JPH1157389A - Treatment of high temp. gas - Google Patents
Treatment of high temp. gasInfo
- Publication number
- JPH1157389A JPH1157389A JP9218540A JP21854097A JPH1157389A JP H1157389 A JPH1157389 A JP H1157389A JP 9218540 A JP9218540 A JP 9218540A JP 21854097 A JP21854097 A JP 21854097A JP H1157389 A JPH1157389 A JP H1157389A
- Authority
- JP
- Japan
- Prior art keywords
- activated carbon
- gas
- waste
- fine pore
- pore volume
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Fire-Extinguishing Compositions (AREA)
- Treating Waste Gases (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、都市ゴミなどの焼却炉
などから発生する高温の排ガスに活性炭を添加して、排
ガス中に含まれる有害物を除去する高温ガスの処理方法
に関し、特に毒性の高いダイオキシン類を効率的に除去
することができる高温ガスの処理方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating high-temperature gas, which removes harmful substances contained in exhaust gas by adding activated carbon to high-temperature exhaust gas generated from incinerators of municipal garbage and the like. The present invention relates to a method for treating a high-temperature gas capable of efficiently removing dioxins having a high concentration.
【0002】[0002]
【従来の技術】都市ゴミや産業廃棄物などを焼却したと
きに発生する排ガス中の有害物には、塩化水素や硫黄酸
化物等の酸性ガスや水銀等の重金属の他に、猛毒のダイ
オキシン類が含まれており、ダイオキシン類排出量の抑
制が世界的な問題になりつつある。2. Description of the Related Art Toxic substances in exhaust gas generated when incinerators such as municipal waste and industrial waste are incinerated include acid gases such as hydrogen chloride and sulfur oxides, heavy metals such as mercury, and highly toxic dioxins. And controlling dioxin emissions is becoming a global problem.
【0003】焼却過程におけるダイオキシン類の生成反
応は複雑であり未だ解明されていないが、塩素を含む廃
棄物の燃焼によって発生した前駆物質が、排ガスの冷却
過程で再合成反応を起こし、ダイオキシン類を生成する
と考えられている。生成したダイオキシン類の除去方法
として最も有効な方法に、活性炭による吸着除去があ
り、活性炭による処理はダイオキシン以外にも水銀等多
くの有害物質を除去できるという利点がある。[0003] The formation reaction of dioxins in the incineration process is complicated and has not been elucidated yet, but the precursor generated by the combustion of waste containing chlorine undergoes a resynthesis reaction in the process of cooling the exhaust gas to produce dioxins. It is believed to produce. The most effective method for removing generated dioxins is adsorption removal using activated carbon, and treatment with activated carbon has the advantage that many harmful substances such as mercury can be removed in addition to dioxin.
【0004】活性炭による排ガスの処理方法には大きく
分けて、粉末状の活性炭を煙道に噴霧して、有害物を吸
着した活性炭を飛灰と共に集塵機で捕集排出する方法
と、粒状の活性炭を充填した吸着塔を別に設け、これを
集塵機の下流に設置して有害物を吸着除去する方法があ
るが、特に前者の方法は、通常の焼却プラントにおいて
塩化水素や硫黄酸化物等の酸性ガスを除去するために使
われている消石灰粉末の噴霧設備と同様の設備を使用で
きるため、設備面での利点が大きく、既存の焼却プラン
トの多くでこの方法の導入が進められている。焼却炉等
から排出されるダイオキシンによる汚染が深刻な社会問
題に発展している今日、ダイオキシンの排出規制とし
て、将来的に0.1ng−TEQ/Nm 3 以下という規
制値が掲げられている。排出ガス中のダイオキシン濃度
をこの規制値以下とするため、焼却炉の改造や活性炭に
よる吸着除去が検討されている。The method of treating exhaust gas with activated carbon is largely
Separately, spray activated carbon powder into the flue to absorb harmful substances.
How to collect and discharge the activated carbon with fly ash together with fly ash
And a separate adsorption tower filled with granular activated carbon.
There is a method of installing and removing harmful substances by installing it downstream of the dust collector.
However, the former method is particularly suitable for ordinary incineration plants.
Used to remove acidic gases such as hydrogen chloride and sulfur oxides.
Equipment similar to the slaked lime powder spraying equipment
As a result, there are great advantages in terms of facilities and existing incineration plans
Many of these projects are introducing this method. Incinerator, etc.
Social problem seriously polluted by dioxins
Today, the dioxin emission regulation
0.1ng-TEQ / Nm in the future ThreeThe following rules
The bidding price is listed. Dioxin concentration in exhaust gas
To be below this regulation value, it is necessary to modify incinerators or use activated carbon.
Removal by adsorption is being studied.
【0005】[0005]
【発明が解決しようとする課題】しかしながら粉末活性
炭を用いる高温ガスの処理法においても、排ガス中に含
まれるダイオキシン類の除去率は、十分に高いものとは
言えず、さらなる高効率除去が可能な粉末活性炭が求め
られていた。However, even in the high-temperature gas treatment method using powdered activated carbon, the removal rate of dioxins contained in the exhaust gas cannot be said to be sufficiently high, and it is possible to remove more efficiently. Powdered activated carbon was required.
【0006】[0006]
【課題を解決するための手段】そこで、本発明者は、上
記の課題を解決すべく鋭意検討した結果、950℃での
熱分解ガスから算出した全酸素量が1.2wt%以下で
あり、直径12Å以下の細孔の細孔容積が0.22ml
/g以上である粉末活性炭を用いて高温ガスを処理する
ことにより、排ガス中のダイオキシン類を効率良く除去
できることを見い出し本発明に到達した。The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, the total oxygen amount calculated from the pyrolysis gas at 950 ° C. is 1.2 wt% or less. The pore volume of pores with a diameter of 12 mm or less is 0.22 ml
The present inventors have found that dioxins in exhaust gas can be efficiently removed by treating a high-temperature gas with powdered activated carbon having a mass of / g or more.
【0007】即ち、本発明は、950℃での熱分解ガス
から算出した全酸素量が1.2wt%以下であり、直径
12Å以下の細孔の細孔容積が0.22ml/g以上で
ある粉末活性炭を用いることを特徴とする高温ガスの処
理方法に存する。以下、本発明を詳細に説明する。本発
明の最大の特徴は、950℃での熱分解ガスから算出し
た全酸素量が1.2wt%以下であり、直径12Å以下
の細孔の細孔容積が0.22ml/g以上である粉末活
性炭を用いることにより、排ガス中のダイオキシン類の
除去率が著しく向上する点にある。That is, in the present invention, the total oxygen content calculated from the pyrolysis gas at 950 ° C. is 1.2 wt% or less, and the pore volume of the pores having a diameter of 12 ° or less is 0.22 ml / g or more. The present invention resides in a method for treating a high-temperature gas, characterized by using powdered activated carbon. Hereinafter, the present invention will be described in detail. The greatest feature of the present invention is that the total oxygen content calculated from the pyrolysis gas at 950 ° C. is 1.2 wt% or less, and the pore volume of pores having a diameter of 12 ° or less is 0.22 ml / g or more. By using activated carbon, the removal rate of dioxins in exhaust gas is significantly improved.
【0008】一般に、焼却炉の排ガス処理で、粉末活性
炭を吹き込む煙道部の温度は、200℃前後である。こ
の温度でのダイオキシン類の蒸気圧は、ダイオキシン類
の中でも最も毒性の高いと言われている2,3,7,8-テトラ
クロロジベンゾ-p- ダイオキシン(2,3,7,8-TCDD)
を例にとると、21Pa(200℃)程度と比較的高
く、焼却炉排ガスのような希薄状態では、ダイオキシン
類はほとんど気体の状態で存在すると考えられる。した
がって、煙道部に粉末活性炭を吹き込んだ場合のダイオ
キシン類の除去機構は、活性炭粒子外表面への付着より
も活性炭細孔内への吸着が支配的であると考えられる。
このことは、文献「排ガス中の微量有害物質の除去」
(渋谷栄一 分離技術 p30第22巻第5号1992
年)記載の結果からも明らかである。この文献によれ
ば、細孔による吸着効果のない消石灰のみを煙道に吹き
込んだ場合、ダイオキシンの除去率は24%であったの
に対し、活性炭を吹き込んだ場合は83%以上が除去さ
れ、活性炭の吸着作用による除去率の向上が見られたと
ある。In general, the temperature of the flue into which powdered activated carbon is blown in the treatment of exhaust gas from an incinerator is around 200 ° C. The vapor pressure of dioxins at this temperature is 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), which is said to be the most toxic of dioxins
For example, it is considered that dioxins are almost present in a gaseous state in a dilute state such as incinerator exhaust gas, which is relatively high at about 21 Pa (200 ° C.). Therefore, it is considered that the mechanism of removing dioxins when powdered activated carbon is blown into the flue is that adsorption into activated carbon pores is more dominant than adhesion to activated carbon particle outer surfaces.
This is described in the document "Removal of trace harmful substances in exhaust gas."
(Eiichi Shibuya Separation Technology p30 Vol.22 No.5 1992
It is clear from the results described in (Year). According to this document, when only slaked lime having no adsorption effect by pores was blown into the flue, the dioxin removal rate was 24%, whereas when activated carbon was blown, 83% or more was removed. It is said that the removal rate by activated carbon adsorption was improved.
【0009】したがって、活性炭の細孔分布や表面性状
を最適化し、吸着性能を向上させることによって、ダイ
オキシン類の除去率をさらに高められると考えられる。
細孔分布については、ダイオキシン類の除去が極低濃度
域での気相吸着であることを考えると、径の小さな細孔
が多いことが吸着性能の向上に必要であると考えられ
る。また、ダイオキシン類は、疎水性であるので、活性
炭の表面性状として、含酸素官能基量の少ない疎水性の
表面性状を有するもの、具体的には、950℃での熱分
解ガスから算出した全酸素量が少ないものが適している
と言える。Therefore, it is considered that the removal rate of dioxins can be further increased by optimizing the pore distribution and surface properties of the activated carbon and improving the adsorption performance.
Regarding the pore distribution, considering that dioxins are removed by gas phase adsorption in an extremely low concentration range, it is considered that a large number of small pores is necessary for improving the adsorption performance. In addition, since dioxins are hydrophobic, activated carbon has a surface property of hydrophobicity with a small amount of oxygen-containing functional groups as a surface property of the activated carbon, and more specifically, a total calculated from a pyrolysis gas at 950 ° C. It can be said that those having a small amount of oxygen are suitable.
【0010】そこで、細孔分布や表面性状の異なる各種
粉末活性炭を用いて鋭意検討を行ったところ、950℃
での熱分解ガスから算出した全酸素量が1.2wt%以
下であり、直径12Å以下の細孔の細孔容積が0.22
ml/g以上である粉末活性炭がダイオキシン類の除去
に好適であることを見出した。本発明に使用される活性
炭の原料としては、多くの炭素質物質が考えられるが、
工業的には活性化の難易、原料の品位、価格、大量かつ
安定的に入手できることなどの点が選定条件となる。原
料の種類によって製造条件や、製品の価格、用途は異な
る。原料としては、植物物系の木材、のこくず、ヤシ
殻、パルプ廃液、化石燃料系の石炭、石油重質油、ある
いはそれらを熱分解した石炭および石油系ピッチ、合成
高分子、フェノール樹脂、フラン樹脂、ポリ塩化ビニル
樹脂、ポリ塩化ビニリデン樹脂、プラスチック廃棄物、
廃タイヤ等多種多用である。これらの原料を炭化後、賦
活するが、賦活法は、ガス賦活と薬品賦活に大別され
る。ガス賦活法は、薬品賦活が化学的な活性化であるの
に対して、物理的な活性化ともいわれ、炭化された原料
を高温で水蒸気、炭酸ガス、酸素、その他の酸化ガスな
どと接触反応させて、微細な多孔質の吸着炭をつくる方
法であり、工業的には水蒸気を用いる方法が主流であ
る。薬品賦活法は、原料に賦活薬品を均等に含侵させ
て、不活性ガス雰囲気中で加熱し、薬品の脱水および酸
化反応により、微細な多孔質の吸着炭をつくる方法であ
る。使用される薬品としては、塩化亜鉛、りん酸、りん
酸ナトリウム、塩化カルシウム、硫化カリウム、水酸化
カリウム、水酸化ナトリウム、炭酸カリウム、炭酸ナト
リウム、硫酸ナトリウム、硫酸カリウム、炭酸カルシウ
ム等がある。本発明に使用される活性炭の原料および製
法に関しては特に限定されるものでなく、どのような原
料や方法で作られた活性炭でも本発明に使用できる。[0010] Accordingly, the present inventors have conducted intensive studies using various types of powdered activated carbons having different pore distributions and surface properties.
The total oxygen content calculated from the pyrolysis gas in the above is 1.2 wt% or less, and the pore volume of the pores having a diameter of 12 mm or less is 0.22
It has been found that powdered activated carbon having a concentration of at least ml / g is suitable for removing dioxins. As a raw material of the activated carbon used in the present invention, many carbonaceous substances are considered,
Industrially, the selection conditions include the difficulty of activation, the quality of raw materials, the price, the availability of large quantities and stable availability, and the like. Manufacturing conditions, product prices, and uses vary depending on the type of raw material. Raw materials include plant-based wood, sawdust, coconut shell, pulp waste liquid, fossil fuel-based coal, petroleum heavy oil, or thermally decomposed coal and petroleum pitch, synthetic polymers, phenolic resins, Furan resin, polyvinyl chloride resin, polyvinylidene chloride resin, plastic waste,
It is used for many kinds such as waste tires. These carbonized materials are activated after carbonization. Activation methods are roughly classified into gas activation and chemical activation. In the gas activation method, chemical activation is chemical activation, whereas physical activation is also called physical activation, and the carbonized raw material is contact-reacted with steam, carbon dioxide, oxygen, and other oxidizing gases at high temperatures. This is a method for producing fine porous adsorbed carbon, and a method using steam is the mainstream industrially. The chemical activation method is a method in which a raw material is uniformly impregnated with an activating chemical, heated in an inert gas atmosphere, and a fine porous adsorbed carbon is produced by a dehydration and oxidation reaction of the chemical. The chemicals used include zinc chloride, phosphoric acid, sodium phosphate, calcium chloride, potassium sulfide, potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate, sodium sulfate, potassium sulfate, calcium carbonate and the like. The raw material and production method of the activated carbon used in the present invention are not particularly limited, and activated carbon produced by any raw material or method can be used in the present invention.
【0011】本発明に使用される粉末活性炭の粒径とし
ては、特に限定するものではないが、好ましくは0.0
1〜300μm、さらに好ましくは0.1〜100μm
とするのが良い。本発明に使用される粉末活性炭の比表
面積としては、特に限定するものではないが、好ましく
は100〜2000m2 /g、さらに好ましくは300
〜1500m2 /g、最も好ましくは800〜1500
m2 /gとするのが良い。The particle size of the powdered activated carbon used in the present invention is not particularly limited, but is preferably 0.0
1 to 300 μm, more preferably 0.1 to 100 μm
Good to be. The specific surface area of the powdered activated carbon used in the present invention is not particularly limited, but is preferably 100 to 2,000 m 2 / g, and more preferably 300 to 2,000 m 2 / g.
11500 m 2 / g, most preferably 800-1500
m 2 / g is good.
【0012】本発明でいう高温ガスとは、100℃以
上、好ましくは150℃以上、より好ましくは200℃
以上である。ガスをあまり冷やしてしまうとダイオキシ
ン類の蒸気圧が低くなりすぎ、吸着しにくくなる恐れが
あり、この場合、必要な処理時間が長時間化しやすい。
950℃での熱分解ガスからの全酸素量の算出は、以下
の方法により行うことができる。石英の反応管に活性炭
試料を入れて10-2mmHgに真空排気し、該反応管を
950℃に保った炉に挿入後、30分間にわたって発生
するガスを捕集する。発生したガスの量とガスクロマト
グラフィーで求めたガスの組成から、ガス中の一酸化炭
素及び二酸化炭素の量を計算する。発生した一酸化炭素
及び二酸化炭素中に含まれる酸素の量を算出して、反応
管中の活性炭量に対する重量百分率を求め、950℃で
の熱分解ガスから算出した全酸素量とする。なお、反応
管に入れる活性炭試料の量が多すぎると規定時間内に熱
分解が終了せず全酸素量が低めに見積もられるため注意
を要する。The high-temperature gas referred to in the present invention is 100 ° C. or higher, preferably 150 ° C. or higher, more preferably 200 ° C.
That is all. If the gas is cooled too much, the vapor pressure of the dioxins may be too low, making it difficult to adsorb, and in this case, the required processing time tends to be long.
The calculation of the total oxygen amount from the pyrolysis gas at 950 ° C. can be performed by the following method. The activated carbon sample is placed in a quartz reaction tube, evacuated to 10 -2 mmHg, and the reaction tube is inserted into a furnace maintained at 950 ° C., and gas generated over 30 minutes is collected. The amounts of carbon monoxide and carbon dioxide in the gas are calculated from the amount of generated gas and the composition of the gas determined by gas chromatography. The amount of generated carbon monoxide and the amount of oxygen contained in carbon dioxide are calculated, the weight percentage with respect to the amount of activated carbon in the reaction tube is determined, and the total amount is calculated from the pyrolysis gas at 950 ° C. It should be noted that if the amount of the activated carbon sample put in the reaction tube is too large, the thermal decomposition is not completed within the specified time and the total oxygen amount is estimated to be lower.
【0013】[0013]
【実施例】以下に実施例および比較例を挙げて本発明を
より具体的に説明するが、本発明はその要旨を越えない
限り、下記実施例より限定されるものではない.2種類
の異なる石炭を出発原料として、水蒸気賦活法によって
2種類の粉末活性炭を作製し(実施例1〜2)、その性
状を測定した。結果を表1に示す。比表面積と細孔容積
の測定はカルロエルバ社製「ソープトマチック210
0」を使用して窒素吸着により行い、BET法により比
表面積を、Cranston−Inkley法により細
孔容積を計算した。The present invention will be described more specifically with reference to examples and comparative examples below, but the present invention is not limited to the following examples unless it exceeds the gist thereof. Using two different types of coal as starting materials, two types of powdered activated carbon were produced by a steam activation method (Examples 1 and 2), and their properties were measured. Table 1 shows the results. The measurement of the specific surface area and the pore volume was carried out by Carlo Elba's "Soptomatic 210".
The specific surface area was calculated by the BET method and the pore volume was calculated by the Cranston-Inkley method using "0".
【0014】粒径の測定はHORIBA社製レーザー回
折式粒度分布測定装置「LA−500」を使用し、メジ
アン径を求めた。全酸素量は950℃での熱分解ガスか
ら算出した全酸素量で、以下の方法により測定した。石
英の反応管に活性炭試料約0.5gを入れて10-2mm
Hgに真空排気し、該反応管を950℃に保った炉に挿
入後、30分間にわたって発生するガスを捕集した。発
生したガスの量とガスクロマトグラフィーで求めたガス
の組成から、ガス中の一酸化炭素及び二酸化炭素の量を
計算した。発生した一酸化炭素及び二酸化炭素中に含ま
れる酸素の量を算出して、反応管中の活性炭量に対する
重量百分率を求め、全酸素量とした。The median diameter was determined using a laser diffraction type particle size distribution analyzer “LA-500” manufactured by HORIBA. The total oxygen amount was the total oxygen amount calculated from the pyrolysis gas at 950 ° C., and was measured by the following method. Approximately 0.5 g of activated carbon sample was placed in a quartz reaction tube and 10 -2 mm
After evacuation to Hg and insertion of the reaction tube into a furnace maintained at 950 ° C., gas generated over 30 minutes was collected. The amounts of carbon monoxide and carbon dioxide in the gas were calculated from the amount of generated gas and the composition of the gas determined by gas chromatography. The amount of oxygen contained in the generated carbon monoxide and carbon dioxide was calculated, and the weight percentage with respect to the amount of activated carbon in the reaction tube was obtained, and the result was defined as the total amount of oxygen.
【0015】灰分量の測定は以下の方法により行った。
磁性ルツボに活性炭試料1〜2gを入れ、空気中で81
5℃で6時間加熱した。冷却後、残存した灰分の質量を
測定し、ルツボに入れた活性炭量に対する重量百分率を
求め、灰分量とした。ダイオキシンの除去率はモデル物
質を用いて行った。これは、ダイオキシン自体の毒性が
極めて高いためである。ダイオキシンのモデル物質の単
成分の除去率は次のようにして求めた。2lの容器にモ
デル物質として1,5−ジクロロアントラキノンを0.
05μg、粉末活性炭を10.0mg入れ、200℃で
10時間保持した後、1l(200℃)のガスをサンプ
リングした。サンプリングしたガスの中に残存する1,
5−アントラキノンを100mlのトルエンに溶解した
後、1000倍に濃縮し、GC−MSにより、1,5−
ジクロロアントラキノンを定量して、除去率を算出し
た。The ash content was measured by the following method.
Put 1-2 g of activated carbon sample in a magnetic crucible,
Heat at 5 ° C. for 6 hours. After cooling, the mass of the remaining ash was measured, and the weight percentage with respect to the amount of activated carbon put in the crucible was determined to be the ash content. Dioxin removal was performed using a model substance. This is because the toxicity of dioxin itself is extremely high. The removal rate of a single component of the model substance of dioxin was determined as follows. 1,5-dichloroanthraquinone was added as a model substance to a 2 liter container at a volume of 0.1 mL.
After adding 0.05 μg and 10.0 mg of powdered activated carbon and maintaining the mixture at 200 ° C. for 10 hours, 1 l (200 ° C.) of gas was sampled. 1, which remains in the sampled gas
After dissolving 5-anthraquinone in 100 ml of toluene, the mixture was concentrated 1000 times, and 1,5-
Dichloroanthraquinone was quantified and the removal rate was calculated.
【0016】また、実際の有害物の除去性能を調べるた
めに、それぞれの粉末活性炭を焼却炉排ガス中に噴霧
し、活性炭噴霧口前とバグフィルター出口のダイオキシ
ン類濃度を測定して結果を示した。 (比較例1)ヤシ殻を出発原料とし、水蒸気賦活法によ
って粉末活性炭を作製し、実施例と同様にして、その性
状とダイオキシン除去率を測定した。結果を表1に示
す。 (比較例2)市販の粉末活性炭(NORIT 「GL−
50」)を使用し、実施例と同様にして、その性状とダ
イオキシン除去率を測定した。結果を表1に示す。Further, in order to examine the actual performance of removing harmful substances, each powdered activated carbon was sprayed into the exhaust gas of an incinerator, and the dioxin concentration before the activated carbon spray port and at the bag filter outlet was measured, and the results were shown. . (Comparative Example 1) Powdered activated carbon was produced by a steam activation method using a coconut shell as a starting material, and its properties and dioxin removal rate were measured in the same manner as in the examples. Table 1 shows the results. (Comparative Example 2) Commercially available powdered activated carbon (NORIT “GL-
50 "), and the properties and dioxin removal rate were measured in the same manner as in the examples. Table 1 shows the results.
【0017】[0017]
【表1】 [Table 1]
【0018】以上の実施例および比較例により、950
℃での熱分解ガスから算出した全酸素量が1.2wt%
以下であり、直径12Å以下の細孔の細孔容積が0.2
2ml/g以上である粉末活性炭を使用することにより
効率良く排ガス中のダイオキシン類を除去することがで
きることがわかる。例えば比較例1はこの4例のうち、
細孔容積が一番大きく、比表面積も最大であるにもかか
わらず、酸素量が多いためダイオキシン類の吸着力は劣
っていることがわかる。また比較例2は、細孔容積の量
が少ないと良い性能が得られないことを示している。According to the above Examples and Comparative Examples, 950
1.2wt% of total oxygen calculated from pyrolysis gas at ℃
Or less, and the pore volume of pores having a diameter of 12 mm or less is 0.2
It can be seen that dioxins in exhaust gas can be efficiently removed by using powdered activated carbon of 2 ml / g or more. For example, Comparative Example 1 is one of the four examples.
Although the pore volume is the largest and the specific surface area is also the largest, it is understood that the adsorbing power of dioxins is inferior due to the large amount of oxygen. Comparative Example 2 also shows that good performance cannot be obtained if the amount of pore volume is small.
【0019】[0019]
【発明の効果】本発明の高温ガスの処理方法は、ダイオ
キシン類の除去を高効率で行うことができるため、多大
な工業的利益を提供するものである。The method for treating high-temperature gas according to the present invention provides a great industrial advantage because dioxins can be removed with high efficiency.
Claims (4)
素量が1.2wt%以下であり、直径12Å以下の細孔
の細孔容積が0.22ml/g以上である粉末活性炭を
用いることを特徴とする高温ガスの処理方法1. A powdered activated carbon having a total oxygen content calculated from a pyrolysis gas at 950 ° C. of not more than 1.2 wt% and a pore volume of not more than 12 mm in diameter being not less than 0.22 ml / g. High temperature gas processing method characterized by the above-mentioned.
ス処理方法2. A method for treating exhaust gas from an incinerator using the method according to claim 1.
1又は2に記載の処理方法3. The processing method according to claim 1, wherein the high-temperature gas contains dioxins.
求項1乃至3のいずれかに記載の処理方法4. The processing method according to claim 1, wherein the temperature of the high-temperature gas is 150 ° C. or higher.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21854097A JP3436092B2 (en) | 1997-08-13 | 1997-08-13 | Hot gas treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21854097A JP3436092B2 (en) | 1997-08-13 | 1997-08-13 | Hot gas treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1157389A true JPH1157389A (en) | 1999-03-02 |
JP3436092B2 JP3436092B2 (en) | 2003-08-11 |
Family
ID=16721537
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21854097A Expired - Fee Related JP3436092B2 (en) | 1997-08-13 | 1997-08-13 | Hot gas treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3436092B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1090881A1 (en) * | 1999-10-06 | 2001-04-11 | Mitsubishi Chemical Corporation | Coal-based molded activated carbon and process for the treatment of waste gas containing dioxins using same |
JP2007054833A (en) * | 2006-11-17 | 2007-03-08 | Japan Enviro Chemicals Ltd | Granular activated carbon for removing pcb |
-
1997
- 1997-08-13 JP JP21854097A patent/JP3436092B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1090881A1 (en) * | 1999-10-06 | 2001-04-11 | Mitsubishi Chemical Corporation | Coal-based molded activated carbon and process for the treatment of waste gas containing dioxins using same |
JP2007054833A (en) * | 2006-11-17 | 2007-03-08 | Japan Enviro Chemicals Ltd | Granular activated carbon for removing pcb |
Also Published As
Publication number | Publication date |
---|---|
JP3436092B2 (en) | 2003-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2431314C (en) | Activated carbon for odor control and method for making same | |
CN102413899B (en) | Sorbents for the oxidation and removal of mercury | |
Zhou et al. | Facile synthesis of phosphorus-doped porous biochars for efficient removal of elemental mercury from coal combustion flue gas | |
TW201018584A (en) | Composite comprising an inorganic substrate with a coating comprising activated carbon and a metal sulfide | |
CN115715973A (en) | In-situ nano-selenium carbon-based demercuration adsorption material and preparation method and application thereof | |
WO2005030641A1 (en) | Highly activated coke powder and process for producing the same | |
US20010017081A1 (en) | Adsorbent for dioxins | |
JP2003192407A (en) | Method of producing cement for reducing mercury in raw material | |
CN112516781A (en) | Three-section type dry-wet combined jet removal method suitable for CFB boiler | |
Edathil et al. | Alginate-pyrolyzed porous carbon as efficient gas phase elemental mercury scavenger | |
JP3436092B2 (en) | Hot gas treatment method | |
JP3521730B2 (en) | How to remove organic chlorine compounds | |
JP4029443B2 (en) | Incinerator flue blowing agent and exhaust gas treatment method | |
Zhu et al. | Comparative study of the effects of various activation methods on the desulfurization performance of petroleum coke | |
JP2000225320A (en) | Method for treating high temperature gas and active carbon | |
JP2006263587A (en) | Method for treatment of combustion exhaust-gas | |
JPH1170315A (en) | Treatment of high temperature gas | |
KR20040103546A (en) | Manufacturing Method of Adsorbent to Remove Volatile Organic Compounds | |
EP1090881A1 (en) | Coal-based molded activated carbon and process for the treatment of waste gas containing dioxins using same | |
JP2001170481A (en) | Coal-based molded active carbon and method of treating exhaust gas containing dioxins | |
Abdullah et al. | Characteristics of H2S at low adsorption temperature using nitrogen-enhanced carbon modified with Ni nanoparticles | |
JP2000246057A (en) | Treating agent and method for high-temperature gas | |
JPH10128062A (en) | Waste gas treating agent for incineration equipment | |
Zhang et al. | Adsorption Behaviors of H2S and CO2 on the Synergistic Removal of HCl and Hg0 in Pyrolytic Waste Plastic Gas on 4Ca-1Co/CA | |
JP2023039930A (en) | Adsorbent for mercury removal, method for manufacturing the same, and mercury removal method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080606 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090606 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100606 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100606 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110606 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120606 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130606 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |