JPH1155190A - Light amplification repeating transmission system - Google Patents

Light amplification repeating transmission system

Info

Publication number
JPH1155190A
JPH1155190A JP9208783A JP20878397A JPH1155190A JP H1155190 A JPH1155190 A JP H1155190A JP 9208783 A JP9208783 A JP 9208783A JP 20878397 A JP20878397 A JP 20878397A JP H1155190 A JPH1155190 A JP H1155190A
Authority
JP
Japan
Prior art keywords
optical
dispersion
transmission line
signal
transmission system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9208783A
Other languages
Japanese (ja)
Other versions
JP3529983B2 (en
Inventor
Hideki Maeda
英樹 前田
Makoto Murakami
誠 村上
Norio Okawa
典男 大川
Takamasa Imai
崇雅 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP20878397A priority Critical patent/JP3529983B2/en
Publication of JPH1155190A publication Critical patent/JPH1155190A/en
Application granted granted Critical
Publication of JP3529983B2 publication Critical patent/JP3529983B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To minimize the deterioration of transmission characteristic by optimizing the pulse-occupying rate and the distribution compensating interval of a transmission signal. SOLUTION: This system is constituted of a light transmission means, a transmission line optical fiber 21, a light-amplifying repeater and a light- receiving means and the signal form of signal light generated by the light transmission means is set as an RZ intensity modulation signal of which pulse- occupying rate (r) is 0<r<=0.5. In addition, a distribution compensating medium compensating the average wavelength distribution of the fiber 21 each fixed insertion interval is provided and the ratio α between this compensating interval Lcomp [km] and a length (1/(|/λ<2> D/2πc|B<2> ))expressed by the average wavelength distribution value D [ps/nm/km] of the fiber 21 at the distribution compensating interval, a bit rate B [Gbps], a wavelength λ [nm] and the speed of light (c) [km/s] is made α=Lcomp/(1/(κλ<2> D/2πc|B<2> )) and this α is set within the range of 0.03<=α<=0.09.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光増幅中継器を介
して信号光を伝送する光増幅中継伝送システムに関す
る。特に、光増幅器が発生する光雑音(自然放出光)の
累積および光ファイバの非線形効果と波長分散による伝
送特性劣化の抑圧に対して最適化する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical amplification repeater transmission system for transmitting signal light via an optical amplifier repeater. In particular, the present invention relates to a technology for optimizing accumulation of optical noise (spontaneous emission light) generated by an optical amplifier and suppression of transmission characteristic deterioration due to nonlinear effects and chromatic dispersion of an optical fiber.

【0002】[0002]

【従来の技術】光増幅中継伝送システムの伝送特性を決
定する主な要因は、光増幅器が発生する光雑音(自然放
出光)の累積および光ファイバの非線形効果と波長分散
の複合効果による波形劣化である。
2. Description of the Related Art The main factors that determine the transmission characteristics of an optical amplifying repeater transmission system are the accumulation of optical noise (spontaneous emission light) generated by an optical amplifier and waveform deterioration due to the combined effect of nonlinear effects and chromatic dispersion of an optical fiber. It is.

【0003】光雑音の累積は、最終的には受信後の信号
電力対雑音電力比(SNR)を決定する。良好なSNR
を得るためには、低雑音(雑音指数が小)の光増幅器を
用いる必要がある。また、光ファイバの非線形効果と波
長分散の複合効果による波形劣化の抑圧には、一定距離
ごとに伝送路光ファイバと逆の波長分散値を有する分散
補償器を配置する方法が知られている(「分散マネジメ
ントを用いた10Gbit/s/chWDM伝送システムの検
討」,信学技報,OCS96−57)。
[0003] The accumulation of optical noise ultimately determines the signal power to noise power ratio (SNR) after reception. Good SNR
It is necessary to use a low-noise (small noise figure) optical amplifier to obtain. In order to suppress waveform deterioration due to the combined effect of the nonlinear effect and chromatic dispersion of an optical fiber, there is known a method of arranging a dispersion compensator having a chromatic dispersion value opposite to that of a transmission line optical fiber at every fixed distance ( "Study of 10Gbit / s / ch WDM Transmission System Using Distributed Management", IEICE Technical Report, OCS96-57).

【0004】[0004]

【発明が解決しようとする課題】実用化された光増幅中
継伝送システムでは、送信信号のパルス占有率 100%の
NRZ(ノン・リターン・トゥ・ゼロ)信号が用いられ
ている。また、分散マネジメントを用いる場合には、分
散補償を数百kmの間隔で行うのが一般的である。
In an optical amplification repeater transmission system put into practical use, an NRZ (non-return-to-zero) signal having a pulse occupation ratio of 100% of a transmission signal is used. When dispersion management is used, dispersion compensation is generally performed at intervals of several hundred km.

【0005】しかし、実際にそのパルス占有率および分
散補償間隔が最適か否かは不明であり、伝送特性劣化の
抑圧が十分でなかったり、あるいは必要以上の数の分散
補償器を手間をかけて伝送路光ファイバに挿入している
可能性がある。
However, it is unknown whether the pulse occupation ratio and the dispersion compensation interval are actually optimal, and the suppression of the transmission characteristic deterioration is not sufficient, or more dispersion compensators than necessary are required. It may be inserted into the transmission line optical fiber.

【0006】本発明は、送信信号のパルス占有率および
分散補償間隔を最適化し、伝送特性劣化を最小限に抑え
ることができる光増幅中継伝送システムを提供すること
を目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an optical amplifying repeater transmission system capable of optimizing a pulse occupation ratio and a dispersion compensation interval of a transmission signal and minimizing deterioration of transmission characteristics.

【0007】[0007]

【課題を解決するための手段】本発明の光増幅中継伝送
システムは、光送信手段、伝送路光ファイバおよび光増
幅中継器、光受信手段から構成され、光送信手段で発生
する信号光の信号形式として、パルス占有率rが0<r
≦0.5 のRZ(リターン・トゥ・ゼロ)強度変調信号と
することを特徴とする(請求項1)。
An optical amplification repeater transmission system according to the present invention comprises an optical transmitter, a transmission line optical fiber, an optical amplifier repeater, and an optical receiver, and a signal light signal generated by the optical transmitter. As a form, the pulse occupation ratio r is 0 <r
An RZ (return-to-zero) intensity modulation signal of .ltoreq.0.5 is provided (claim 1).

【0008】また、本発明の光増幅中継伝送システム
は、伝送路光ファイバの平均波長分散を一定挿入間隔ご
とに補償する分散補償媒質を備える。このときの分散補
償間隔Lcomp [km] と、分散補償間隔における伝送路光
ファイバの平均波長分散値D [ps/nm/km] とビットレー
トB [Gbps] と波長λ [nm] と光速c [km/s] により表
される特徴的な長さ(1/(|λ2D/2πc|B2))と
の比αを α=Lcomp/(1/(|λ2D/2πc|B2)) とし、このαを 0.03 ≦α≦ 0.09 の範囲に設定する(請求項2)。なお、送信信号のビッ
トレートBが変化した場合には、分散補償間隔Lcompま
たは伝送路光ファイバの平均波長分散値Dを調整するこ
とにより、αを上記の範囲に設定することができる。
The optical amplifying repeater transmission system of the present invention includes a dispersion compensating medium for compensating the average chromatic dispersion of the transmission line optical fiber at regular intervals. At this time, the dispersion compensation interval Lcomp [km], the average chromatic dispersion value D [ps / nm / km] of the transmission line optical fiber at the dispersion compensation interval, the bit rate B [Gbps], the wavelength λ [nm], and the light speed c [ km / s] and the ratio α to the characteristic length (1 / (| λ 2 D / 2πc | B 2 )) is represented by α = Lcomp / (1 / (| λ 2 D / 2πc | B 2) )), And α is set in the range of 0.03 ≦ α ≦ 0.09 (claim 2). When the bit rate B of the transmission signal changes, α can be set in the above range by adjusting the dispersion compensation interval Lcomp or the average chromatic dispersion value D of the transmission line optical fiber.

【0009】また、伝送路光ファイバとして正分散(異
常分散)のものを用いた場合には、信号光にスペクトル
広がりが生じ、波形劣化の原因となる。このため、負分
散伝送路より伝送距離が制限されることになる。そこ
で、本発明の光増幅中継伝送システムは、全伝送路光フ
ァイバの平均波長分散値および分散補償間隔における伝
送路光ファイバの平均波長分散値Dが負分散のものを用
いる(請求項3)。
[0009] In addition, when a positive dispersion (abnormal dispersion) is used as the transmission line optical fiber, the signal light has a spectrum spread, which causes waveform deterioration. For this reason, the transmission distance is limited by the negative dispersion transmission line. Therefore, the optical amplifying repeater transmission system of the present invention uses a transmission line optical fiber in which the average chromatic dispersion value of all the transmission line optical fibers and the average chromatic dispersion value D of the transmission line optical fiber in the dispersion compensation interval are negative.

【0010】また、本発明の光増幅中継伝送システムの
光送信手段は、互いに異なる波長の信号光を発生する複
数の光送信器と、各光送信器から出力される信号光を合
波した波長多重信号光を光伝送路に送信する合波器とを
含み、光受信手段は、光伝送路から入力される波長多重
信号光を各波長の信号光に分波する分波器と、各波長の
信号光を受信する複数の光受信器と、各波長の信号光を
その波長ごとに分散補償する分散媒質を含むようにして
もよい(請求項4)。
The optical transmitting means of the optical amplifying repeater transmission system according to the present invention comprises: a plurality of optical transmitters for generating signal lights having different wavelengths; and a wavelength multiplexed signal light output from each optical transmitter. A multiplexer for transmitting the multiplexed signal light to the optical transmission line, wherein the optical receiving means includes: a demultiplexer for demultiplexing the wavelength multiplexed signal light input from the optical transmission line into signal lights of respective wavelengths; A plurality of optical receivers for receiving the signal light, and a dispersion medium for dispersion-compensating the signal light of each wavelength for each wavelength.

【0011】[0011]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(第1の実施形態)図1は、本発明の光増幅中継伝送シ
ステムの第1の実施形態を示す。
(First Embodiment) FIG. 1 shows a first embodiment of an optical amplification repeater transmission system according to the present invention.

【0012】ここに示すシステムは、光送信器10と、
光伝送路20と、光受信器30とにより構成される。光
送信器10が発生する信号光は、パルス占有率rが0<
r≦0.5 のRZ強度変調信号である。
The system shown here comprises an optical transmitter 10 and
It comprises an optical transmission line 20 and an optical receiver 30. The signal light generated by the optical transmitter 10 has a pulse occupation ratio r of 0 <
This is an RZ intensity modulation signal satisfying r ≦ 0.5.

【0013】光伝送路20は、信号光を伝送する伝送路
光ファイバ21と、この伝送路光ファイバ21で伝送さ
れる信号光を増幅する光増幅器22と、この伝送路光フ
ァイバ21に挿入されこの伝送路光ファイバ21の波長
分散を補償する分散補償媒質23とにより構成される。
分散補償媒質23は、伝送路光ファイバ21の前後どち
らに挿入されてもよい。また、分散補償媒質23として
は、例えば分散補償光ファイバまたは光ファイバグレー
ティングを用いることができる。
The optical transmission line 20 includes a transmission line optical fiber 21 for transmitting signal light, an optical amplifier 22 for amplifying the signal light transmitted by the transmission line optical fiber 21, and an optical amplifier 22 inserted into the transmission line optical fiber 21. The transmission path optical fiber 21 includes a dispersion compensating medium 23 for compensating for chromatic dispersion.
The dispersion compensating medium 23 may be inserted before or after the transmission line optical fiber 21. As the dispersion compensating medium 23, for example, a dispersion compensating optical fiber or an optical fiber grating can be used.

【0014】図2および図3は、光送信器のパルス占有
率と光受信器におけるSNRとの関係を計算機シミュレ
ーションにより求めた結果を示す。なお、条件は、信号
光の波長1556nm、光増幅器中継間隔50km、光増幅器
出力−3dBm、光増幅器の雑音指数4dBとしている。
FIGS. 2 and 3 show the results obtained by computer simulation of the relationship between the pulse occupancy of the optical transmitter and the SNR of the optical receiver. The conditions are a signal light wavelength of 1556 nm, an optical amplifier relay interval of 50 km, an optical amplifier output of −3 dBm, and an optical amplifier noise figure of 4 dB.

【0015】図2は、光伝送路で分散補償を行わない場
合のシミュレーション結果である。光伝送路の波長分散
値は、分散と非線形効果による波形劣化が顕著にならな
い値として−0.1 ps/nm/kmとしている。光送信器10の
ビットレートを10Gbit/s とし、パルス占有率rを 0.2
から1.0 まで変化させ、伝送距離 500kmにおけるSN
Rを示す。この結果から、0<r≦0.5 で最良のSNR
が得られていることが分かる。これは、平均信号光電力
が同一条件では、パルス占有率を小さくするほど、信号
光のピーク電力が大きくなるためである。
FIG. 2 shows a simulation result when dispersion compensation is not performed in the optical transmission line. The chromatic dispersion value of the optical transmission line is -0.1 ps / nm / km as a value at which waveform deterioration due to dispersion and nonlinear effects does not become noticeable. The bit rate of the optical transmitter 10 is 10 Gbit / s, and the pulse occupancy r is 0.2
From 1.0 to 1.0, SN at 500 km transmission distance
R is shown. From this result, the best SNR at 0 <r ≦ 0.5
It can be seen that is obtained. This is because, under the same average signal light power, the smaller the pulse occupancy, the larger the peak power of the signal light.

【0016】図3は、光伝送路で分散補償を行った場合
のシミュレーション結果である。光送信器10のビット
レートを10Gbit/s 、上記の分散補償間隔Lcompと特徴
的な長さの比α(=Lcomp/(1/(|λ2D/2πc|
2)))を0.01〜0.12とし、パルス占有率rを 0.2から
1.0 まで変化させ、伝送距離6000kmにおけるSNRを
示す。この結果から、α=0.06ではNRZ信号(r=1.
0)を用いるよりもRZ信号(0<r≦0.5 )を用いた方
が良好なSNRが得られることが分かる。また、同一条
件における実験結果でも、RZ信号(0<r≦0.5 )で
良好なSNRが得られ、伝送特性が改善されていること
が分かる。なお、α=0.01、r=0.6 でも同程度のSN
Rが得られるが、分散補償器を多く用いる必要がある。
FIG. 3 shows a simulation result when dispersion compensation is performed on the optical transmission line. The bit rate of the optical transmitter 10 is 10 Gbit / s, and the ratio α (= Lcomp / (1 / (| λ 2 D / 2πc |) of the dispersion compensation interval Lcomp and the characteristic length.
B 2 ))) is set to 0.01 to 0.12, and the pulse occupation ratio r is set to 0.2 to 0.2.
The SNR at a transmission distance of 6000 km is shown, changing to 1.0. From this result, it can be seen that when α = 0.06, the NRZ signal (r = 1.
It can be seen that better SNR can be obtained by using the RZ signal (0 <r ≦ 0.5) than by using (0). Also, it can be seen from the experimental results under the same conditions that a good SNR was obtained with the RZ signal (0 <r ≦ 0.5) and the transmission characteristics were improved. Even when α = 0.01 and r = 0.6, the same SN
Although R can be obtained, it is necessary to use many dispersion compensators.

【0017】表1は、αに対する最良のSNRおよび最
適なパルス占有率rを計算機シミュレーションにより求
めた結果を示す。なお、条件は図3のシミュレーション
と同じである。
Table 1 shows the results of calculating the best SNR and the optimum pulse occupancy r for α by computer simulation. The conditions are the same as in the simulation of FIG.

【0018】[0018]

【表1】 [Table 1]

【0019】表1に示すように、0.03≦α≦0.09が、分
散補償間隔Lcompをある程度確保しながら良好なSNR
が得られる範囲と言える。また、そのときのパルス占有
率rは 0.2〜0.4 であり、0<r≦0.5 を満たす。
As shown in Table 1, when 0.03 ≦ α ≦ 0.09, a good SNR while securing a certain dispersion compensation interval Lcomp
Can be said to be the range in which Further, the pulse occupation ratio r at that time is 0.2 to 0.4, and satisfies 0 <r ≦ 0.5.

【0020】(第2の実施形態)図4は、本発明の光増
幅中継伝送システムの第2の実施形態を示す。ここに示
すシステムは、光波長多重送信端局40と、光伝送路2
0と、光波長多重受信端局50とにより構成される。
(Second Embodiment) FIG. 4 shows a second embodiment of the optical amplification repeater transmission system of the present invention. The system shown here comprises an optical wavelength multiplexing transmitting terminal 40 and an optical transmission line 2.
0 and an optical wavelength division multiplexing receiving terminal 50.

【0021】光波長多重送信端局40は、互いに異なる
波長の信号光を発生する4個の光送信器10a〜10d
と、光送信器10a〜10dから出力される各波長の信
号光を合波して光伝送路20に送出する合波器41とを
備える。
The optical wavelength multiplexing transmitting terminal 40 comprises four optical transmitters 10a to 10d for generating signal lights having different wavelengths from each other.
And a multiplexer 41 for multiplexing the signal lights of the respective wavelengths output from the optical transmitters 10 a to 10 d and transmitting the multiplexed signal light to the optical transmission line 20.

【0022】光波長多重受信端局50は、伝送された波
長多重信号光を各波長の信号光に分波する分波器51
と、分波された信号光を各波長ごとに分散補償する受信
用分散補償媒質52a〜52dと、分散補償された各波
長の信号光を受信する光受信器30a〜30dとを備え
る。
The optical wavelength division multiplexing receiving terminal 50 is a demultiplexer 51 for demultiplexing the transmitted wavelength division multiplexed signal light into signal light of each wavelength.
And a dispersion compensating medium for reception 52a to 52d for dispersion-compensating the split signal light for each wavelength, and optical receivers 30a to 30d for receiving the dispersion-compensated signal light of each wavelength.

【0023】図5は、光送信器のパルス占有率と光受信
器におけるSNRとの関係を計算機シミュレーションに
より求めた結果を示す。なお、条件は、光送信器10a
〜10dのビットレートを10Gbit/s 、光増幅器出力を
−3dBm/ch、分散補償間隔Lcompと特徴的な長さの比
α(=Lcomp/(1/(|λ2D/2πc|B2)))を0.
06とし、パルス占有率rを 0.2から1.0 まで変化させ、
伝送距離6000kmにおけるSNRを示す。この結果か
ら、波長多重伝送時においても、単一波長伝送時と同様
に、RZ信号(0<r≦0.5 )を用いた方が良好なSN
Rが得られることが分かる。
FIG. 5 shows the result obtained by computer simulation of the relationship between the pulse occupancy of the optical transmitter and the SNR of the optical receiver. In addition, the condition is the optical transmitter 10a.
The bit rate of 10d to 10d is 10 Gbit / s, the output of the optical amplifier is -3 dBm / ch, the ratio α of the dispersion compensation interval Lcomp to the characteristic length α (= Lcomp / (1 / (| λ 2 D / 2πc | B 2 )) )) To 0.
06, changing the pulse occupancy r from 0.2 to 1.0,
The SNR at a transmission distance of 6000 km is shown. From these results, it is found that, in the wavelength multiplexing transmission, as in the case of the single wavelength transmission, the better SN is obtained by using the RZ signal (0 <r ≦ 0.5).
It can be seen that R is obtained.

【0024】ここで、本発明の光増幅中継伝送システム
は、比較的少ない波長多重数(例えば数十波長以内)を
対象として分散補償を最適な間隔で行い、良好なSNR
を得るものである。なお、波長多重数がそれよりも多く
なった場合には、特願平9−39560(光波長多重伝
送装置)に記載のように、パルス占有率rが 0.6から1.
0 のRZ強度変調信号を用いることにより、相互位相変
調による伝送特性劣化を最小限に抑えることができる。
Here, the optical amplifying repeater transmission system of the present invention performs dispersion compensation at an optimal interval for a relatively small number of wavelength multiplexes (for example, within several tens of wavelengths), and provides a good SNR.
Is what you get. When the number of multiplexed wavelengths is larger than that, as described in Japanese Patent Application No. 9-39560 (optical wavelength division multiplexing transmission apparatus), the pulse occupation ratio r is 0.6 to 1.
By using an RZ intensity modulation signal of 0, deterioration of transmission characteristics due to cross-phase modulation can be minimized.

【0025】以上説明した実施形態では、光受信器のベ
ースバンド帯域幅が一定の条件で説明したが、送信信号
のパルス占有率rの変化に伴って光受信器のベースバン
ド帯域幅を変化させてもよい。また、送信信号のビット
レートBが変化した場合には、分散補償間隔Lcompおよ
び伝送路光ファイバの平均波長分散値Dを調整すること
により、同様の効果を得ることができる。
In the embodiment described above, the baseband bandwidth of the optical receiver has been described as being constant. However, the baseband bandwidth of the optical receiver is changed with the change of the pulse occupancy r of the transmission signal. You may. Further, when the bit rate B of the transmission signal changes, the same effect can be obtained by adjusting the dispersion compensation interval Lcomp and the average chromatic dispersion value D of the transmission line optical fiber.

【0026】[0026]

【発明の効果】以上説明したように、本発明の光増幅中
継伝送システムは、光送信器の信号形式をパルス占有率
rが0<r≦0.5 のRZ強度変調信号とすることによ
り、伝送特性劣化を最小限に抑えることができる。ま
た、分散補償間隔Lcompを最適化することができるの
で、必要以上の数の分散補償器を伝送路光ファイバに挿
入する必要がなく、無駄な手間とコストを省くことがで
きる。
As described above, in the optical amplifying repeater transmission system of the present invention, the signal format of the optical transmitter is changed to an RZ intensity modulated signal having a pulse occupation ratio r of 0 <r ≦ 0.5, thereby achieving transmission characteristics. Deterioration can be minimized. Further, since the dispersion compensation interval Lcomp can be optimized, it is not necessary to insert an excessive number of dispersion compensators into the transmission line optical fiber, and unnecessary labor and cost can be saved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光増幅中継伝送システムの第1の実施
形態を示すブロック図。
FIG. 1 is a block diagram showing a first embodiment of an optical amplification repeater transmission system according to the present invention.

【図2】分散補償なしのシミュレーション結果を示す
図。
FIG. 2 is a diagram showing a simulation result without dispersion compensation.

【図3】分散補償ありのシミュレーション結果および実
験結果を示す図。
FIG. 3 shows a simulation result and an experimental result with dispersion compensation.

【図4】本発明の光増幅中継伝送システムの第2の実施
形態を示すブロック図。
FIG. 4 is a block diagram showing a second embodiment of the optical amplification relay transmission system of the present invention.

【図5】光波長多重伝送のシミュレーション結果を示す
図。
FIG. 5 is a diagram showing a simulation result of optical wavelength division multiplexing transmission.

【符号の説明】[Explanation of symbols]

10 光送信器 20 光伝送路 21 伝送路光ファイバ 22 光増幅器 23 分散補償媒質 30 光受信器 40 光波長多重送信端局 41 合波器 50 光波長多重受信端局 51 分波器 52 受信用分散補償媒質 DESCRIPTION OF SYMBOLS 10 Optical transmitter 20 Optical transmission line 21 Transmission line optical fiber 22 Optical amplifier 23 Dispersion compensating medium 30 Optical receiver 40 Optical wavelength division multiplexing transmission terminal 41 Multiplexer 50 Optical wavelength division multiplexing reception terminal 51 Demultiplexer 52 Reception dispersion Compensation medium

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H04B 10/18 H04J 14/00 14/02 (72)発明者 今井 崇雅 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 6 Identification code FI H04B 10/18 H04J 14/00 14/02 (72) Inventor Takamasa Imai 3-9-1-2 Nishishinjuku, Shinjuku-ku, Tokyo Nippon Telegraph and Telephone Telephone Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光送信手段で発生させた信号光を光ファ
イバ伝送路および光増幅中継器を介して光受信手段に伝
送する光増幅中継伝送システムにおいて、 前記光送信手段で発生する信号光の信号形式は、パルス
占有率rが0<r≦0.5のRZ(リターン・トゥ・ゼロ)
強度変調信号とすることを特徴とする光増幅中継伝送シ
ステム。
1. An optical amplification repeater transmission system for transmitting signal light generated by an optical transmitter to an optical receiver through an optical fiber transmission line and an optical amplifier repeater. The signal format is RZ (return-to-zero) where the pulse occupation ratio r is 0 <r ≦ 0.5
An optical amplification repeater transmission system characterized by using an intensity modulated signal.
【請求項2】 伝送路光ファイバの平均波長分散を一定
挿入間隔ごとに補償する分散補償媒質を有し、その分散
補償間隔Lcomp [km] と、分散補償間隔における伝送路
光ファイバの平均波長分散値D [ps/nm/km] とビットレ
ートB[Gbps]と波長λ [nm] と光速c [km/s] により表
される特徴的な長さとの比を 【数1】 の範囲に設定したことを特徴とする請求項1に記載の光
増幅中継伝送システム。
2. A dispersion compensating medium for compensating the average chromatic dispersion of the transmission line optical fiber at a constant insertion interval, the dispersion compensation interval Lcomp [km], and the average chromatic dispersion of the transmission line optical fiber at the dispersion compensation interval. The ratio between the value D [ps / nm / km], the bit rate B [Gbps], the wavelength λ [nm], and the characteristic length represented by the speed of light c [km / s] is given by 2. The optical amplification repeater transmission system according to claim 1, wherein the optical amplification repeater transmission system is set in the range of:
【請求項3】 全伝送路光ファイバの平均波長分散値お
よび分散補償間隔における伝送路光ファイバの平均波長
分散値Dが負分散であることを特徴とする請求項1また
は請求項2に記載の光増幅中継伝送システム。
3. The method according to claim 1, wherein an average chromatic dispersion value of the transmission line optical fiber and an average chromatic dispersion value D of the transmission line optical fiber at the dispersion compensation interval are negative dispersion. Optical amplification relay transmission system.
【請求項4】 光送信手段は、互いに異なる波長の信号
光を発生する複数の光送信器と、各光送信器から出力さ
れる信号光を合波した波長多重信号光を光伝送路に送信
する合波器とを含み、 光受信手段は、前記光伝送路から入力される波長多重信
号光を各波長の信号光に分波する分波器と、各波長の信
号光を受信する複数の光受信器と、各波長の信号光をそ
の波長ごとに分散補償する分散媒質を含むことを特徴と
する請求項1から請求項3のいずれかに記載の光増幅中
継伝送システム。
4. An optical transmission means for transmitting, to an optical transmission line, a plurality of optical transmitters for generating signal lights having mutually different wavelengths, and a wavelength multiplexed signal light obtained by multiplexing the signal lights output from the respective optical transmitters. An optical receiving means, the optical receiving means comprises: a demultiplexer for demultiplexing the wavelength multiplexed signal light input from the optical transmission line into signal lights of respective wavelengths; and a plurality of demultiplexers for receiving the signal lights of respective wavelengths. 4. The optical amplifying repeater transmission system according to claim 1, further comprising an optical receiver, and a dispersion medium that performs dispersion compensation on the signal light of each wavelength for each wavelength.
JP20878397A 1997-08-04 1997-08-04 Optical amplification repeater transmission system Expired - Fee Related JP3529983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20878397A JP3529983B2 (en) 1997-08-04 1997-08-04 Optical amplification repeater transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20878397A JP3529983B2 (en) 1997-08-04 1997-08-04 Optical amplification repeater transmission system

Publications (2)

Publication Number Publication Date
JPH1155190A true JPH1155190A (en) 1999-02-26
JP3529983B2 JP3529983B2 (en) 2004-05-24

Family

ID=16562038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20878397A Expired - Fee Related JP3529983B2 (en) 1997-08-04 1997-08-04 Optical amplification repeater transmission system

Country Status (1)

Country Link
JP (1) JP3529983B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000312181A (en) * 1999-03-31 2000-11-07 Alcatel Polarization dispersion compensating system and method for optical transmission system
US7515580B2 (en) 2001-01-05 2009-04-07 Qualcomm, Incorporated Method and apparatus for forward power control in a communication system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000312181A (en) * 1999-03-31 2000-11-07 Alcatel Polarization dispersion compensating system and method for optical transmission system
JP4669103B2 (en) * 1999-03-31 2011-04-13 アルカテル−ルーセント Polarization dispersion compensating apparatus and method in optical transmission system
US7515580B2 (en) 2001-01-05 2009-04-07 Qualcomm, Incorporated Method and apparatus for forward power control in a communication system

Also Published As

Publication number Publication date
JP3529983B2 (en) 2004-05-24

Similar Documents

Publication Publication Date Title
EP1146671B1 (en) High capacity ultra-long haul dispersion and nonlinearity managed lightwave communication systems
US6366728B1 (en) Composite optical fiber transmission line method
US20030007216A1 (en) Long haul transmission in a dispersion managed optical communication system
JP3352570B2 (en) Noise suppression method for WDM transmission system
Nielsen et al. 3.28-Tb/s transmission over 3 x 100 km of nonzero-dispersion fiber using dual C-and L-band distributed Raman amplification
JPH11103286A (en) Wavelength multiplexed light transmitting device
US7254342B2 (en) Method and system for transmitting information in an optical communication system with low signal distortion
JP2004274615A (en) Wavelength dispersion compensation system
Suzuki et al. 170 Gb/s transmission over 10,850 km using large core transmission fiber
Ono et al. An erbium-doped tellurite fiber amplifier for WDM systems with dispersion-shifted fibers
Miyamoto et al. 100 GHz-spaced 8× 43 Gbit/s DWDM unrepeatered transmission over 163 km using duobinary-carrier-suppressed return-to-zero format
Jinno et al. 1580-nm band, equally spaced 8 x 10 Gb/s WDM channel transmission over 360 km (3 x 120 km) of dispersion-shifted fiber avoiding FWM impairment
JP3529983B2 (en) Optical amplification repeater transmission system
JP3533307B2 (en) Optical WDM transmission equipment
EP1170895B1 (en) Optical transmission system with reduced raman effect depletion.
Charrua et al. Optimized filtering for AMI-RZ and DCS-RZ SSB signals in 40-Gb/s/ch-based UDWDM systems
JP3626660B2 (en) Repeaterless optical transmission system and repeaterless optical transmission method
US8396372B2 (en) Asymmetric long-haul transmission paths with optical phase conjugation
Zhu et al. Polarisation-channel-interleaved carrier-suppressed RZ ETDM/DWDM transmission at 40 Gbit/s with 0.8 bit/s/Hz spectral efficiency
Idler et al. 16 x 112 gb/s nrz-dqpsk lab experiments and wdm field trial over ultimate metro distances including high pmd fibers
JP3596403B2 (en) Optical wavelength division multiplex transmitter, optical wavelength division multiplex receiver, optical repeater, and optical wavelength division multiplex transmission system
Zhu et al. Eight-channel 40 Gb/s RZ transmission over four 80 km spans (328 km) of NDSF with a net dispersion tolerance in excess of 180 ps/nm
JP3595119B2 (en) Optical WDM transmission equipment
Marcerou et al. From 40 to 80 10 Gbit/s DWDM transmission for ultra long-haul terrestrial transmission above 3000 km
Nelson et al. NZ-DSF dispersion maps in 2000-km 8/spl times/10 Gb/s WDM transmission

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees