper limit as long as the specific surface area of the activated carbon is 1000 m 2 / g or more. It is considered that the specific surface area of the activated carbon is hardly changed by the acid treatment.

【0006】脱硝反応は、(1)式のように進行してい
くが、そのメカニズムは、活性点へのNH3 の吸着が先
に起こることから、触媒に固体酸性としての性質を有
し、NH3 の吸着量が多い方が活性向上に有利である。 4NO+4NH3 +O2 =4N2 +6H2 O ……… (1) しかし、活性炭は固体酸性としての性質をほとんど示さ
れないため、NH3 吸着量を増やすためには、酸性度を
増大させる必要がある。そこで、本発明は、固体酸性と
しての性質を賦与した活性炭を担体として用いることを
特徴としており、酸性度増大を目的に硫酸等を用いた酸
による処理を行う。活性炭の酸性度を増大させるために
用いる酸としては、硫酸、硝酸、塩酸が挙げられ、好ま
しくは、硫酸である。
[0006] The denitration reaction proceeds as in equation (1). The mechanism is that the catalyst has the property of solid acidity because NH 3 is adsorbed to the active site first. A larger amount of adsorption of NH 3 is advantageous for improving the activity. 4NO + 4NH 3 + O 2 = 4N 2 + 6H 2 O (1) However, since activated carbon hardly exhibits the property of solid acidity, it is necessary to increase the acidity in order to increase the NH 3 adsorption amount. Therefore, the present invention is characterized in that activated carbon having the property of solid acidity is used as a carrier, and a treatment with an acid using sulfuric acid or the like is performed for the purpose of increasing the acidity. Examples of the acid used to increase the acidity of the activated carbon include sulfuric acid, nitric acid, and hydrochloric acid, and preferably, sulfuric acid.

【0007】活性成分には、五酸化バナジウム、また
は、助触媒として酸化鉄を加えた酸化クロムを用い、酸
性度増大処理を施された活性炭に担持する。この場合、
担持量は5〜15wt%であり、好ましくは8〜12wt%
である。5wt%未満では、脱硝率が60%未満となり望
しい効果が得られない。また、15wt%をこえて担持さ
せても脱硝率は変わらため、経済性等の点から15%以
下が好ましい。なお、担持量は、(活性成分の重量)を
(活性成分の重量+活性炭の重量)で除して百分率で表
したものである。酸化クロムに助触媒として加えられる
酸化鉄は10〜50wt%(重量比で表すと、酸化クロ
ム:酸化鉄=9:1〜1:1)、好ましくは20〜30
wt%がよい。10wt%未満では、脱硝率が60%未満と
なり望ましい効果が得られないためであり、50wt%を
こえると、やはり脱硝率が60%未満となり不都合だか
らである。
As an active ingredient, vanadium pentoxide or chromium oxide to which iron oxide is added as a co-catalyst is used, and is carried on activated carbon that has been subjected to an acidity increasing treatment. in this case,
The loading amount is 5 to 15% by weight, preferably 8 to 12% by weight.
It is. If it is less than 5 wt%, the denitration rate is less than 60%, and the desired effect cannot be obtained. Further, since the denitration rate is changed even if it is carried in excess of 15 wt%, it is preferably 15% or less from the viewpoint of economy and the like. Note that the supported amount is expressed as a percentage by dividing (weight of active ingredient) by (weight of active ingredient + weight of activated carbon). Iron oxide added as a co-catalyst to chromium oxide is 10 to 50% by weight (chromium oxide: iron oxide = 9: 1 to 1: 1 by weight), preferably 20 to 30%.
wt% is good. If the content is less than 10% by weight, the denitration rate is less than 60%, and the desired effect cannot be obtained. If the content is more than 50% by weight, the denitration rate is also less than 60%, which is inconvenient.

【0008】本発明で用いる酸化クロムとしては、酸化
クロム(II)(CrO)、酸化クロム(III)(Cr2
3 )、酸化クロム(IV)(CrO2 )、酸化クロム(V)
(Cr2 5 )、酸化クロム(VI)(CrO3 )が挙げ
られ、好ましくは、酸化クロム(III)(Cr2 3 )、
酸化クロム(VI)(CrO3 )である。本発明で用いる
酸化鉄としては、酸化鉄(II)(FeO)、酸化鉄(II
I)鉄(II)(Fe3 4 )、酸化鉄(III)(Fe
2 3 )であり、好ましくは、酸化鉄(III)(Fe2
3 )である。本発明で用いる酸化鉄を加えた酸化クロム
は、上記酸化物による2成分系の混合酸化物である。
The chromium oxide used in the present invention includes chromium (II) oxide (CrO), chromium (III) oxide (Cr 2 O)
3 ), chromium oxide (IV) (CrO 2 ), chromium oxide (V)
(Cr 2 O 5 ) and chromium oxide (VI) (CrO 3 ), preferably chromium oxide (III) (Cr 2 O 3 ),
Chromium (VI) oxide (CrO 3 ). The iron oxide used in the present invention includes iron oxide (II) (FeO), iron oxide (II)
I) iron (II) (Fe 3 O 4 ), iron oxide (III) (Fe
A 2 O 3), preferably, iron oxide (III) (Fe 2 O
3 ). The chromium oxide to which iron oxide is added in the present invention is a binary mixed oxide of the above oxide.

【0009】この活性成分である金属酸化物の担持法に
は、金属塩水溶液による含浸法を用いる。酸化バナジウ
ムの担持にはメタバナジン酸アンモニウム水溶液を用
い、場合によりシュウ酸またはメチルアミンを添加す
る。また、酸化バナジウムを酸または過酸化水素に溶解
した溶液を含浸担持させてもよい。酸化クロム及び酸化
鉄の担持には酸化クロム及び硫酸鉄の混合溶液を用い、
所定の組成と担持量が担持されるように溶液濃度を調整
する。この際活性炭は粒状または粉末である。含浸後
は、乾燥、焼成を行うが、焼成温度は一般的に200〜
300℃である。
As a method for supporting the metal oxide as the active ingredient, an impregnation method using a metal salt aqueous solution is used. For carrying vanadium oxide, an aqueous solution of ammonium metavanadate is used, and oxalic acid or methylamine is optionally added. Alternatively, a solution in which vanadium oxide is dissolved in acid or hydrogen peroxide may be impregnated and supported. For supporting chromium oxide and iron oxide, use a mixed solution of chromium oxide and iron sulfate,
The solution concentration is adjusted so that a predetermined composition and a supported amount are supported. In this case, the activated carbon is granular or powder. After impregnation, drying and firing are performed, and the firing temperature is generally 200 to
300 ° C.

【0010】本発明により得られた活性炭担体系触媒の
反応温度は、脱硝触媒としては低温域にあたる200℃
以下であり、特に100〜200℃である。通常は粒状
触媒として反応器に充填し、処理対象とする排ガスをア
ンモニアとともに流通接触させることで窒素酸化物を除
去する。排ガスの空間速度は、1000〜10000h
-1、好ましくは、2000〜5000h-1である。ま
た、粉末としてバグフィルターに担持させることで、除
塵、ダイオキシン、水銀と共に窒素酸化物が一括処理で
きる脱硝バグフィルターシステムへの適用も可能とな
る。その他にも成形や基板へのコートによるハニカム形
状の触媒が得られる。
The reaction temperature of the activated carbon carrier-based catalyst obtained according to the present invention is 200 ° C. which corresponds to a low temperature range as a denitration catalyst.
Below, especially 100-200 ° C. Usually, nitrogen oxides are removed by filling a reactor as a granular catalyst and bringing the exhaust gas to be treated into flow contact with ammonia. The space velocity of exhaust gas is 1000 to 10000h
−1 , preferably 2000 to 5000 h −1 . In addition, by supporting the powder as a powder on a bag filter, application to a denitration bag filter system capable of simultaneously processing nitrogen oxides together with dust removal, dioxin, and mercury becomes possible. In addition, a honeycomb-shaped catalyst obtained by molding or coating a substrate can be obtained.

【0011】[0011]

【実施例】次に本発明を実施例によりさらに詳細に説明
する。実施例1 活性炭を硫酸と共にロータリーエバポレーター中で減圧
混合しながら5時間濃縮した後、400℃3時間で熱処
理を行う硫酸処理を施すことで、酸性度を増大させた活
性炭を調製した。NH3 の昇温脱離(TPD)試験(図
1)によるNH3 吸着量を表1に示す。また、活性炭
(4/6mesh) へ硫酸処理を施し、酸化バナジウムを過
酸化水素に溶解させた溶液により酸化バナジウムを含浸
担持させた活性炭担体触媒(担持量4.3wt%)にて、
充填量13.6ml、反応温度150〜200℃、SV=
5000h-1(SVは、空間速度を表す。)で脱硝試験
を行った結果(数値は表1)を図2に示す。硫酸処理に
よる酸性度増大で脱硝活性を向上することがわかる。
Next, the present invention will be described in more detail with reference to examples. Example 1 Activated carbon with increased acidity was prepared by subjecting activated carbon to concentration in a rotary evaporator for 5 hours while mixing under reduced pressure in a rotary evaporator, and then subjecting the activated carbon to a heat treatment at 400 ° C. for 3 hours. The NH 3 adsorption amount by temperature-programmed desorption of NH 3 (TPD) Test (Figure 1) are shown in Table 1. Activated carbon (4/6 mesh) was subjected to a sulfuric acid treatment, and a solution of vanadium oxide dissolved in hydrogen peroxide was impregnated with vanadium oxide.
Filling amount 13.6 ml, reaction temperature 150-200 ° C, SV =
FIG. 2 shows the results of the denitration test performed at 5000 h -1 (SV represents space velocity) (numerical values are shown in Table 1). It can be seen that the denitration activity is improved by increasing the acidity by the sulfuric acid treatment.

【表1】 [Table 1]

【0012】実施例2 硫酸処理により酸性度を増大させた活性炭に、メタバナ
ジン酸アンモニウム水溶液(2.5wt%)を含浸担持
し、110℃で乾燥する操作を所定の担持量となるまで
数回繰り返した後、250℃で3時間焼成して酸化バナ
ジウム/活性炭触媒を得た。濃度を2.5wt%以上にす
るときはシュウ酸を添加し最大1mol/リットルとした。実施
例1と同様の活性評価より、150℃での酸化バナジウ
ムの担持量と脱硝活性の関係を図3に示す。10wt%担
持することで脱硝率75%(目標脱硝率60%以上)と
十分高い活性を示すことがわかる。
Example 2 An operation of impregnating and supporting an aqueous solution of ammonium metavanadate (2.5 wt%) on activated carbon whose acidity was increased by sulfuric acid treatment and drying at 110 ° C. was repeated several times until a predetermined amount was supported. After that, the mixture was calcined at 250 ° C. for 3 hours to obtain a vanadium oxide / activated carbon catalyst. When the concentration is to be 2.5 wt% or more, oxalic acid was added to make the maximum 1 mol / liter. FIG. 3 shows the relationship between the amount of vanadium oxide carried at 150 ° C. and the denitration activity based on the same activity evaluation as in Example 1. It can be seen that the denitration rate is 75% (target denitration rate is 60% or more) and a sufficiently high activity is exhibited by loading 10 wt%.

【0013】実施例3 硫酸処理により酸性度を増大させた活性炭に、酸化クロ
ム(VI)及び硫酸第一鉄の混合溶液(各々0.1〜30
wt%)を所定の担持量が得られるように濃度を調製し、
含浸後110℃で乾燥してから250℃で3時間焼成し
て、酸化クロム−酸化鉄/活性炭触媒を調製した。な
お、酸化鉄は、Fe2 3 ・mSO3 ・nH2 Oとして
存在すると考えられる。実施例1と同様の150℃にお
ける活性評価より、酸化クロム及び酸化鉄からなる活性
成分(10wt%)中の酸化クロムに対する酸化鉄の担持
量と活性の関係を図4に示す。活性成分10wt%の中で
酸化鉄を20〜30%(Cr2 3 :Fe2 3 =4:
1〜2:1)加えることで脱硝活性が高くなることがわ
かる。9:1〜1:1の範囲で脱硝率は、60%以上に
なる。
Example 3 A mixed solution of chromium (VI) oxide and ferrous sulfate (0.1 to 30 each) was added to activated carbon whose acidity was increased by sulfuric acid treatment.
wt%), so as to obtain a prescribed loading.
After impregnation, it was dried at 110 ° C and calcined at 250 ° C for 3 hours to prepare a chromium oxide-iron oxide / activated carbon catalyst. It is considered that iron oxide exists as Fe 2 O 3 .mSO 3 .nH 2 O. From the activity evaluation at 150 ° C. as in Example 1, the relationship between the amount of iron oxide carried on chromium oxide and the activity in the active component (10 wt%) composed of chromium oxide and iron oxide is shown in FIG. 20 to 30% of iron oxide (Cr 2 O 3 : Fe 2 O 3 = 4:
It can be seen that the denitration activity is increased by adding 1 to 2: 1). In the range of 9: 1 to 1: 1, the denitration rate becomes 60% or more.

【0014】実施例4硫酸処理により酸性度を増大させ
た活性炭に、実施例2と同一の方法、または最大2mol/
リットルのシュウ酸溶液に酸化バナジウム(0.1〜15wt
%)を溶解させた混合溶液に含浸する方法で、V2 5
をそれぞれ9.9wt%、8.1wt%、また実施例3と同
一の方法で、Cr2 3 −Fe2 3 を10.5wt%
(Cr23 :Fe2 3 =4:1)担持した活性炭担
体触媒の脱硝率の温度依存性を図5に示す。170℃以
上で80%以上の脱硝率があり、200℃以下の低温域
で脱硝活性があることがわかる。 供給ガス組成 NO:100ppm NH3 :100ppm O2 :10% N2 :残
Example 4 The same method as in Example 2 was applied to activated carbon whose acidity was increased by sulfuric acid treatment, or at most 2 mol / mol.
Liters of oxalic acid solution in vanadium oxide (0.1 to 15 wt.
%) Is impregnated with a mixed solution in which V 2 O 5
Were 9.9 wt% and 8.1 wt%, respectively, and Cr 2 O 3 —Fe 2 O 3 was 10.5 wt% in the same manner as in Example 3.
FIG. 5 shows the temperature dependence of the denitration ratio of the activated carbon carrier catalyst loaded with (Cr 2 O 3 : Fe 2 O 3 = 4: 1). It can be seen that there is a denitration rate of 80% or more at 170 ° C. or more and denitration activity in a low temperature range of 200 ° C. or less. Supply gas composition NO: 100 ppm NH 3 : 100 ppm O 2 : 10% N 2 : balance

【0015】[0015]

【発明の効果】本発明のように、酸性度を増大させた比
表面積が1000m2 /g以上の活性炭を担体とし、活
性成分として酸化バナジウムまたは酸化クロム−酸化鉄
(Cr 2 3 :Fe2 3 =9:1〜1:1)を5〜1
5wt%担持させた脱硝触媒により、低温(100〜20
0℃、特に150〜200℃)においても高い脱硝活性
を保持することが可能となる。
According to the present invention, the ratio of the acidity is increased.
Surface area 1000mTwo/ G or more of activated carbon as a carrier
Vanadium oxide or chromium oxide-iron oxide
(Cr TwoOThree: FeTwoOThree= 9: 1 to 1: 1) to 5-1
Low temperature (100 to 20
High denitration activity even at 0 ° C, especially 150-200 ° C
Can be held.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の実施例1に係るNH3 昇温脱
離(TPD)試験の結果を示す図である。
FIG. 1 is a diagram showing the results of an NH 3 thermal desorption (TPD) test according to Example 1 of the present invention.

【図2】図2は、本発明の実施例1に係る活性炭担体硫
酸処理前後の酸化バナジウム担持活性炭の脱硝率と温度
の関係を示す図である。
FIG. 2 is a diagram showing the relationship between the denitration rate and temperature of vanadium oxide-supported activated carbon before and after the activated carbon carrier sulfuric acid treatment according to Example 1 of the present invention.

【図3】図3は、本発明の実施例2に係る酸化バナジウ
ム担持量と活性の関係を示す図である。
FIG. 3 is a diagram showing the relationship between the amount of vanadium oxide carried and activity according to Example 2 of the present invention.

【図4】図4は、本発明の実施例3に係る活性成分中F
2 3 添加量と脱硝率の関係を示す図である。
FIG. 4 shows F in the active ingredient according to Example 3 of the present invention.
is a diagram showing the relationship between e 2 O 3 amount and the denitrification rate.

【図5】図5は、本発明の実施例4に係る各種担持活性
炭触媒の脱硝率と温度の関係を示す図である。
FIG. 5 is a diagram showing the relationship between the denitration rate and temperature of various types of supported activated carbon catalysts according to Example 4 of the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 廃棄物焼却排ガス中に含む窒素酸化物
を、アンモニアの存在下100〜200℃の温度域で還
元除去する脱硝触媒において、活性炭を担体として、酸
化バナジウム、または、酸化鉄を加えた酸化クロムを、
5〜15wt%担持することを特徴とする脱硝触媒。
1. A denitration catalyst for reducing and removing nitrogen oxides contained in waste incineration exhaust gas in a temperature range of 100 to 200 ° C. in the presence of ammonia, wherein vanadium oxide or iron oxide is added using activated carbon as a carrier. Chromium oxide
A denitration catalyst loaded with 5 to 15 wt%.
【請求項2】 上記酸化鉄を加えた酸化クロムが、Fe
2 3 を加えたCr 2 3 であり、重量比がCr
2 3 :Fe2 3 =9:1〜1:1であることを特徴
とする請求項1に記載の脱硝触媒。
2. The chromium oxide to which the iron oxide has been added is Fe
TwoOThreeCr with TwoOThreeAnd the weight ratio is Cr
TwoOThree: FeTwoOThree= 9: 1 to 1: 1
The denitration catalyst according to claim 1, wherein
【請求項3】 上記活性炭が、酸処理により酸性度を増
大させた比表面積が1000m2 /g以上の活性炭であ
ることを特徴とする請求項1または請求項2に記載の脱
硝触媒。
3. The denitration catalyst according to claim 1, wherein the activated carbon is an activated carbon whose acidity is increased by acid treatment and has a specific surface area of 1000 m 2 / g or more.
JP9214630A 1997-08-08 1997-08-08 Denitrification catalyst Pending JPH1157469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9214630A JPH1157469A (en) 1997-08-08 1997-08-08 Denitrification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9214630A JPH1157469A (en) 1997-08-08 1997-08-08 Denitrification catalyst

Publications (1)

Publication Number Publication Date
JPH1157469A true JPH1157469A (en) 1999-03-02

Family

ID=16658930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9214630A Pending JPH1157469A (en) 1997-08-08 1997-08-08 Denitrification catalyst

Country Status (1)

Country Link
JP (1) JPH1157469A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040021237A (en) * 2002-09-03 2004-03-10 재단법인 포항산업과학연구원 Method for simultaneous removing dioxins and nitrogen oxide using vanadium/activated carbon
KR20160075928A (en) * 2014-12-19 2016-06-30 재단법인 포항산업과학연구원 Fe-Cr/C complex catalyst for simultaneous removing NOx and SOx and fabrication method thereof
JPWO2020179078A1 (en) * 2019-03-07 2020-09-10
CN113841009A (en) * 2019-03-07 2021-12-24 中国电力株式会社 Combustion system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040021237A (en) * 2002-09-03 2004-03-10 재단법인 포항산업과학연구원 Method for simultaneous removing dioxins and nitrogen oxide using vanadium/activated carbon
KR20160075928A (en) * 2014-12-19 2016-06-30 재단법인 포항산업과학연구원 Fe-Cr/C complex catalyst for simultaneous removing NOx and SOx and fabrication method thereof
JPWO2020179078A1 (en) * 2019-03-07 2020-09-10
WO2020179078A1 (en) * 2019-03-07 2020-09-10 中国電力株式会社 Denitration catalyst and method for producing same
CN113613779A (en) * 2019-03-07 2021-11-05 中国电力株式会社 Denitration catalyst and method for producing same
CN113841009A (en) * 2019-03-07 2021-12-24 中国电力株式会社 Combustion system

Similar Documents

Publication Publication Date Title
KR100686381B1 (en) Vanadium/titania-based catalysts comprising of nmo(natural manganese ore) for removing nitrogen oxides and dioxine at wide operation temperature region, and using thereof
JP3480596B2 (en) Dry desulfurization denitrification process
US4141959A (en) Process for removing nitrogen oxides from combustion flue gas
JP3352494B2 (en) Nitrogen oxide decomposition catalyst and denitration method using the same
KR20190068173A (en) SCR Catalyst Added Carbon Supported Active Catalytic Materials and Preparation Method Thereof
JPH1157469A (en) Denitrification catalyst
US4225462A (en) Catalyst for reducing nitrogen oxides and process for producing the same
US4071601A (en) Selective removal of nitrogen oxides from waste gases using V-Mo-W catalysts
JP3474514B2 (en) Low temperature denitration catalyst and low temperature denitration method
KR101251499B1 (en) Zeolite catalyst for removing nitrogen oxides, method for preparing the same, and removing method of nitrogen oxides using the same
KR100549777B1 (en) Vanadium/Titania-based Catalyst Containing Vanadium Trioxide for Removing Nitrogen Oxide and/or Dioxin at Wide Active Temperature Window
JP3219613B2 (en) Ammonia decomposition catalyst and method for decomposing and removing ammonia
JP2638067B2 (en) Catalyst for catalytic reduction of nitrogen oxides
JPS58193733A (en) Catalyst for high temperature denitration
JPH02203923A (en) Catalystic reduction of nitrogen oxide
JPS6335298B2 (en)
JPS63126560A (en) Catalyst for catalytic reduction of nox
KR20100001315A (en) Catalytic composition for removing nitrogen oxide, and method for producing that, and method for removing nitrogen oxide using the same
KR100332224B1 (en) Oxidation Catalyst for Emission Control of Dioxin in Flue Gas, method of preparing and using the same
JPH03213145A (en) Ozone decomposing catalyst
JPS5913893B2 (en) Flue gas denitrification catalyst with low temperature activity
JP3796214B2 (en) Method for regenerating degraded catalyst
JPH10314548A (en) Ammonia treating device
JPH07823A (en) Catalyst for removing nitrogen oxide from exhaust gas
KR20220037625A (en) Vanadium/molybdenum/titania catalyst for removal of nitrogen oxide with excellent sulfur dioxide durability and low-temperature reaction activity, method for manufacturing the same, and method for removing nitrogen oxide using the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030704