JP3595119B2 - Optical WDM transmission equipment - Google Patents

Optical WDM transmission equipment Download PDF

Info

Publication number
JP3595119B2
JP3595119B2 JP22663697A JP22663697A JP3595119B2 JP 3595119 B2 JP3595119 B2 JP 3595119B2 JP 22663697 A JP22663697 A JP 22663697A JP 22663697 A JP22663697 A JP 22663697A JP 3595119 B2 JP3595119 B2 JP 3595119B2
Authority
JP
Japan
Prior art keywords
optical
wavelength
optical fiber
dispersion
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22663697A
Other languages
Japanese (ja)
Other versions
JPH10126385A (en
Inventor
英樹 前田
義博 林
陽一 深田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP22663697A priority Critical patent/JP3595119B2/en
Publication of JPH10126385A publication Critical patent/JPH10126385A/en
Application granted granted Critical
Publication of JP3595119B2 publication Critical patent/JP3595119B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は光波長多重伝送に関する。特に、光波長多重伝送に特有な光ファイバの非線形効果(四光波混合、相互位相変調)と波長分散との複合効果による波形劣化と、光単一波長通信での非線形効果である自己位相変調と波長分散との複合効果による波形劣化との抑圧に対して最適化する技術に関する。
【0002】
【従来の技術】
光波長多重伝送方式では、信号光間のクロストークによる伝送特性劣化が問題となる。このクロストークの主因は、伝送路光ファイバ中で起こる四光波混合、相互位相変調などの現象によるものである。これらの現象は、伝送路光ファイバ中を波長の異なる複数の光信号が伝搬するとき、光信号間に相互作用が起こることにより生じる。この相互作用により、それぞれの波長差に応じた光信号成分が生成される現象が四光波混合であり、光信号に位相変調が起こる現象が相互位相変調である。
【0003】
従来、四光波混合および相互位相変調を抑圧する手段として、伝送路光ファイバの分散値を大きく設定し、一定距離ごとに伝送路の光ファイバと逆の分散をもつ分散補償器を配置する分散マネジメントが知られている。例えば、
文献:” WDM Transmission Experiments over 2640km of Eight NRZ, 10−Gb/s Data channels”, OAA’96, ThB2
には、分散値が−0.7ps/nm/kmの伝送路光ファイバにおいて、600kmの間隔で分散補償を行った例が示されている。
【0004】
【発明が解決しようとする課題】
従来は分散補償を数百kmの間隔で分散補償を行うのが一般的であったが、実際にその分散補償間隔が最適か否かは不明であり、必要以上の数の分散補償器を手間をかけて伝送路光ファイバに挿入している可能性があった。
【0005】
本発明は、このような課題を解決し、信号光間のクロストークによる伝送特性劣化が最適化された光波長多重通信装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の光波長多重伝送装置は、波長多重された信号光を伝送する伝送路光ファイバと、この伝送路光ファイバに挿入されこの伝送路光ファイバの波長分散を補償する分散補償手段とを備えた波長多重伝送装置において、伝送路光ファイバの波長分散は負分散であり、分散補償手段は、伝送路光ファイバにより伝送されるパルスのスーパーガウシアン波形exp{−(1/2)・(T/T2m}(mはスーパーガウシアンの指数)のTと、その中心波長λ〔nm〕と、伝送路光ファイバ内における光速c〔km/s〕と、中心波長λ〔nm〕における伝送路光ファイバの分散値D〔ps/nm/km〕とにより表される分散長
=T /|λD/2πc|
に対し、
0.1<Lcomp/L<0.4
で表される間隔Lcomp〔km〕(以下「分散補償間隔」という)ごとに配置されたことを特徴とする。
【0007】
伝送路光ファイバにより伝送されるパルスとして、ハイパブリックセカント波形sech(T/T)あるいはローレンツ形波形(1+(T/T−1/2のものを用いることができる。
【0008】
スーパーガウシアンおよびハイパブリックセカント波形については、例えば、Academic Press社発行の”NONLINEAR FIBER OPTICS”に詳しく説明されている。スーパーガウシアンの指数m=1の場合は通常のガウシアン波形である。ローレンツ波形については、丸善株式会社発行の「光エレクトロニクスの基礎」に詳しく説明されている。
【0009】
伝送路光ファイバとして正分散(異常分散)のものを用いた場合には、信号光にスペクトル広がりが生じてクロストークの原因となり、波形劣化の原因となる。このため、負分散伝送路よりも伝送距離が制限されることになる。そこで本発明では、伝送路光ファイバとして負分散のものを用いる。また、分散補償間隔Lcompを最適化することで、信号光間のクロストークによる伝送特性劣化を最適化することができる。分散補償手段としては、分散補償光ファイバまたは光ファイバグレーティングを用いることができる。
【0010】
本発明によれば、送信信号の符号形式によってTへの換算式は異なるものの、その換算さえ行えば、設計時には送信信号の符号形式とそのビットレートを考慮する必要がなく、システム設計が容易になる。また、波長多重数についても考慮する必要がない。
【0011】
伝送路光ファイバの分散値Dは−1ないし−2ps/nm/kmであることがよい。この範囲の値であれば、信号光間のクロストークによる伝送特性劣化を最適化する分散補償間隔Lcompを大きくとることができ、システム設計上有利である。
【0012】
伝送路光ファイバには信号光を増幅する光増幅器を挿入することができる。また、伝送路光ファイバに波長多重光を送出する光送信手段と、伝送路光ファイバから波長多重光を受信する光受信手段とを備え、光送信手段は、互いに波長の異なる信号光を発生する複数の光送信器と、この複数の光送信器からの信号光を合波する合波器とを含み、光受信手段は、伝送された波長多重光を各波長の信号光に分波する分波器と、分波された信号光を受信する受信器とを含み、光受信手段はさらに、分波器により分波された信号光をその波長ごとに分散補償する分散媒質を含むことができる。分散媒質としては、伝送路光ファイバに挿入される分散補償手段と同様に、分散補償光ファイバまたは光ファイバグレーテンィグを用いることができる。
【0013】
【発明の実施の形態】
図1は本発明の実施形態を示すブロック構成図であり、光波長多重伝送装置の構成例を示す。ここでは、4波長多重の場合を例に説明する。図1に示す装置は、光波長多重送信端局10と、光伝送路20と、光波長多重受信端局30とを備える。光波長多重送信端局10は、互いに波長の異なる信号光を発生する4個の送信器11a〜11dと、これらの光送信器11a〜11dからの信号光を合波する合波器12とを備える。光伝送路20は、波長多重された信号光を伝送する伝送路光ファイバ21と、この伝送路光ファイバ21に伝送される信号光を増幅する光増幅器22と、この伝送路光ファイバ21に挿入されこの伝送路光ファイバ21の波長分散を補償する分散補償媒質23とにより構成される。光波長多重受信端局30は、伝送された波長多重光を各波長の信号光に分波する分波器31と、分波された信号光をその波長ごとに分散補償する受信用分散媒質32と、分波され分散補償された信号光を受信する受信器33a〜33dとを備える。
【0014】
分散補償媒質23および受信用分散媒質32としては、分散補償光ファイバまたは光ファイバグレーティングを用いる。分散補償媒質23は、光伝送路20により伝送されるパルスのスーパーガウシアン波形exp{−(1/2)・(T/T2m}(mはスーパーガウシアンの指数)のTを用いて表される分散長
=T /|λD/2πc|
ただし、
λ:中心波長〔nm〕
c:伝送路光ファイバ21内における光速c〔km/s〕
D:中心波長〔nm〕における伝送路光ファイバ21の分散値D〔ps/nm/km〕
に対し、
0.1<Lcomp/L<0.4
で表される分散補償間隔Lcomp〔km〕ごとに配置される。
【0015】
図2ないし図4はLcomp/Lと伝送距離Lとの関係を計算機シミュレーションにより求めた結果を示す。
【0016】
図2は、送信器11a〜11dのビットレートをそれぞれ10Gbit/s(総ビットレート40Gbit/s)とし、平均信号光電力(光増幅器出力電力)Pavを−3dBm/ch、0dBm/ch、3dBm/chと変化させた場合について、最悪のチャネルでアイパターンの開口劣化が1dBとなる距離を伝送距離Lとして求めたものである。伝送路光ファイバの分散値は−1.0、−2.0、−10.0ps/nm/kmとした。この結果、分散補償間隔LcompがLcomp/L≦0.1では、光波長多重伝送に特有な光ファイバの非線形効果(4光波混合、相互位相変調)と波長分散との複合効果により波形劣化が生じ、Lcomp/L≧0.4では、光単一波長通信での非線形効果である自己位相変調と波長分散との複合効果により波形劣化が生じている。一方、分散補償間隔Lcompが0.1<Lcomp/L<0.4のときに伝送距離Leがピークとなり、最適な補償間隔であることがわかる。四光波混合および相互位相変調は、チャネル間のウォークオフ(各チャネル間の波長分散に起因するパルスの相対的な時間差)に依存するため、分散補償間隔が大きい、あるいは伝送路光ファイバの分散値の絶対値が大きい程、波形劣化が生じにくくなるが、自己位相変調と波長分散との複合効果による波形劣化の制約のため、波形劣化が最小になる補償間隔が存在することになる。
【0017】
図3は、送信器11a〜11dのビットレートをそれぞれ10Gbit/s(総ビットレート40Gbit/s)、平均信号光電力Pavを0dBm/chとし、伝送路光ファイバの分散値を−0.5、−1.0、−2.0、−4.0、−10.0ps/nm/kmとした場合について、図2と同様に伝送距離Lを求めたものである。この結果から、伝送路光ファイバの分散値を−0.5ps/nm/kmとした場合には、Lcomp/L<0.2では伝送距離Lが急速に劣化することがわかる。したがって、システム設計上、伝送路光ファイバの分散値は−1.0〜−2.0ps/nm/kmの範囲であることが望ましい。
【0018】
図4は、伝送路光ファイバに伝送されるパルスをハイパブリックセカント波形あるいはローレンツ形波形とし、送信器11a〜11dのビットレートをそれぞれ10Gbit/s(総ビットレート40Gbit/s)、平均信号光電力Pavを0dBm/chとし、伝送路光ファイバの分散値を−1.0ps/nm/kmとした場合について、伝送距離Lを求めたものである。この結果から、ハイパブリックセカント波形およびローレンツ形波形ともに、分散補償間隔Lcomp
0.1<Lcomp/L<0.4
のときに伝送距離Lがピークになり、最適な補償間隔であることがわかる。
【0019】
【発明の効果】
以上説明したように、本発明では、伝送路光ファイバの波長分散を負分散(正常分散)に設定することにより信号光のスペクトル広がりを抑圧し、かつ分散補償間隔Lcompを分散長Lに対して最適に設定することにより、信号光間のクロストークによる伝送特性劣化を最適化することができる。分散補償間隔Lcompを最適化できるので、必要以上の数の分散補償器を手間をかけて伝送路光ファイバに挿入することもない。
【0020】
また、伝送路光ファイバの分散値を−1〜−2ps/nm/kmに設定することにより、信号光間のクロストークによる伝送特性劣化を最適化する分散補償間隔Lcompを大きくとることができ、システムの設計上有利である。
【図面の簡単な説明】
【図1】本発明の実施形態を示すブロック構成図。
【図2】シミュレーション結果を示す図。
【図3】シミュレーション結果を示す図。
【図4】シミュレーション結果を示す図。
【符号の説明】
10 光波長多重送信端局
11a〜11d 送信器
12 合波器
20 光伝送路
21 伝送路光ファイバ
22 光増幅器
23 分散補償媒質
30 光波長多重受信端局
31 分波器
32 受信用分散媒質
33a〜33d 受信器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to optical wavelength division multiplexing transmission. In particular, waveform degradation due to the combined effect of nonlinear effects (four-wave mixing, cross-phase modulation) and chromatic dispersion of optical fibers unique to optical wavelength division multiplexing transmission, and self-phase modulation, which is a nonlinear effect in optical single-wavelength communication, The present invention relates to a technique for optimizing suppression of waveform deterioration due to a combined effect with chromatic dispersion.
[0002]
[Prior art]
In the optical wavelength division multiplexing transmission method, there is a problem of deterioration of transmission characteristics due to crosstalk between signal lights. The main cause of the crosstalk is due to phenomena such as four-wave mixing and cross-phase modulation occurring in the transmission line optical fiber. These phenomena are caused by the interaction between optical signals when a plurality of optical signals having different wavelengths propagate in the transmission line optical fiber. The phenomenon that an optical signal component corresponding to each wavelength difference is generated by this interaction is four-wave mixing, and the phenomenon that phase modulation occurs in an optical signal is cross-phase modulation.
[0003]
Conventionally, as a means for suppressing four-wave mixing and cross-phase modulation, dispersion management is performed by setting the dispersion value of the transmission line optical fiber to a large value and arranging a dispersion compensator with dispersion opposite to that of the transmission line optical fiber at regular intervals. It has been known. For example,
Literature: "WDM Transmission Experiments over 2640 km of Eight NRZ, 10-Gb / s Data channels", OAA'96, ThB2
Shows an example in which dispersion compensation is performed at an interval of 600 km in a transmission line optical fiber having a dispersion value of -0.7 ps / nm / km.
[0004]
[Problems to be solved by the invention]
Conventionally, it has been common practice to perform dispersion compensation at intervals of several hundred km. However, it is unclear whether the dispersion compensation interval is optimal or not. There was a possibility that the cable was inserted into the transmission path optical fiber.
[0005]
An object of the present invention is to solve such a problem and to provide an optical wavelength division multiplexing communication apparatus in which transmission characteristic degradation due to crosstalk between signal lights is optimized.
[0006]
[Means for Solving the Problems]
An optical wavelength division multiplexing transmission device according to the present invention includes a transmission line optical fiber for transmitting wavelength-multiplexed signal light, and dispersion compensation means inserted into the transmission line optical fiber and compensating for chromatic dispersion of the transmission line optical fiber. In the wavelength division multiplexing transmission device, the chromatic dispersion of the transmission line optical fiber is negative dispersion, and the dispersion compensating means uses the super Gaussian waveform exp {-(1/2) · (T / T 0) 2m} (m is transmitted and T 0 of the super index Gaussian), and the center wavelength λ [nm], the speed of light c [km / s] in the transmission path optical the fiber, at the center wavelength λ [nm] Length L d = T 0 2 / | λ 2 D / 2πc | expressed by the dispersion value D [ps / nm / km] of the optical fiber.
Against
0.1 <L comp / L d <0.4
Are arranged at intervals L comp [km] (hereinafter referred to as “dispersion compensation intervals”).
[0007]
As pulses transmitted by the transmission line optical fiber, high public secant waveform sech (T / T 0) or Lorentz type waveform (1+ (T / T 0) 2) can be used as the -1/2.
[0008]
The super Gaussian and high public secant waveforms are described in detail, for example, in "NONLINEAR FIBER OPTICS" issued by Academic Press. When the index of super Gaussian m = 1, it is a normal Gaussian waveform. The Lorentz waveform is described in detail in "Basics of Optoelectronics" issued by Maruzen Co., Ltd.
[0009]
When a positive dispersion (abnormal dispersion) is used as the transmission line optical fiber, the spectrum spreads in the signal light, causing crosstalk and causing waveform deterioration. For this reason, the transmission distance is more restricted than the negative dispersion transmission line. Therefore, in the present invention, a negative dispersion optical fiber is used as the transmission line optical fiber. In addition, by optimizing the dispersion compensation interval L comp , it is possible to optimize transmission characteristic degradation due to crosstalk between signal lights. As the dispersion compensating means, a dispersion compensating optical fiber or an optical fiber grating can be used.
[0010]
According to the present invention, although the conversion formula to T 0 varies depending on the code format of the transmission signal, if the conversion is performed, it is not necessary to consider the code format of the transmission signal and its bit rate at the time of design, and system design is easy. become. Also, it is not necessary to consider the number of wavelength multiplexes.
[0011]
The dispersion value D of the transmission line optical fiber is preferably -1 to -2 ps / nm / km. With a value in this range, the dispersion compensation interval L comp for optimizing the deterioration of transmission characteristics due to crosstalk between signal lights can be increased, which is advantageous in system design.
[0012]
An optical amplifier for amplifying the signal light can be inserted into the transmission line optical fiber. The optical transmission unit further includes an optical transmission unit that transmits the wavelength-division multiplexed light to the transmission line optical fiber and an optical reception unit that receives the wavelength-division multiplexed light from the transmission line optical fiber, wherein the optical transmission unit generates signal lights having different wavelengths from each other. A plurality of optical transmitters; and a multiplexer for multiplexing the signal lights from the plurality of optical transmitters, wherein the optical receiving means separates the transmitted wavelength-division multiplexed light into signal light of each wavelength. The optical receiver includes a wave receiver and a receiver that receives the demultiplexed signal light, and the optical receiving unit may further include a dispersion medium that dispersion-compensates the signal light demultiplexed by the demultiplexer for each wavelength. . As the dispersion medium, a dispersion compensating optical fiber or an optical fiber grating can be used as in the case of the dispersion compensating means inserted into the transmission line optical fiber.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a block diagram showing an embodiment of the present invention, and shows a configuration example of an optical wavelength division multiplexing transmission apparatus. Here, a case of four-wavelength multiplexing will be described as an example. The apparatus shown in FIG. 1 includes an optical wavelength division multiplexing transmitting terminal 10, an optical transmission line 20, and an optical wavelength division multiplexing receiving terminal 30. The optical wavelength division multiplexing transmission terminal 10 includes four transmitters 11a to 11d that generate signal lights having different wavelengths from each other, and a multiplexer 12 that multiplexes the signal lights from these optical transmitters 11a to 11d. Prepare. The optical transmission line 20 includes a transmission line optical fiber 21 for transmitting the wavelength-multiplexed signal light, an optical amplifier 22 for amplifying the signal light transmitted to the transmission line optical fiber 21, and an optical amplifier 22 inserted into the transmission line optical fiber 21. And a dispersion compensating medium 23 for compensating the chromatic dispersion of the transmission line optical fiber 21. The optical wavelength division multiplexing receiving terminal 30 includes a demultiplexer 31 for demultiplexing the transmitted wavelength multiplexed light into signal light of each wavelength, and a receiving dispersion medium 32 for dispersion-compensating the divided signal light for each wavelength. And receivers 33a to 33d that receive the split and dispersion-compensated signal light.
[0014]
As the dispersion compensating medium 23 and the receiving dispersion medium 32, a dispersion compensating optical fiber or an optical fiber grating is used. Dispersion compensation medium 23, Super Gaussian waveform exp of pulses transmitted by the optical transmission line 20 {- (1/2) · ( T / T 0) 2m} (m is super index Gaussian) using T 0 of Dispersion length L d = T 0 2 / | λ 2 D / 2πc |
However,
λ: center wavelength [nm]
c: speed of light c [km / s] in the transmission line optical fiber 21
D: Dispersion value D [ps / nm / km] of the transmission line optical fiber 21 at the center wavelength [nm].
Against
0.1 <L comp / L d <0.4
Are arranged at every dispersion compensation interval L comp [km] represented by
[0015]
Figures 2-4 show the results obtained by computer simulation the relationship between L comp / L d and transmission distance L e.
[0016]
2, each bit rate of the transmitter 11a~11d and 10 Gbit / s (total bit rate 40 Gbit / s), the average signal light power (the optical amplifier output power) P av the -3dBm / ch, 0dBm / ch, 3dBm / for the case where ch and varied are those sought distance opening penalty of the eye pattern at the worst channel is 1dB as transmission distance L e. The dispersion value of the transmission line optical fiber was -1.0, -2.0, -10.0 ps / nm / km. As a result, when the dispersion compensation interval L comp is L comp / L d ≦ 0.1, the waveform is caused by the combined effect of the nonlinear effect (four-wave mixing, cross-phase modulation) and the chromatic dispersion of the optical fiber specific to the optical wavelength division multiplexing transmission. When L comp / L d ≧ 0.4, waveform degradation occurs due to the combined effect of self-phase modulation and chromatic dispersion, which is a nonlinear effect in optical single-wavelength communication. On the other hand, when the dispersion compensation interval L comp is 0.1 <L comp / L d <0.4, the transmission distance Le reaches a peak, and it can be seen that this is the optimal compensation interval. Since four-wave mixing and cross-phase modulation depend on the walk-off between channels (the relative time difference between pulses caused by chromatic dispersion between channels), the dispersion compensation interval is large, or the dispersion value of the transmission line optical fiber. Is larger, the waveform deterioration is less likely to occur, but there is a compensation interval where the waveform deterioration is minimized due to the limitation of the waveform deterioration due to the combined effect of self-phase modulation and chromatic dispersion.
[0017]
FIG. 3 shows that the bit rates of the transmitters 11a to 11d are 10 Gbit / s (total bit rate 40 Gbit / s), the average signal light power Pav is 0 dBm / ch, and the dispersion value of the transmission line optical fiber is -0.5. , -1.0, -2.0, -4.0, for the case where the -10.0ps / nm / km, in which determined the transmission distance L e as in FIG 2. From this result, when the dispersion value of the transmission line optical fiber was -0.5ps / nm / km is, L comp / L d <0.2 in transmission distance L e it is seen to deteriorate rapidly. Therefore, from the viewpoint of system design, it is desirable that the dispersion value of the transmission line optical fiber is in the range of -1.0 to -2.0 ps / nm / km.
[0018]
FIG. 4 shows a pulse transmitted to the transmission line optical fiber as a high public secant waveform or a Lorentzian waveform, the bit rates of the transmitters 11a to 11d are respectively 10 Gbit / s (total bit rate 40 Gbit / s), and the average signal light power. the P av and 0dBm / ch, the case where the dispersion value of the transmission line optical fiber was -1.0ps / nm / km, in which determined the transmission distance L e. From this result, the dispersion compensation interval L comp is 0.1 <L comp / L d <0.4 for both the high public secant waveform and the Lorentzian waveform.
At the time, the transmission distance Le reaches a peak, and it is understood that the optimum compensation interval is set.
[0019]
【The invention's effect】
As described above, in the present invention, the chromatic dispersion of the transmission line optical fiber is set to negative dispersion (normal dispersion) to suppress the spectrum spread of the signal light, and the dispersion compensation interval L comp to the dispersion length L d . By setting it optimally, it is possible to optimize transmission characteristic degradation due to crosstalk between signal lights. Since the dispersion compensation interval L comp can be optimized, it is not necessary to insert an excessive number of dispersion compensators into the transmission line optical fiber.
[0020]
Further, by setting the dispersion value of the transmission line optical fiber to −1 to −2 ps / nm / km, the dispersion compensation interval L comp for optimizing the deterioration of transmission characteristics due to crosstalk between signal lights can be increased. This is advantageous in system design.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of the present invention.
FIG. 2 is a diagram showing a simulation result.
FIG. 3 is a diagram showing a simulation result.
FIG. 4 is a diagram showing a simulation result.
[Explanation of symbols]
Reference Signs List 10 optical wavelength multiplexing transmitting terminal stations 11a to 11d transmitter 12 multiplexer 20 optical transmission line 21 transmission line optical fiber 22 optical amplifier 23 dispersion compensating medium 30 optical wavelength multiplexing receiving terminal station 31 demultiplexer 32 receiving dispersion medium 33a to 33d receiver

Claims (6)

波長多重された信号光を伝送する伝送路光ファイバと、
この伝送路光ファイバに挿入されこの伝送路光ファイバの波長分散を補償する分散補償手段と
を備えた波長多重伝送装置において、
前記伝送路光ファイバの波長分散は負分散であり、
前記分散補償手段は、前記伝送路光ファイバにより伝送されるパルスのスーパーガウシアン波形exp{−(1/2)・(T/T2m}(mはスーパーガウシアンの指数)のTと、その中心波長λ〔nm〕と、前記伝送路光ファイバ内における光速c〔km/s〕と、前記中心波長λ〔nm〕における前記伝送路光ファイバの分散値D〔ps/nm/km〕とにより表される分散長
=T /|λD/2πc|
に対し、
0.1<Lcomp/L<0.4
で表される間隔Lcomp〔km〕ごとに配置された
ことを特徴とする光波長多重伝送装置。
A transmission line optical fiber for transmitting wavelength-multiplexed signal light;
A wavelength-division multiplexing transmission device having a dispersion compensating unit inserted into the transmission line optical fiber and compensating for chromatic dispersion of the transmission line optical fiber;
The chromatic dispersion of the transmission line optical fiber is negative dispersion,
Said dispersion compensating means, wherein the transmission line optical supergaussian waveforms of the pulses transmitted by the fiber exp - a {(1/2) · (T / T 0) 2m} T 0 of the (m exponent of the super-Gaussian), The center wavelength λ [nm], the speed of light c [km / s] in the transmission line optical fiber, and the dispersion value D [ps / nm / km] of the transmission line optical fiber at the center wavelength λ [nm]. Dispersion length L d = T 0 2 / | λ 2 D / 2πc |
Against
0.1 <L comp / L d <0.4
An optical wavelength division multiplexing transmission device arranged at intervals of Lcomp [km] represented by:
前記伝送路光ファイバにより伝送されるパルスはその波形がハイパブリックセカント波形sech(T/T)である請求項1記載の光波長多重伝送装置。The pulses transmitted by the transmission line optical fiber is an optical wavelength multiplex transmission apparatus according to claim 1, wherein the waveform is a high public secant waveform sech (T / T 0). 前記伝送路光ファイバにより伝送されるパルスはその波形がローレンツ形波形(1+(T/T−1/2である請求項1記載の光波長多重伝送装置。The pulses transmitted by the transmission line optical fiber is the waveform Lorentz type waveform (1+ (T / T 0) 2) -1/2 is claim 1 the optical wavelength multiplex transmission apparatus according. 前記伝送路光ファイバの分散値Dは−1ないし−2ps/nm/kmである請求項1ないし3のいずれか記載の光波長多重伝送装置。4. The optical wavelength division multiplex transmission apparatus according to claim 1, wherein a dispersion value D of the transmission line optical fiber is -1 to -2 ps / nm / km. 前記伝送路光ファイバには信号光を増幅する光増幅器が挿入された請求項1ないし4のいずれか記載の光波長多重伝送装置。5. The optical wavelength division multiplexing transmission apparatus according to claim 1, wherein an optical amplifier for amplifying signal light is inserted in said transmission line optical fiber. 前記伝送路光ファイバに波長多重光を送出する光送信手段と、前記伝送路光ファイバから波長多重光を受信する光受信手段とを備え、
前記光送信手段は、互いに波長の異なる信号光を発生する複数の光送信器と、この複数の光送信器からの信号光を合波する合波器とを含み、
前記光受信手段は、伝送された波長多重光を各波長の信号光に分波する分波器と、分波された信号光を受信する受信器とを含み、
前記光受信手段はさらに、前記分波器により分波された信号光をその波長ごとに分散補償する分散媒質を含む
請求項1ないし5のいずれか記載の光波長多重伝送装置。
Optical transmission means for transmitting wavelength-division multiplexed light to the transmission path optical fiber, and optical reception means for receiving wavelength-division multiplexed light from the transmission path optical fiber,
The optical transmission means includes a plurality of optical transmitters that generate signal lights having different wavelengths from each other, and a multiplexer that multiplexes the signal lights from the plurality of optical transmitters,
The optical receiving means includes a splitter that splits the transmitted wavelength multiplexed light into signal light of each wavelength, and a receiver that receives the split signal light,
6. The optical wavelength division multiplexing transmission apparatus according to claim 1, wherein said optical receiving means further includes a dispersion medium for dispersion-compensating the signal light demultiplexed by said demultiplexer for each wavelength.
JP22663697A 1996-08-29 1997-08-22 Optical WDM transmission equipment Expired - Lifetime JP3595119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22663697A JP3595119B2 (en) 1996-08-29 1997-08-22 Optical WDM transmission equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22868196 1996-08-29
JP8-228681 1996-08-29
JP22663697A JP3595119B2 (en) 1996-08-29 1997-08-22 Optical WDM transmission equipment

Publications (2)

Publication Number Publication Date
JPH10126385A JPH10126385A (en) 1998-05-15
JP3595119B2 true JP3595119B2 (en) 2004-12-02

Family

ID=26527277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22663697A Expired - Lifetime JP3595119B2 (en) 1996-08-29 1997-08-22 Optical WDM transmission equipment

Country Status (1)

Country Link
JP (1) JP3595119B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3769129B2 (en) 1998-09-03 2006-04-19 富士通株式会社 Optical amplifier and optical communication system having chromatic dispersion compensation function

Also Published As

Publication number Publication date
JPH10126385A (en) 1998-05-15

Similar Documents

Publication Publication Date Title
EP0938197A2 (en) High capacity chirped-pulse wavelength-division multiplexed communication method and apparatus
JPH0946318A (en) Wavelength multiplexed optical transmission system and optical transmitter to be used for same
Bellotti et al. Cross-phase modulation suppressor for multispan dispersion-managed WDM transmissions
JP3625726B2 (en) Optical transmission device and optical transmission system
Hodzic et al. Improvement of system performance in N x 40-Gb/s WDM transmission using alternate polarizations
JP3352570B2 (en) Noise suppression method for WDM transmission system
Murakami et al. Long-haul 16 x 10 Gb/s WDM transmission experiment using higher order fiber dispersion management technique
JPH11103286A (en) Wavelength multiplexed light transmitting device
Sharan et al. Design and simulation of CSRZ modulated 40 Gbps DWDM system in presence of Kerr Non linearity
Chraplyvy et al. Terabit/second transmission experiments
Kani et al. Bidirectional transmission to suppress interwavelength-band nonlinear interactions in ultrawide-band WDM transmission systems
JP2004274615A (en) Wavelength dispersion compensation system
Aisawa et al. A 1580-nm band WDM transmission technology employing optical duobinary coding
US20150358108A1 (en) Method and Apparatus for Increasing a Transmission Performance of a Hybrid Wavelength Division Multiplexing System
JP3595119B2 (en) Optical WDM transmission equipment
Morita et al. Long-haul soliton WDM transmission with periodic dispersion compensation and dispersion slope compensation
JP4056954B2 (en) WDM transmission system and WDM transmission method
JP3291370B2 (en) Optical WDM transmission system
Jinno et al. 1580-nm band, equally spaced 8 x 10 Gb/s WDM channel transmission over 360 km (3 x 120 km) of dispersion-shifted fiber avoiding FWM impairment
Aleksejeva et al. Performance investigation of dispersion compensation methods for WDM-PON transmission systems
JP3533307B2 (en) Optical WDM transmission equipment
KR100533600B1 (en) Wavelength division multiplexed metro optical communication apparatus
Garthe et al. Simultaneous transmission of eight 40 Gbit/s channels over standard single mode fiber
Taga et al. Long-distance WDM transmission experiments using the dispersion slope compensator
Zhu et al. Polarisation-channel-interleaved carrier-suppressed RZ ETDM/DWDM transmission at 40 Gbit/s with 0.8 bit/s/Hz spectral efficiency

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term