JP2023039930A - Adsorbent for mercury removal, method for manufacturing the same, and mercury removal method - Google Patents

Adsorbent for mercury removal, method for manufacturing the same, and mercury removal method Download PDF

Info

Publication number
JP2023039930A
JP2023039930A JP2022140889A JP2022140889A JP2023039930A JP 2023039930 A JP2023039930 A JP 2023039930A JP 2022140889 A JP2022140889 A JP 2022140889A JP 2022140889 A JP2022140889 A JP 2022140889A JP 2023039930 A JP2023039930 A JP 2023039930A
Authority
JP
Japan
Prior art keywords
mercury
adsorbent
activated carbon
hydrogen chloride
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022140889A
Other languages
Japanese (ja)
Inventor
有史 寺嶋
Yuji Terajima
祐久 辰市
Sukehisa Tatsuichi
裕靖 小泉
Hiroyasu Koizumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Environmental Public Service Corp
Original Assignee
Tokyo Environmental Public Service Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Environmental Public Service Corp filed Critical Tokyo Environmental Public Service Corp
Publication of JP2023039930A publication Critical patent/JP2023039930A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

To provide an adsorbent for mercury removal with which it is possible to remove mercury by being blown into a gas, and which is usable without vaporization of attached hydrogen chloride even under a high-temperature environment, thereby improving mercury adsorption capability.SOLUTION: An adsorbent for mercury removal of the invention is intended to adsorb mercury in a gas, and is obtained by attaching 0.01-12 pts.wt. of hydrogen chloride to 100 pts.wt. of activated charcoal powder whose mean particle diameter is 10-75 μm.SELECTED DRAWING: Figure 1

Description

本発明は、活性炭を利用して水銀を除去する技術に関する。 The present invention relates to technology for removing mercury using activated carbon.

ガス中の各種の汚染物質を除去する技術が従来から開示されている。特に、ガス中に揮散している水銀(金属水銀および水銀化合物の双方を含む)は、重篤な神経性疾患を引き起こすことが知られている。したがって、水銀については、作業環境評価基準により許容される濃度が設定され、さらには、有害大気汚染物質に指定され全国でのモニタリングも義務付けられている。 Techniques for removing various contaminants in gas have been disclosed in the past. In particular, mercury volatilized in gas (including both metallic mercury and mercury compounds) is known to cause serious neurological disorders. Therefore, mercury is designated as a hazardous air pollutant, and is required to be monitored nationwide as permissible concentrations are set according to working environment evaluation standards.

例えば、特許文献1には、焼却炉から排出された排ガス中の有害成分や粉塵を除去するためのバグフィルタに水銀除去用吸着剤(例えば活性炭)を吹き込むことで、排ガス中の水銀を除去する技術が開示されている。しかし、通常の活性炭では水銀吸着能(水銀除去率)が低く、水銀を十分に除去できないという問題があった。 For example, in Patent Document 1, mercury in flue gas is removed by blowing a mercury removal adsorbent (e.g., activated carbon) into a bag filter for removing harmful components and dust in flue gas discharged from an incinerator. Techniques are disclosed. However, ordinary activated carbon has a low mercury adsorption capacity (mercury removal rate) and has a problem that it cannot sufficiently remove mercury.

そこで、活性炭における水銀吸着能を向上させる技術が提案されている。例えば、特許文献2には、塩化第二鉄、塩化アンモニウムまたは塩化カルシウムを活性炭に添着させた水銀蒸気捕集剤が開示されている。しかし、特許文献2の技術では、依然として水銀吸着能に改善の余地があった。 Therefore, techniques for improving the mercury adsorption capacity of activated carbon have been proposed. For example, Patent Document 2 discloses a mercury vapor scavenger in which activated carbon is impregnated with ferric chloride, ammonium chloride or calcium chloride. However, in the technique of Patent Document 2, there is still room for improvement in the mercury adsorption capacity.

また、特許文献3には、活性炭にヨウ素の酸化物を担持させた水銀蒸気吸着剤をガス中の水銀の除去に使用することが開示されている。そして、水銀蒸気吸着剤によりガス中の水銀を除去するには、水銀蒸気吸着剤とガスとを150℃以下で接触させる必要があることが記載されている。 Further, Patent Document 3 discloses the use of a mercury vapor adsorbent in which an oxide of iodine is supported on activated carbon to remove mercury in gas. It also describes that the mercury vapor adsorbent and the gas must be brought into contact at 150° C. or lower in order to remove mercury from the gas using the mercury vapor adsorbent.

さらに、特許文献4には、10~20メッシュの活性炭に塩化水素を添着させた水銀除去用吸着剤をガス中の水銀の除去に使用することが開示されている。具体的には、水銀除去用吸着剤を充填した充填塔を通過させることでガス中の水銀を除去する。 Furthermore, Patent Document 4 discloses the use of an adsorbent for removing mercury in which hydrogen chloride is impregnated on activated carbon of 10 to 20 mesh to remove mercury in gas. Specifically, the mercury in the gas is removed by passing it through a packed tower filled with an adsorbent for removing mercury.

特開2021-16848号公報Japanese Patent Application Laid-Open No. 2021-16848 特開昭49-066592号公報JP-A-49-066592 特開昭59-076537号公報JP-A-59-076537 特開昭50-158592号公報JP-A-50-158592

ここで、焼却炉から排出される排ガスは、通常900℃以上であり、ダイオキシン類の発生を抑えるための冷却塔を経ても、160~200℃程度までしか下がらない。しかし、特許文献3の水銀蒸気吸着剤は、上述した通り、150℃以下でガスと接触させないと水銀が除去できない。 Here, the exhaust gas discharged from the incinerator is usually at a temperature of 900°C or higher, and even if it passes through a cooling tower for suppressing the generation of dioxins, it can only be cooled to about 160-200°C. However, as described above, the mercury vapor adsorbent of Patent Document 3 cannot remove mercury unless it is brought into contact with gas at 150° C. or lower.

また、特許文献4の水銀除去用吸着剤では、活性炭のサイズが大きく、バグフィルタに吹き込むことで排ガス中の水銀を除去することは困難であった。したがって、特許文献4の水銀除去用吸着剤を用いて排ガス中の水銀を除去する場合、バグフィルタの他にさら水銀除去用吸着剤を充填した充填塔を設ける必要があった。しかし、充填塔を設けることは、費用、設置場所および管理の面からみても問題があった。実際に、焼却施設等において充填塔が稼働している例は非常に限定的である。さらに、特許文献4において、塩化水素を添着した活性炭は高温時における塩化水素の揮発性が懸念されるため、高温環境下における使用は想定されていない。 Moreover, in the adsorbent for removing mercury of Patent Document 4, the size of the activated carbon is large, and it is difficult to remove mercury in the exhaust gas by blowing it into the bag filter. Therefore, when removing mercury in exhaust gas using the mercury removal adsorbent of Patent Document 4, it was necessary to provide a packed tower filled with the mercury removal adsorbent in addition to the bag filter. However, the provision of a packed tower poses problems in terms of cost, installation location and management. In fact, there are very limited examples of packed towers operating in incineration facilities and the like. Furthermore, in Patent Document 4, the activated carbon impregnated with hydrogen chloride is not expected to be used in a high temperature environment because of the volatility of hydrogen chloride at high temperatures.

以上の事情を考慮して、本発明では、ガス中に吹き込むことで水銀の除去が可能であって、高温環境下でも添着された塩化水素が揮発することなく使用可能であり、水銀吸着能を向上させる吸着剤を提供する。 Considering the above circumstances, in the present invention, it is possible to remove mercury by blowing into the gas, and it can be used even in a high temperature environment without volatilizing the impregnated hydrogen chloride, and the mercury adsorption ability is improved. provide improved sorbents.

本発明に係る水銀除去用吸着剤は、ガス中の水銀を吸着するための吸着剤であって、平均粒径が10~75μmである粉末活性炭100重量部に対して塩化水素を0.01~12重量部添着させてなる。 The adsorbent for removing mercury according to the present invention is an adsorbent for adsorbing mercury in gas, and has an average particle size of 10 to 75 μm. 12 parts by weight is attached.

本発明に係る水銀除去用吸着剤によれば、ガス中に吹き込むことで水銀の除去が可能であって、高温環境下でも添着された塩化水素が揮発することなく使用可能であり、水銀吸着能を向上させることが可能である。 According to the adsorbent for removing mercury according to the present invention, it is possible to remove mercury by blowing it into the gas, and it can be used even in a high temperature environment without volatilizing the impregnated hydrogen chloride, and has a mercury adsorption ability. can be improved.

実施例に係る水銀吸着剤の水銀の吸着挙動を示すグラフである。4 is a graph showing the adsorption behavior of mercury of the mercury adsorbent according to the example. 実施例および参考例に係る水銀吸着剤の保管安定性を確認する試験結果を示す写真である。4 is a photograph showing test results for confirming the storage stability of mercury adsorbents according to Examples and Reference Examples.

<水銀除去用吸着剤>
本発明に係る水銀除去用吸着剤は、塩化水素を添着させた粉末活性炭であり、ガス中の水銀を吸着することで除去する。水銀除去用吸着剤に使用される活性炭は、粉末活性炭である。
<Mercury removal adsorbent>
The adsorbent for removing mercury according to the present invention is powdered activated carbon impregnated with hydrogen chloride, and removes mercury in gas by adsorbing it. The activated carbon used in the mercury removal adsorbent is powdered activated carbon.

本発明において使用される粉末活性炭の平均粒径は、10~75μmであり、好適には15~65μmであり、さらに好適には20~45μmである。なお、活性炭の平均粒径は、例えばレーザ回折式粒度分布計を用いたレーザ解析法によって測定できる。活性炭の平均粒径を上記の範囲内にすることで、塩化水素の揮発を十分に抑制し、水銀吸着能を向上させることが可能である。 The average particle size of the powdered activated carbon used in the present invention is 10-75 μm, preferably 15-65 μm, more preferably 20-45 μm. The average particle size of activated carbon can be measured, for example, by a laser analysis method using a laser diffraction particle size distribution meter. By setting the average particle diameter of the activated carbon within the above range, it is possible to sufficiently suppress the volatilization of hydrogen chloride and improve the mercury adsorption capacity.

粉末活性炭は、塩化水素を添着させつつ、水銀を十分に吸着させる観点から、例えば、比表面積が500~1500m/gであり、平均細孔直径が1.5~3.5nmであり、細孔容積が0.4~1.5mL/gであるものが好ましい。比表面積(BET比表面積)および細孔容積は、例えば、ガス吸着法による比表面積・細孔分布測定や水銀圧入法による細孔分布測定により求められる。平均細孔直径は、例えば、活性炭の細孔形状を円柱状と仮定し、比表面積と細孔容積とに応じて求められる。 Powdered activated carbon has, for example, a specific surface area of 500 to 1500 m 2 /g, an average pore diameter of 1.5 to 3.5 nm, and fine particles from the viewpoint of sufficiently adsorbing mercury while impregnating hydrogen chloride. A pore volume of 0.4 to 1.5 mL/g is preferred. The specific surface area (BET specific surface area) and pore volume can be obtained, for example, by measuring the specific surface area and pore size distribution by a gas adsorption method or by measuring the pore size distribution by a mercury intrusion method. The average pore diameter is obtained according to the specific surface area and the pore volume, for example, assuming that the pore shape of the activated carbon is columnar.

本発明に使用できる粉末活性炭の原料は、特に限定されず、例えば、木材、おが屑、木炭、ヤシ殻、桃や梅などの果実種子などの植物系原料、泥炭、亜炭、褐炭、瀝青炭、無煙炭、コークス、コールタール、石油ピッチなどの鉱物系原料、アクリル樹脂、塩化ビニリデン樹脂、フェノール樹脂などの合成樹脂系原料などから適宜に選択される。 Raw materials for the powdered activated carbon that can be used in the present invention are not particularly limited. It is appropriately selected from mineral raw materials such as coke, coal tar and petroleum pitch, and synthetic resin raw materials such as acrylic resins, vinylidene chloride resins and phenol resins.

粉末活性炭は、上記の原料を炭化および賦活することにより製造される。なお、炭化および賦活の方法は公知の任意の技術が採用される。炭化は、例えば、原料を不活性ガスの雰囲気中において高温(例えば400~700℃)で加熱することで行われる。賦活は、例えば、水蒸気、酸素、炭酸ガスなどの活性ガス賦活剤によるガス賦活炭や、リン酸、塩化亜鉛、水酸化カリウムなどを用いた薬剤賦活炭などにより行われる。 Powdered activated carbon is produced by carbonizing and activating the above raw materials. Any known technique is employed for the carbonization and activation methods. Carbonization is performed, for example, by heating the raw material at a high temperature (eg, 400 to 700° C.) in an inert gas atmosphere. Activation is performed, for example, by gas-activated carbon using an active gas activator such as steam, oxygen, or carbon dioxide, or chemical-activated carbon using phosphoric acid, zinc chloride, potassium hydroxide, or the like.

本発明に係る水銀除去用吸着剤は、粉末活性炭100重量部に対して塩化水素を0.01~12重量部、好適には0.05~12重量部、より好適には0.1~8重量部、さらに好適には0.12~2.0重量部、最も好適には0.15~0.6重量部添着させてなる。粉末活性炭に対する塩化水素の添着量を上記の範囲内にすることで、高温環境下におけるガス中の水銀を十分に除去することが可能である。塩化水素の添着量は、上記の範囲内において、粉末活性炭の原料、賦活方法や細孔分布等を加味して適宜に変更し得る。 The adsorbent for removing mercury according to the present invention contains 0.01 to 12 parts by weight, preferably 0.05 to 12 parts by weight, more preferably 0.1 to 8 parts by weight of hydrogen chloride per 100 parts by weight of powdered activated carbon. Part by weight, more preferably 0.12 to 2.0 parts by weight, most preferably 0.15 to 0.6 parts by weight. By setting the amount of hydrogen chloride impregnated to the powdered activated carbon within the above range, it is possible to sufficiently remove mercury from the gas in a high-temperature environment. The amount of hydrogen chloride to be impregnated can be appropriately changed within the above range, taking into consideration the raw material of the powdered activated carbon, the activation method, the pore distribution, and the like.

本発明では、塩化水素を添着させた粉末活性炭を水銀除去用吸着剤として使用することで、例えば、他の物質(例えば塩化第二鉄、塩化アンモニウム、塩化カルシウム、硫酸またはリン酸など)を添着せた活性炭や無添着の活性炭を水銀除去用吸着剤として使用した構成と比較して、水銀吸着能を向上させることが可能である。 In the present invention, by using powdered activated carbon impregnated with hydrogen chloride as an adsorbent for removing mercury, for example, other substances (such as ferric chloride, ammonium chloride, calcium chloride, sulfuric acid, or phosphoric acid) can be added. It is possible to improve the mercury adsorption capacity as compared with a configuration in which coated activated carbon or non-impregnated activated carbon is used as an adsorbent for removing mercury.

ここで、塩化水素は揮発性が非常に高い。したがって、粒状活性炭において高温(例えば100℃以上)のガス中の水銀を除去しようとすると、塩化水素が水銀用吸着剤から揮発してしまうと考えられる。すなわち、高温環境下において塩化水素を保持した状態で水銀用吸着剤を使用することは困難である。それに対して、本発明に係る水銀用吸着剤によれば、塩化水素の添加量が十分に制御して調製されるから、高温のガスに対しても塩化水素が揮発することなく十分に添着した状態を維持することができる。ひいては、高温のガス中の水銀を十分に除去することが可能である。 Here, hydrogen chloride is very volatile. Therefore, when an attempt is made to remove mercury in gas at a high temperature (for example, 100° C. or higher) with granular activated carbon, hydrogen chloride is thought to volatilize from the mercury adsorbent. That is, it is difficult to use the adsorbent for mercury in a high-temperature environment while retaining hydrogen chloride. On the other hand, according to the adsorbent for mercury according to the present invention, since the amount of hydrogen chloride added is sufficiently controlled and prepared, hydrogen chloride is sufficiently impregnated even in high temperature gas without volatilization. state can be maintained. As a result, it is possible to sufficiently remove mercury in the high-temperature gas.

以上の説明から理解される通り、従来は、高温環境下では塩化水素が揮発すると考えられていたが、上述した粉末活性炭に所定量の塩化水素を添着させて水銀除去用吸着剤とした場合には、高温環境下においても塩化水素が揮発しないことを、本発明の発明者らが初めて見出した。なお、本発明に係る水銀除去用吸着剤では、粉末活性炭の細孔内部に入った塩化水素に分子の分極由来の「弱い水素結合」のような力が働いて粉末活性炭から脱着されにくくなる(すなわち揮散しにくくなる)と推察される。 As understood from the above explanation, it was conventionally believed that hydrogen chloride would volatilize in a high-temperature environment. The inventors of the present invention discovered for the first time that hydrogen chloride does not volatilize even in a high temperature environment. In addition, in the adsorbent for removing mercury according to the present invention, a force such as "weak hydrogen bonding" derived from molecular polarization acts on the hydrogen chloride that has entered the pores of the powdered activated carbon, making it difficult to desorb from the powdered activated carbon ( That is, it becomes difficult to volatilize).

<水銀除去用吸着剤の製造方法>
以下、本発明に係る水銀除去用吸着剤の製造方法について詳述する。本発明に係る水銀除去用吸着剤の製造方法は、添着工程および乾燥工程を含む。
<Method for producing adsorbent for removing mercury>
Hereinafter, the method for producing the adsorbent for removing mercury according to the present invention will be described in detail. A method for producing a mercury-removing adsorbent according to the present invention includes an impregnation step and a drying step.

添着工程は、上述した粉末活性炭に塩化水素を添着させる工程である。添着工程では、粉末活性炭100重量部に対して塩化水素を0.01~12重量部、好適には0.05~12重量部、より好適には0.1~8重量部、さらに好適には0.12~2.0重量部、最も好適には0.15~0.6重量部添着させる。塩酸(すなわち塩化水素溶液)を使用して粉末活性炭に塩化水素が添着される。 The impregnation step is a step of impregnating the powdered activated carbon with hydrogen chloride. In the impregnation step, 0.01 to 12 parts by weight, preferably 0.05 to 12 parts by weight, more preferably 0.1 to 8 parts by weight, more preferably 0.1 to 8 parts by weight of hydrogen chloride is added to 100 parts by weight of powdered activated carbon. 0.12 to 2.0 parts by weight, most preferably 0.15 to 0.6 parts by weight. Powdered activated carbon is impregnated with hydrogen chloride using hydrochloric acid (ie, a hydrogen chloride solution).

添着工程で使用される塩酸の濃度は、例えば、0.01~12wt%であり、0.05~12wt%であり、より好適には0.1~8wt%であり、さらに好適には0.12~2.0wt%であり、最も好適には0.15~0.6wt%に調整する。添着工程で使用する塩酸の濃度は、市販されている塩酸や工業用の塩酸を希釈することで調整される。 The concentration of hydrochloric acid used in the impregnation step is, for example, 0.01 to 12 wt%, 0.05 to 12 wt%, more preferably 0.1 to 8 wt%, more preferably 0.05 to 12 wt%. 12 to 2.0 wt%, most preferably 0.15 to 0.6 wt%. The concentration of hydrochloric acid used in the impregnation step is adjusted by diluting commercially available hydrochloric acid or industrial hydrochloric acid.

具体的には、添着工程では、濃度を調整した塩酸に粉末活性炭を浸漬することで、粉末活性炭に塩化水素を添着させる。 Specifically, in the impregnation step, the powdered activated carbon is impregnated with hydrogen chloride by immersing the powdered activated carbon in hydrochloric acid whose concentration is adjusted.

塩酸に対する粉末活性炭の質量比(粉末活性炭/塩酸)は、例えば0.2~1.6であり、好適には0.4~1.4であり、さらに好適には0.5~1.2である。塩酸に対する粉末活性炭の質量比を以上の範囲内にすることで、粉末活性炭に塩化水素を無駄なく効率的に添着することが可能である。なお、塩酸に対する粉末活性炭の質量比は、粉末活性炭の原料、賦活方法および保水率等に応じて上記の範囲内で適宜に変更し得る。 The mass ratio of powdered activated carbon to hydrochloric acid (powder activated carbon/hydrochloric acid) is, for example, 0.2 to 1.6, preferably 0.4 to 1.4, more preferably 0.5 to 1.2. is. By setting the mass ratio of the powdered activated carbon to the hydrochloric acid within the above range, it is possible to impregnate the powdered activated carbon with hydrogen chloride efficiently without waste. The mass ratio of the powdered activated carbon to the hydrochloric acid can be appropriately changed within the above range according to the raw material of the powdered activated carbon, the activation method, the water retention rate, and the like.

室温(例えば15~30℃)において塩酸に粉末活性炭を浸漬させて、粉末活性炭の表面および細孔内に十分に塩酸を含侵させる。粉末活性炭に塩酸を含侵させた後に十分に混合して均一化する。 Powdered activated carbon is immersed in hydrochloric acid at room temperature (for example, 15 to 30° C.) to sufficiently impregnate the surface and pores of the powdered activated carbon with hydrochloric acid. After the powdered activated carbon is impregnated with hydrochloric acid, it is sufficiently mixed and homogenized.

だたし、粉末活性炭に塩化水素を添着させる方法は以上の例示に限定されない。例えば、添着工程において、濃度を調整した塩酸を粉末活性炭に噴霧または散布して混合することで、粉末活性炭に塩化水素を添着させてもよい。 However, the method of impregnating the powdered activated carbon with hydrogen chloride is not limited to the above examples. For example, in the impregnation step, hydrogen chloride may be impregnated into the powdered activated carbon by spraying or spraying hydrochloric acid with an adjusted concentration onto the powdered activated carbon and mixing.

乾燥工程では、添着工程後の粉末活性炭を乾燥させる工程である。粉末活性炭を乾燥させる具体的な方法は任意である。例えば、添着工程後の粉末活性炭を室温で放置して乾燥させてもよい。粉末活性炭を室温で放置する場合には、粉末活性炭と空気との接触面積が大きくなるようする。室温で放置して乾燥する場合には、例えば24時間~72時間程度乾燥させる。また、乾燥機を用いて粉末活性炭を乾燥してもよい。乾燥機を用いる場合には、例えば、粉末活性炭を90~230℃で7~12時間程度乾燥させる。 The drying step is a step of drying the powdered activated carbon after the impregnation step. A specific method for drying the powdered activated carbon is arbitrary. For example, the powdered activated carbon after the impregnation step may be left to dry at room temperature. When the powdered activated carbon is left at room temperature, the contact area between the powdered activated carbon and air should be increased. In the case of drying by leaving at room temperature, the drying is performed, for example, for about 24 to 72 hours. Alternatively, the powdered activated carbon may be dried using a dryer. When using a dryer, for example, powdered activated carbon is dried at 90 to 230° C. for about 7 to 12 hours.

以上の添着工程と乾燥工程とにより、本発明に係る水銀除去用吸着剤が製造される。なお、本発明に係る水銀除去用吸着剤は、必要に応じて成形して使用してもよい。以上の製造方法によれば、ガス中に吹き込むことで水銀の除去が可能であって、高温環境下でも添着された塩化水素が揮発することなく使用可能であり、水銀吸着能が良好である水銀吸着剤を製造することが可能である。 The adsorbent for removing mercury according to the present invention is manufactured through the above-described impregnation step and drying step. In addition, the adsorbent for removing mercury according to the present invention may be molded and used as necessary. According to the above production method, mercury can be removed by blowing into the gas, can be used even in a high temperature environment without volatilizing the impregnated hydrogen chloride, and has a good mercury adsorption ability. It is possible to manufacture adsorbents.

<水銀除去方法>
以下、本発明に係る水銀除去用吸着剤を用いてガス中の水銀を除去する水銀除去方法について説明する。なお、本発明において水銀は、金属水銀(水銀原子単体)と水銀化合物(水銀塩化物や水銀酸化物など水銀塩類全体の総称)との双方を含む。
<Mercury removal method>
Hereinafter, a method for removing mercury from gas using the adsorbent for removing mercury according to the present invention will be described. In the present invention, mercury includes both metallic mercury (mercury atoms alone) and mercury compounds (collective term for all mercury salts such as mercury chlorides and mercury oxides).

ここで、2002年に実施された国際環境プログラム(UNEP)による「水銀アセスメント」以降、世界の環境における水銀の問題が大きくクローズアップされた。2010年代に入ると、国際的な環境情勢から「人為的な水銀の(大気への)排出と(水と土壌への)放出」が大きな問題となり、最終的には「水銀に関する水俣条約」が発効された。そして、日本国内でも「大気汚染防止法関連法令」の改正により水銀排出施設からの大気への水銀の排出基準が初めて設定され、2018年4月から施行されている。以後、水銀排出施設においては排出基準の遵守はもとより、排出水銀濃度の測定・記録・保管が義務付けられている。 Since the "Mercury Assessment" conducted by the International Environmental Program (UNEP) in 2002, the problem of mercury in the global environment has come to the fore. In the 2010s, due to the international environmental situation, "man-made mercury emissions (to the atmosphere) and releases (to water and soil)" became a major problem, and eventually the "Minamata Convention on Mercury" was enacted. came into effect. In addition, in Japan, standards for mercury emission into the atmosphere from mercury discharge facilities were set for the first time by revision of "laws and regulations related to the Air Pollution Control Law" and have been enforced since April 2018. Since then, mercury discharge facilities have been obligated not only to comply with the emission standards, but also to measure, record, and store the concentration of discharged mercury.

例えば、焼却炉を有する清掃工場(火格子面積が2m2以上ある工場、または、焼却能力が1時間当たり200kg以上である工場)の「水銀等の排出基準」は、既存施設で50μg/Nm3であり、新規施設では30μg/Nm3である。また、法律で定められた大気へ排出する水銀濃度の定期測定の頻度は、排出ガス量が1時間当たり4万Nm3以上の施設では「4ヶ月を超えない作業期間ごとに1回以上」、それ未満の施設では「6ヶ月を超えない作業期間ごとに1回以上」である。ただ、水銀は水俣病と結びつきやすく周辺住民での嫌悪感が大きいため、清掃工場では日頃から水銀濃度の連続測定などの対応を講じる場合が多い。 For example, an incineration plant with an incinerator (a factory with a fire grate area of 2 m 2 or more, or a factory with an incineration capacity of 200 kg or more per hour) has a “emission standard for mercury, etc.” of 50 μg/Nm 3 for existing facilities. and 30 μg/Nm 3 in new facilities. In addition, the frequency of regular measurement of the concentration of mercury discharged into the atmosphere as stipulated by law is ``once or more every working period not exceeding 4 months'' for facilities with emissions of 40,000 Nm3 or more per hour. For facilities with less than that, it is "at least once every working period not exceeding 6 months". However, since mercury is easily associated with Minamata disease and is highly disliked by local residents, incineration plants often take measures such as continuous measurement of mercury concentration on a daily basis.

以上の事情を考慮して、本実施形態では、焼却炉から排出された排ガス(例えば160℃以上)中の水銀を水銀除去用吸着剤により除去する場合を例示する。排ガス中の水銀は、飛灰や粉塵に付着した粒子状水銀やガス状水銀として存在している。本発明では、特にガス状水銀を有効に除去可能である。なお、水銀を除去する対象となるガスは、焼却炉から排出された排ガスには限定されない。 In consideration of the above circumstances, in the present embodiment, the case of removing mercury in exhaust gas (for example, 160° C. or higher) discharged from an incinerator by using a mercury removing adsorbent will be exemplified. Mercury in flue gas exists as particulate mercury or gaseous mercury adhering to fly ash and dust. In the present invention, gaseous mercury can be effectively removed. In addition, the gas from which mercury is to be removed is not limited to the exhaust gas discharged from the incinerator.

具体的には、焼却炉から排出された排ガスがろ過式集じん装置に至る配管流路内に水銀除去用吸着剤を吹き込むことで、排ガス中の水銀を除去する。ろ過式集じん装置(例えばバグフィルタ)は、排ガス中に含まれる煤塵や有害成分を除去する装置であって、例えば、焼却炉から排出された排ガスの導入口および排出口と、煤塵や有害成分をろ過するためのろ布とを有する。排ガスは、導入口から排出口に向かって流れる。水銀除去用吸着剤は、例えばろ過式集じん装置の導入口側から吹き込まれる。 Specifically, the mercury in the exhaust gas is removed by blowing a mercury-removing adsorbent into the pipe passage where the exhaust gas discharged from the incinerator reaches the filtration type dust collector. A filtration type dust collector (for example, a bag filter) is a device for removing dust and harmful components contained in exhaust gas. and a filter cloth for filtering the Exhaust gas flows from the inlet toward the outlet. The mercury-removing adsorbent is blown from, for example, the inlet side of the filtration type dust collector.

本発明では、平均粒径が10~75μmである粉末活性炭を水銀除去用吸着剤に使用するから、配管流路内に吹き込み剤として吹き込むことが可能になった。したがって、ろ過式集じん装置の他に水銀除去用吸着剤を充填させた充填塔を設置することが不要になる。 In the present invention, since powdered activated carbon with an average particle size of 10 to 75 μm is used as the adsorbent for removing mercury, it has become possible to blow it as a blowing agent into the piping channel. Therefore, it becomes unnecessary to install a packed tower filled with an adsorbent for removing mercury in addition to the filtration type dust collector.

配管流路内に吹き込まれた水銀除去用吸着剤は、排出口側に向かって排ガス中の水銀を吸着しつつ、ろ過式集じん装置のろ布において飛灰とともにろ過される。ろ布において適度なろ過速度を維持することが求められるため、ろ布の表面に堆積する粉塵(水銀除去用吸着剤を含む)は、短時間(例えば5分以内)の間に取り除く必要がある。したがって、ろ過式集じん装置において水銀除去用吸着剤を使用する場合、短時間で水銀を吸着することが所望される。本発明に係る水銀除去用吸着剤によれば、短時間でも十分に排ガス中の水銀を吸着することが可能である。 The mercury-removing adsorbent blown into the piping channel adsorbs mercury in the exhaust gas toward the outlet side, and is filtered together with the fly ash on the filter cloth of the filtration type dust collector. Since it is required to maintain a moderate filtration rate in the filter cloth, dust (including mercury removal adsorbent) deposited on the surface of the filter cloth must be removed within a short period of time (for example, within 5 minutes). . Therefore, when using an adsorbent for removing mercury in a filtration type dust collector, it is desirable to adsorb mercury in a short period of time. According to the adsorbent for removing mercury according to the present invention, it is possible to sufficiently adsorb mercury in exhaust gas even in a short period of time.

ここで、バグフィルタの稼働温度(排ガスの温度)は、通常160℃以上である。しかし、活性炭に添着させる物質の種類によっては、高温下(例えば160℃以上)において水銀吸着能が低下する場合がある。それに対して、本発明では、塩化水素を添着させた粉末活性炭を水銀除去用吸着剤に使用したことで、高温下(例えば160℃以上)においても、水銀吸着能を発揮することが可能である。 Here, the operating temperature of the bag filter (the temperature of exhaust gas) is usually 160° C. or higher. However, depending on the type of substance impregnated on the activated carbon, the mercury adsorption capacity may decrease at high temperatures (for example, 160° C. or higher). On the other hand, in the present invention, by using powdered activated carbon impregnated with hydrogen chloride as an adsorbent for removing mercury, it is possible to exhibit mercury adsorption ability even at high temperatures (for example, 160 ° C. or higher). .

なお、排ガス中にはダイオキシンも存在し、清掃工場では排ガス中のダイオキシンも除去する必要がある。本発明に係る水銀除去用吸着剤では、粉末活性炭100重量部に対して塩化水素を0.01~12重量部添着させたことで、排ガス中の水銀はもちろんのこと、排ガス中のダイオキシンも十分に吸着して除去することが可能になる。 In addition, dioxin is also present in the exhaust gas, and it is necessary to remove the dioxin in the exhaust gas at the incineration plant. In the adsorbent for removing mercury according to the present invention, 0.01 to 12 parts by weight of hydrogen chloride is impregnated with 100 parts by weight of powdered activated carbon. can be removed by adsorption.

本発明の水銀除去用吸着剤は、水銀除去効果が高いため、従来の水銀除去用活性炭に比較しておおよそ3分の1程度の吹き込み量で同等の効果が得られる。したがって、薬剤費において大きなコストメリットを得ることができる。 Since the mercury removal adsorbent of the present invention has a high mercury removal effect, the equivalent effect can be obtained with about one-third the blowing amount compared to the conventional mercury removal activated carbon. Therefore, it is possible to obtain a large cost advantage in drug costs.

以上の説明では、焼却炉からの排ガス中の水銀を除去するために水銀除去用吸着剤を使用する場合を例示したが、排ガス以外のガス中の水銀を除去するために水銀除去用吸着剤を使用してもよい。本発明に係る水銀吸着剤は、特に、高温(100℃以上)のガス中の水銀を除去するために好適に使用される。また、ガス中の水銀を水銀除去用吸着剤を使用して除去するための具体的な方法は任意である。例えば、水銀除去用吸着剤をガス中に吹き込んでもよいし、水銀吸着剤を充填した充填層にガスを通過させてもよい。 In the above explanation, the case of using the mercury removal adsorbent to remove mercury in the flue gas from the incinerator was exemplified. may be used. The mercury adsorbent according to the present invention is particularly suitable for removing mercury in high-temperature (100° C. or higher) gas. In addition, the specific method for removing mercury in the gas using the mercury removing adsorbent is arbitrary. For example, an adsorbent for removing mercury may be blown into the gas, or the gas may be passed through a packed bed filled with the mercury adsorbent.

以上の説明から理解される通り、本発明に係る水銀除去用吸着剤を100℃以上のガスと接触させることで、当該ガス中の水銀を除去する水銀除去方法としても本発明は観念できる。本発明に係る水銀除去用吸着剤は、特に、ガス中に吹き込むことでガス中の水銀を除去する場合に好適に使用される。 As can be understood from the above description, the present invention can also be considered as a mercury removing method for removing mercury in gas by contacting the mercury removing adsorbent according to the present invention with gas at 100° C. or higher. The mercury-removing adsorbent according to the present invention is particularly suitable for removing mercury in gas by blowing into the gas.

下記に実施例により本発明をさらに詳細に説明するが、本発明は実施例には限定されない。 EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited to the examples.

以下の実施例および比較例に係る水銀除去用吸着剤では、市販の木質系の粉末活性炭(賦活方法:水蒸気賦活)を原料として使用する。粉末活性炭の詳細は以下の通りである。 商品名:白鷺C(現大阪ガスケミカル社製)
平均粒径:45μm以下
比表面積(m2/g):1.020
細孔容積(mL/g):0.60
平均細孔直径(nm):2.35nm
In the adsorbents for removing mercury according to the following examples and comparative examples, commercially available powdered woody activated carbon (activation method: steam activation) is used as a raw material. Details of the powdered activated carbon are as follows. Product name: Shirasagi C (currently manufactured by Osaka Gas Chemicals Co., Ltd.)
Average particle size: 45 μm or less Specific surface area (m 2 /g): 1.020
Pore volume (mL/g): 0.60
Average pore diameter (nm): 2.35nm

[実施例1]
上記の粉末活性炭100gを0.01N塩酸(塩化水素0.04wt%)100gに浸漬して吸収・含浸させ、均一になるまで良く混練する。その後、水分除去のための乾燥工程(室温放置;48時間)を経て実施例1を得た。
[Example 1]
100 g of the above powdered activated carbon is immersed in 100 g of 0.01N hydrochloric acid (hydrogen chloride 0.04 wt %) for absorption and impregnation, and kneaded well until uniform. After that, Example 1 was obtained through a drying step (left at room temperature; 48 hours) for removing moisture.

なお、実施例では、活性炭を浸漬させた塩酸中の塩化水素が全て添着したものとする。すなわち、実施例1は、粉末活性炭100重量部に対して塩化水素が0.04重量部添着された水銀除去用吸着剤である。また、塩化水素は揮発性がわずかにあるが、揮発性がないとした場合の添着量とする。 In the examples, it is assumed that all the hydrogen chloride in the hydrochloric acid in which the activated carbon is immersed is impregnated. That is, Example 1 is an adsorbent for removing mercury in which 0.04 parts by weight of hydrogen chloride is impregnated with 100 parts by weight of powdered activated carbon. Hydrogen chloride has a slight volatility, but the attached amount is based on the assumption that it is not volatile.

[実施例2]
上記の粉末活性炭100gを0.05N塩酸(塩化水素0.18wt%)100gに浸漬して吸収・含浸させ、均一になるまで良く混練する。その後、水分除去のための乾燥工程(室温放置;48時間)を経て実施例2を得た。実施例2は、粉末活性炭100重量部に対して塩化水素が0.18重量部添着された水銀除去用吸着剤である。
[Example 2]
100 g of the above powdered activated carbon is immersed in 100 g of 0.05N hydrochloric acid (hydrogen chloride 0.18 wt %) for absorption and impregnation, and kneaded well until uniform. After that, Example 2 was obtained through a drying step (left at room temperature; 48 hours) for removing moisture. Example 2 is an adsorbent for removing mercury in which 0.18 parts by weight of hydrogen chloride is impregnated with 100 parts by weight of powdered activated carbon.

[実施例3]
上記の粉末活性炭100gを0.1N塩酸(塩化水素0.36wt%)100gに浸漬して吸収・含浸させ、均一になるまで良く混練する。その後、水分除去のための乾燥工程(室温放置;48時間)を経て実施例3を得た。実施例3は、粉末活性炭100重量部に対して塩化水素が0.36重量部添着された水銀除去用吸着剤である。
[Example 3]
100 g of the above powdered activated carbon is immersed in 100 g of 0.1N hydrochloric acid (hydrogen chloride 0.36 wt %) for absorption and impregnation, and kneaded well until uniform. Then, Example 3 was obtained through a drying step (left at room temperature; 48 hours) for removing moisture. Example 3 is an adsorbent for removing mercury in which 0.36 parts by weight of hydrogen chloride is impregnated with 100 parts by weight of powdered activated carbon.

[実施例4]
実施例4は、実施例2と同様に、上記の粉末活性炭100重量部に対して塩化水素が0.18重量部添着された水銀除去用吸着剤である。ただし、乾燥工程における乾燥条件が実施例2とは異なる。実施例4の乾燥条件は、乾燥機を用いて105℃で8時間にわたり行った。乾燥条件以外の条件については、実施例2と同様である。
[Example 4]
Example 4, like Example 2, is an adsorbent for removing mercury in which 0.18 parts by weight of hydrogen chloride is impregnated with 100 parts by weight of the powdered activated carbon. However, the drying conditions in the drying process are different from those in the second embodiment. The drying conditions of Example 4 were 105° C. for 8 hours using a dryer. Conditions other than the drying conditions are the same as in Example 2.

[実施例5]
実施例5は、実施例3と同様に、上記の粉末活性炭100重量部に対して塩化水素が0.36重量部添着された水銀除去用吸着剤である。ただし、乾燥工程における乾燥条件が実施例3とは異なる。実施例5の乾燥条件は、乾燥機を用いて200℃で8時間にわたり行った。乾燥条件以外の条件については、実施例3と同様である。
[Example 5]
Example 5 is an adsorbent for removing mercury, similar to Example 3, in which 0.36 parts by weight of hydrogen chloride is impregnated with 100 parts by weight of the powdered activated carbon. However, the drying conditions in the drying process are different from those in Example 3. The drying conditions of Example 5 were 200° C. for 8 hours using a dryer. The conditions other than the drying conditions are the same as in Example 3.

[実施例6]
上記の粉末活性炭100gを0.3N塩酸(塩化水素1.07wt%)100gに浸漬して吸収・含浸させ、均一になるまで良く混練する。その後、水分除去のための乾燥工程(室温放置;48時間)を経て実施例6を得た。実施例6は、粉末活性炭100重量部に対して塩化水素が1.07重量部添着された水銀除去用吸着剤である。
[Example 6]
100 g of the above powdered activated carbon is immersed in 100 g of 0.3N hydrochloric acid (hydrogen chloride 1.07 wt %) for absorption and impregnation, and kneaded well until uniform. Then, Example 6 was obtained through a drying step (left at room temperature; 48 hours) for removing moisture. Example 6 is an adsorbent for removing mercury in which 100 parts by weight of activated carbon powder is impregnated with 1.07 parts by weight of hydrogen chloride.

[比較例1]
上記の粉末活性炭100gを塩化カルシウム0.1wt%水溶液100gに浸漬して吸収・含浸させ、均一になるまで良く混練する。その後、水分除去のための乾燥工程(室温放置;48時間)を経て比較例1を得た。なお、比較例においても、活性炭を浸漬させた塩化カルシウム水溶液中の塩化カルシムが全て添着したものとする。すなわち、比較例1は、粉末活性炭100重量部に対して塩化カルシウムが0.10重量部添着された水銀除去用吸着剤である。
[Comparative Example 1]
100 g of the above powdered activated carbon is immersed in 100 g of a 0.1 wt % aqueous solution of calcium chloride for absorption and impregnation, and kneaded well until uniform. Then, Comparative Example 1 was obtained through a drying step (left at room temperature; 48 hours) for removing moisture. Also in the comparative example, all of the calcium chloride contained in the aqueous calcium chloride solution in which the activated carbon was immersed was impregnated. That is, Comparative Example 1 is an adsorbent for removing mercury in which 0.10 parts by weight of calcium chloride is impregnated with 100 parts by weight of powdered activated carbon.

[比較例2]
上記の粉末活性炭100gを塩化カルシウム0.18wt%水溶液100gに浸漬して吸収・含浸させ、均一になるまで良く混練する。その後、水分除去のための乾燥工程(室温放置;48時間)を経て比較例2を得た。比較例2は、粉末活性炭100重量部に対して塩化カルシウムが0.18重量部添着された水銀除去用吸着剤である。
[Comparative Example 2]
100 g of the above powdered activated carbon is immersed in 100 g of a 0.18 wt % aqueous solution of calcium chloride for absorption and impregnation, and kneaded well until uniform. Then, Comparative Example 2 was obtained through a drying step (left at room temperature; 48 hours) for removing moisture. Comparative Example 2 is an adsorbent for removing mercury in which 0.18 parts by weight of calcium chloride is impregnated with 100 parts by weight of powdered activated carbon.

[参考例1]
上記の粉末活性炭に何も添着させることなく水銀除去用吸着剤とした。
[Reference example 1]
An adsorbent for removing mercury was prepared without adhering anything to the powdered activated carbon.

<水銀吸着実験1>
内径50mm、長さ100mmのガラス製カラムに実施例1-5,比較例1,2および参考例1に係る水銀除去用吸着剤を3g充填した。カラムの上部から金属水銀を約100μg/Nm3を含む室内空気を2L/minの流量で流通させた。
<Mercury adsorption experiment 1>
A glass column having an inner diameter of 50 mm and a length of 100 mm was filled with 3 g of the adsorbents for removing mercury according to Examples 1-5, Comparative Examples 1 and 2, and Reference Example 1. Room air containing about 100 μg/Nm 3 of metallic mercury was passed through the top of the column at a flow rate of 2 L/min.

上記カラムは恒温槽に保持されて、カラムの入口と出口とに設置された市販の水銀測定装置(原子吸光分析法)により、水銀の濃度がそれぞれ測定された。カラムの入口および出口における水銀の測定値から水銀除去率を求めた。なお、バグフィルタが稼働する温度を想定した200℃と160℃とにそれぞれ設定した恒温槽で実験を行った。 The column was held in a constant temperature bath, and the concentration of mercury was measured by a commercially available mercury measuring device (atomic absorption spectrometry) installed at the inlet and outlet of the column. Mercury removal was determined from measurements of mercury at the inlet and outlet of the column. The experiment was conducted in thermostats set to 200° C. and 160° C., respectively, assuming temperatures at which bag filters operate.

図1は、実施例1-3および参考例1について吸着挙動を示す。なお、図1は、200℃に設定した恒温槽における吸着挙動である。図1から把握される通り、実施例1-3では、参考例1と比較して、水銀除去率が格段に向上する。特に、実施例2,3では、参考例1よりも水銀除去率が5倍以上になることが確認できた。 FIG. 1 shows the adsorption behavior of Examples 1-3 and Reference Example 1. FIG. In addition, FIG. 1 shows the adsorption behavior in a constant temperature bath set at 200°C. As can be seen from FIG. 1, in Example 1-3, compared with Reference Example 1, the mercury removal rate is significantly improved. In particular, in Examples 2 and 3, it was confirmed that the mercury removal rate was 5 times or more that of Reference Example 1.

表1は、実施例1-3および比較例1,2における水銀除去率を示す表である。なお、表1の水銀除去率は、2回行った実験の平均値である。添着剤の添着量は、粉末活性炭100重量部に対しての量である。 Table 1 shows the mercury removal rate in Examples 1-3 and Comparative Examples 1 and 2. The mercury removal rate in Table 1 is the average value of two experiments. The amount of the impregnating agent to be impregnated is the amount per 100 parts by weight of powdered activated carbon.

Figure 2023039930000002
Figure 2023039930000002

表1に示される通り、200℃および160℃の双方の場合において、塩化水素を使用した実施例1-3では、添着剤の添着量を踏まえた上で、塩化カルシウムを使用した比較例1,2と比較すると、水銀除去率が高いことが確認できた。具体的には、添着量が同量(0.18重量部)である実施例2と比較例2とを対比すると、200℃の場合には、実施例2が比較例2よりも1.6倍以上も水銀除去率が高く、160℃の場合でも、実施例2が比較例2よりも1.2倍以上も水銀除去率が高いことが確認できた。 As shown in Table 1, in the cases of both 200°C and 160°C, in Examples 1-3 using hydrogen chloride, based on the amount of impregnation of the impregnating agent, Comparative Examples 1 and 1 using calcium chloride Compared with 2, it was confirmed that the mercury removal rate was high. Specifically, when comparing Example 2 and Comparative Example 2 in which the amount of attachment is the same (0.18 parts by weight), at 200 ° C., Example 2 is 1.6 more than Comparative Example 2. It was confirmed that the mercury removal rate of Example 2 was 1.2 times or more higher than that of Comparative Example 2 even at 160°C.

また、160℃における水銀除去率に対する200℃における水銀除去率(200℃/160℃)は、実施例1については0.70であり、実施例2については0.81であり、実施例3については0.98であったのに対して、実施例1は0.62であり、実施例3は0.61であった。以上のことから、本願に係る水銀吸着剤は、塩化カルシウムを添着させた水銀除去用吸着剤と比較して、高温環境下でも水銀吸着能が低下しにくいということも確認できた。言い換えれば、本願に係る水銀吸着剤は、高温環境下において塩化水素が揮発しにくいと言える。 Further, the mercury removal rate at 200°C (200°C/160°C) relative to the mercury removal rate at 160°C was 0.70 for Example 1, 0.81 for Example 2, and 0.81 for Example 3. was 0.98, whereas Example 1 was 0.62 and Example 3 was 0.61. From the above, it has also been confirmed that the mercury adsorption capacity of the mercury adsorbent according to the present application is less likely to decrease even in a high-temperature environment, compared to the mercury-removing adsorbent to which calcium chloride is impregnated. In other words, it can be said that the mercury adsorbent according to the present application is less likely to volatilize hydrogen chloride in a high-temperature environment.

また、実施例1と比較例1との対比から、約3分の1程度の添着量で同程度の水銀除去率を示すことが確認できる。 Also, from the comparison between Example 1 and Comparative Example 1, it can be confirmed that the same level of mercury removal rate is exhibited with an impregnation amount of about one-third.

表2は、実施例2,3および実施例4,5における水銀除去率を示す表である。 Table 2 shows the mercury removal rates in Examples 2 and 3 and Examples 4 and 5.

Figure 2023039930000003
Figure 2023039930000003

表2から把握される通り、実施例4,5についても実施例2,3と同様に、高温環境下での高い水銀除去率が実現されることが確認された。以上の結果を踏まえると、乾燥工程における乾燥条件に関わらず、高い水銀除去率が実現されると言える。なお、乾燥工程において乾燥機で乾燥させた場合(実施例4,5)は、室温で乾燥させた場合(実施例2,3)と比較して、わずかに水銀除去率が上昇した。 As can be seen from Table 2, it was confirmed that in Examples 4 and 5, similarly to Examples 2 and 3, a high mercury removal rate was achieved in a high-temperature environment. Based on the above results, it can be said that a high mercury removal rate is achieved regardless of the drying conditions in the drying process. In the drying step, the mercury removal rate was slightly increased in the case of drying with a dryer (Examples 4 and 5) compared to the case of drying at room temperature (Examples 2 and 3).

<水銀吸着実験2>
さらに、本発明に係る水銀除去用吸着剤の優位性を示すため、従来から提案されている塩化第二鉄および塩化アンモニウムと、塩酸以外の代表的な無機塩(硫酸およびリン酸)とを添着させて、以下の比較例3-6に係る水銀除去用吸着剤を調整した。具体的には、以下の通りである。
<Mercury adsorption experiment 2>
Furthermore, in order to demonstrate the superiority of the mercury removal adsorbent according to the present invention, conventionally proposed ferric chloride and ammonium chloride and typical inorganic salts other than hydrochloric acid (sulfuric acid and phosphoric acid) are impregnated. Then, an adsorbent for removing mercury according to Comparative Examples 3-6 below was prepared. Specifically, it is as follows.

[比較例3]
上記の粉末活性炭100gを塩化第二鉄0.18wt%水溶液100gに浸漬して吸収・含浸させ、均一になるまで良く混練する。その後、水分除去のために乾燥工程を経て比較例3を得た。なお、活性炭を浸漬させた塩化第二鉄水溶液中の塩化第二鉄が全て添着したものとする。すなわち、比較例3は、粉末活性炭100重量部に対して塩化第二鉄が0.18重量部添着された水銀除去用吸着剤である。
[Comparative Example 3]
100 g of the above powdered activated carbon is immersed in 100 g of an aqueous solution of 0.18 wt % ferric chloride for absorption and impregnation, and kneaded well until uniform. Then, Comparative Example 3 was obtained through a drying process to remove moisture. In addition, the ferric chloride in the ferric chloride aqueous solution in which the activated carbon was immersed should be completely impregnated. That is, Comparative Example 3 is an adsorbent for removing mercury in which 0.18 parts by weight of ferric chloride is attached to 100 parts by weight of powdered activated carbon.

[比較例4]
上記の粉末活性炭100gを塩化アンモニウム0.18wt%水溶液100gに浸漬して吸収・含浸させ、均一になるまで良く混練する。その後、水分除去のために乾燥工程を経て、比較例4を得た。なお、活性炭を浸漬させた塩化アンモニウム水溶液中の塩化アンモニウムが全て添着したものとする。すなわち、比較例4は、粉末活性炭100重量部に対して塩化アンモニウムが0.18重量部添着された水銀除去用吸着剤である。
[Comparative Example 4]
100 g of the above powdered activated carbon is immersed in 100 g of an aqueous 0.18 wt % ammonium chloride solution for absorption and impregnation, and kneaded well until uniform. After that, a drying step was performed to remove moisture, and Comparative Example 4 was obtained. It is assumed that all the ammonium chloride contained in the aqueous solution of ammonium chloride in which the activated carbon is immersed is impregnated. That is, Comparative Example 4 is an adsorbent for removing mercury in which 0.18 parts by weight of ammonium chloride is impregnated with 100 parts by weight of powdered activated carbon.

[比較例5]
上記の粉末活性炭100gを硫酸0.18wt%水溶液100gに浸漬して吸収・含浸させ、均一になるまで良く混練する。その後、水分除去のために乾燥工程を経て、比較例5を得た。なお、活性炭を浸漬させた硫酸水溶液中の硫酸が全て添着したものとする。すなわち、比較例5は、粉末活性炭100重量部に対して硫酸が0.18重量部添着された水銀除去用吸着剤である。
[Comparative Example 5]
100 g of the above powdered activated carbon is immersed in 100 g of a 0.18 wt % aqueous solution of sulfuric acid for absorption and impregnation, and kneaded well until uniform. After that, a drying step was performed to remove moisture, and Comparative Example 5 was obtained. It is assumed that all the sulfuric acid in the sulfuric acid aqueous solution in which the activated carbon is immersed is attached. That is, Comparative Example 5 is an adsorbent for removing mercury in which 0.18 parts by weight of sulfuric acid is impregnated with 100 parts by weight of powdered activated carbon.

[比較例6]
上記の粉末活性炭100gをリン酸0.18wt%水溶液100gに浸漬して吸収・含浸させ、均一になるまで良く混練する。その後、水分除去のために乾燥工程を経て、比較例6を得た。なお、活性炭を浸漬させたリン酸水溶液中のリン酸が全て添着したものとする。すなわち、比較例6は、粉末活性炭100重量部に対してリン酸が0.18重量部添着された水銀除去用吸着剤である。
[Comparative Example 6]
100 g of the above powdered activated carbon is immersed in 100 g of an aqueous solution of 0.18 wt % phosphoric acid for absorption and impregnation, and kneaded well until uniform. After that, a drying step was performed to remove moisture, and Comparative Example 6 was obtained. It is assumed that all the phosphoric acid in the phosphoric acid aqueous solution in which the activated carbon is immersed is impregnated. That is, Comparative Example 6 is an adsorbent for removing mercury in which 0.18 parts by weight of phosphoric acid is attached to 100 parts by weight of powdered activated carbon.

水銀吸着実験1と同様に、比較例3-6の水銀除去用吸着剤を充填したカラムを200℃の恒温槽に保持した状態で金属水銀を含む室内空気を流通させて、入口と出口とにおいて水銀濃度を測定して水銀除去率を求めた。なお、表3についても、水銀除去率は2回行った実験の平均値である。 In the same manner as in Mercury Adsorption Experiment 1, the column filled with the mercury removal adsorbent of Comparative Example 3-6 was held in a constant temperature bath at 200 ° C., and indoor air containing metallic mercury was circulated at the inlet and outlet. The mercury concentration was measured to obtain the mercury removal rate. Also in Table 3, the mercury removal rate is the average value of two experiments.

Figure 2023039930000004
Figure 2023039930000004

表3から把握される通り、粉末活性炭に塩化水素を添着させた実施例2は、その他の塩化物や無機酸を粉末活性炭に添着させた比較例2-6と比較して、最も水銀除去率が高いことが確認できた。 As can be seen from Table 3, Example 2, in which the powdered activated carbon was impregnated with hydrogen chloride, had the highest mercury removal rate compared to Comparative Example 2-6, in which the powdered activated carbon was impregnated with other chlorides and inorganic acids. was confirmed to be high.

そして、実施例2が比較例2-6や参考例1と比較して、水銀除去率が格段に高いことからも、本発明に係る水銀除去用吸着剤は、高温下においても塩化水素の揮発が十分に抑制され、水銀吸着能を向上させると言える。 The fact that the mercury removal rate of Example 2 is significantly higher than that of Comparative Examples 2-6 and Reference Example 1 also indicates that the mercury removal adsorbent according to the present invention is capable of volatilizing hydrogen chloride even at high temperatures. is sufficiently suppressed, and it can be said that the mercury adsorption capacity is improved.

以上の説明から理解される通り、本発明に係る水銀除去用吸着剤は、焼却炉からの排ガスの有害物質や粉塵を除去するろ過式集じん装置が稼働する温度(例えば160~200℃)においても高い水銀吸着能を示す。 As can be understood from the above description, the mercury removal adsorbent according to the present invention can be used at a temperature (for example, 160 to 200 ° C.) at which a filtration type dust collector for removing harmful substances and dust from exhaust gas from an incinerator operates. also shows a high mercury adsorption capacity.

<保管安定性試験>
参考例1および以下の実施例3,6に係る水銀除去用吸着剤における室温での保管安定性(塩化水素の揮発性)に関する試験を行った。具体的には、水銀除去用吸着剤20gを鉄製のゼムクリップとともにポリ袋に投入した。そして、ポリ袋の上から負荷(約300Pa)をかけて室温放置して、ゼムクリップの経時変化を1週目から24週目まで目視で確認した。図2には、1週目,2週目,4週目,8週目,16週目および24週目のゼムクリップの写真を示す。
<Storage stability test>
Storage stability (volatility of hydrogen chloride) at room temperature was tested for the adsorbents for removing mercury according to Reference Example 1 and Examples 3 and 6 below. Specifically, 20 g of the mercury-removing adsorbent was put into a plastic bag together with an iron gem clip. Then, a load (approximately 300 Pa) was applied from above the plastic bag and allowed to stand at room temperature, and changes over time of the paper clip were visually observed from the 1st week to the 24th week. FIG. 2 shows photographs of the 1st week, 2nd week, 4th week, 8th week, 16th week and 24th week.

図2から把握される通り、実施例3とともにポリ袋に投入されたゼムクリップは、参考例1の場合と同様に、24週目まで錆びが出現しなかった。一方で、実施例6とともにポリ袋に投入されたゼムクリップは、4週目で錆の出現が確認された。実施例3では、塩化水素が粉末活性炭の細孔内にとどまっているのに対して、実施例6では、4週目で一部の塩化水素が粉末活性炭の表面上に現れてゼムクリップと直接接触した結果、錆が発生したと考えられる。すなわち、実施例3(塩化水素:0.36重量部)は、実施例6(塩化水素:1.07重量部)と比較して、塩化水素の揮発が長期的にみても抑制されることが確認できた。以上の結果を踏まえると、水銀除去用吸着剤における長期的な保管安定性を良好にする(すなわち塩化水素の揮発を抑制する)観点からは、粉末活性炭100重量部に対して塩化水素を0.15~0.6重量部添着させてなる水銀除去用吸着剤が好ましい。 As can be seen from FIG. 2, the paper clip placed in the plastic bag together with Example 3 did not rust until the 24th week, as in Reference Example 1. On the other hand, the appearance of rust on the paper clip placed in the plastic bag together with Example 6 was confirmed after 4 weeks. In Example 3, the hydrogen chloride remained within the pores of the powdered activated carbon, whereas in Example 6, some hydrogen chloride appeared on the surface of the powdered activated carbon at 4 weeks and came into direct contact with the paper clip. As a result, rust is thought to have occurred. That is, in Example 3 (hydrogen chloride: 0.36 parts by weight), compared with Example 6 (hydrogen chloride: 1.07 parts by weight), volatilization of hydrogen chloride is suppressed even in the long term. It could be confirmed. Based on the above results, from the viewpoint of improving the long-term storage stability of the adsorbent for removing mercury (that is, suppressing volatilization of hydrogen chloride), 0.00% of hydrogen chloride is added to 100 parts by weight of powdered activated carbon. An adsorbent for removing mercury that is attached in an amount of 15 to 0.6 parts by weight is preferred.

本発明の水銀除去用吸着剤は、ガス中に含まれる水銀の除去に極めて効果的であり、焼却炉における排ガス処理(特に高温下で使用されるろ過式集じん装置に吹き込んで使用する場合)に有効である。



The adsorbent for removing mercury of the present invention is extremely effective in removing mercury contained in gas, and is used for exhaust gas treatment in incinerators (especially when used by blowing into a filtration type dust collector used at high temperatures). effective for



Claims (7)

ガス中の水銀を吸着するための吸着剤であって、
平均粒径が10~75μmである粉末活性炭100重量部に対して塩化水素を0.01~12重量部添着させてなる
水銀除去用吸着剤。
An adsorbent for adsorbing mercury in gas,
An adsorbent for removing mercury, wherein 0.01 to 12 parts by weight of hydrogen chloride is impregnated with 100 parts by weight of powdered activated carbon having an average particle size of 10 to 75 µm.
粉末活性炭100重量部に対して塩化水素を0.15~0.6重量部添着させてなる
請求項1の水銀除去用吸着剤。
2. The adsorbent for removing mercury according to claim 1, wherein 0.15 to 0.6 parts by weight of hydrogen chloride is impregnated with 100 parts by weight of powdered activated carbon.
焼却炉から排出された排ガスがろ過式集じん装置に至る配管流路内に吹き込むことで、当該排ガス中の水銀を吸着する
請求項1の水銀除去用吸着剤。
2. The adsorbent for removing mercury according to claim 1, wherein an exhaust gas discharged from an incinerator is blown into a piping channel leading to a filtration type dust collector, thereby adsorbing mercury in the exhaust gas.
100℃以上のガス中の水銀を吸着するための
請求項1の水銀除去用吸着剤。
The adsorbent for removing mercury according to claim 1, for adsorbing mercury in gas at 100°C or higher.
平均粒径が10~75μmである粉末活性炭を塩化水素水溶液に浸漬させて、当該粉末活性炭100重量部に対して塩化水素を0.01~12重量部添着させる添着工程と、
前記添着工程後の活性炭を乾燥させる乾燥工程と
を含む水銀除去用活性炭の製造方法。
an impregnation step of immersing powdered activated carbon having an average particle size of 10 to 75 μm in an aqueous hydrogen chloride solution to impregnate 0.01 to 12 parts by weight of hydrogen chloride with respect to 100 parts by weight of the powdered activated carbon;
and a drying step of drying the activated carbon after the impregnation step.
請求項1の水銀除去用吸着剤を、焼却炉から排出された排ガスがろ過式集じん装置に至る配管流路内に吹き込むことで、当該排ガス中の水銀を除去する
水銀除去方法。
A method for removing mercury, comprising blowing the adsorbent for removing mercury according to claim 1 into a piping channel in which exhaust gas discharged from an incinerator reaches a filtration type dust collector, thereby removing mercury in the exhaust gas.
請求項1の水銀除去用吸着剤を100℃以上のガスと接触させることで、当該ガス中の水銀を除去する
水銀除去方法。


A method for removing mercury, comprising contacting the adsorbent for removing mercury according to claim 1 with a gas at a temperature of 100°C or higher to remove mercury in the gas.


JP2022140889A 2021-09-09 2022-09-05 Adsorbent for mercury removal, method for manufacturing the same, and mercury removal method Pending JP2023039930A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021146952 2021-09-09
JP2021146952 2021-09-09

Publications (1)

Publication Number Publication Date
JP2023039930A true JP2023039930A (en) 2023-03-22

Family

ID=85613969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022140889A Pending JP2023039930A (en) 2021-09-09 2022-09-05 Adsorbent for mercury removal, method for manufacturing the same, and mercury removal method

Country Status (1)

Country Link
JP (1) JP2023039930A (en)

Similar Documents

Publication Publication Date Title
Ghorishi et al. Low concentration mercury sorption mechanisms and control by calcium-based sorbents: application in coal-fired processes
CN107530620B (en) Flue gas purification system and method using sorbent polymer composites
US7736611B2 (en) Agglomerates of precipitated silica, method for their preparation and their use as filter medium for gas filtration
Vidic et al. Kinetics of vapor-phase mercury uptake by virgin and sulfur-impregnated activated carbons
US8182775B2 (en) Dry-scrubbing media compositions and methods of production and use
Jurng et al. Mercury removal from incineration flue gas by organic and inorganic adsorbents
US20120134903A1 (en) Solid Inorganic Composition, Method for Preparing Same, and Use Thereof for Reducing Dioxins and Heavy Metals in Flue Gas
JP6379325B1 (en) Activated carbon and manufacturing method thereof
JP2008238163A (en) Removal method of mercury vapor in gas
US8992867B2 (en) Dry-scrubbing media compositions and methods of production and use
Kim et al. Performance of activated carbon-impregnated cellulose filters for indoor VOCs and dust control
JP3187749B2 (en) Method of separating harmful substances from exhaust gas stream and method of removing harmful substances from exhaust gas stream
CN107670641B (en) Graphene air purification material and preparation method thereof
JP2023039930A (en) Adsorbent for mercury removal, method for manufacturing the same, and mercury removal method
JP2010201360A (en) Adsorbent for lower aldehydes and method for producing the same
JPH0347506A (en) Air filter
Brochocka et al. Effective removal of odors from air with polymer nonwoven structures doped by porous materials to use in respiratory protective devices
RU2268084C2 (en) Material and a method for retaining polyhalogenated compounds
EP4017250A1 (en) Systems and methods for removing odor from a fluid stream
JP3436092B2 (en) Hot gas treatment method
US20220126266A1 (en) Process for preparing sulfated adsorbents, sulfated adsorbents and use
JP3521730B2 (en) How to remove organic chlorine compounds
JP2000225320A (en) Method for treating high temperature gas and active carbon
Bae et al. Overlook of carbonaceous adsorbents and processing methods for elemental mercury removal
Elizabeth et al. Breakthrough curve investigation for analysing effectiveness of CO2 adsorption using K2CO3 in fixed bed column

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20221018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221012