JP3529983B2 - Optical amplifier repeater transmission system - Google Patents

Optical amplifier repeater transmission system

Info

Publication number
JP3529983B2
JP3529983B2 JP20878397A JP20878397A JP3529983B2 JP 3529983 B2 JP3529983 B2 JP 3529983B2 JP 20878397 A JP20878397 A JP 20878397A JP 20878397 A JP20878397 A JP 20878397A JP 3529983 B2 JP3529983 B2 JP 3529983B2
Authority
JP
Japan
Prior art keywords
optical
transmission
wavelength
signal light
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20878397A
Other languages
Japanese (ja)
Other versions
JPH1155190A (en
Inventor
崇雅 今井
英樹 前田
典男 大川
誠 村上
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP20878397A priority Critical patent/JP3529983B2/en
Publication of JPH1155190A publication Critical patent/JPH1155190A/en
Application granted granted Critical
Publication of JP3529983B2 publication Critical patent/JP3529983B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Fee Related legal-status Critical

Links

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、光増幅中継器を介して信号光を伝送する光増幅中継伝送システムに関する。 BACKGROUND OF THE INVENTION [0001] [Technical Field of the Invention The present invention relates to an optical amplifier repeater transmission system for transmitting signal light through an optical amplifier repeater. 特に、光増幅器が発生する光雑音(自然放出光)の累積および光ファイバの非線形効果と波長分散による伝送特性劣化の抑圧に対して最適化する技術に関する。 In particular, a technique optimized for suppression of the transmission characteristic deterioration due to a nonlinear effect and the chromatic dispersion of accumulated and optical fibers of the optical noise optical amplifier occurs (spontaneous emission light). 【0002】 【従来の技術】光増幅中継伝送システムの伝送特性を決定する主な要因は、光増幅器が発生する光雑音(自然放出光)の累積および光ファイバの非線形効果と波長分散の複合効果による波形劣化である。 [0002] The main factors that determine the transmission characteristics of the Related Art optical amplifier repeater transmission system, the nonlinear effect and combined effect of the wavelength dispersion of accumulated and optical fibers of the optical noise optical amplifier occurs (spontaneous emission light) it is a waveform degradation due. 【0003】光雑音の累積は、最終的には受信後の信号電力対雑音電力比(SNR)を決定する。 [0003] optical noise accumulation eventually determine the signal power to noise power ratio after reception (SNR). 良好なSNR Good SNR
を得るためには、低雑音(雑音指数が小)の光増幅器を用いる必要がある。 To obtain, it is necessary to use optical amplifiers of the low noise (noise figure small). また、光ファイバの非線形効果と波長分散の複合効果による波形劣化の抑圧には、一定距離ごとに伝送路光ファイバと逆の波長分散値を有する分散補償器を配置する方法が知られている(「分散マネジメントを用いた10Gbit/s/chWDM伝送システムの検討」,信学技報,OCS96−57)。 Further, the suppression of the waveform degradation due to the nonlinear effect and combined effect of the chromatic dispersion of the optical fiber, there is known a method of placing a dispersion compensator having a transmission line optical fiber opposite to the wavelength dispersion value for each constant distance ( "study of 10Gbit / s / chWDM transmission system using dispersion management", IEICE Technical report, OCS96-57). 【0004】 【発明が解決しようとする課題】実用化された光増幅中継伝送システムでは、送信信号のパルス占有率 100%のNRZ(ノン・リターン・トゥ・ゼロ)信号が用いられている。 [0004] [0006] practical optical amplifier repeater transmission system, pulse duty factor of 100% of the NRZ transmission signal (non-return-to-zero) signal is used. また、分散マネジメントを用いる場合には、分散補償を数百kmの間隔で行うのが一般的である。 In the case of using dispersion management, it is common to perform dispersion compensation hundreds km intervals. 【0005】しかし、実際にそのパルス占有率および分散補償間隔が最適か否かは不明であり、伝送特性劣化の抑圧が十分でなかったり、あるいは必要以上の数の分散補償器を手間をかけて伝送路光ファイバに挿入している可能性がある。 However, actually the pulse duty factor and is either the best or not dispersion compensating interval is unknown, may not be sufficient suppression of the transmission characteristic deterioration, or excessive number of dispersion compensators laboriously which may have inserted into the transmission path optical fiber. 【0006】本発明は、送信信号のパルス占有率および分散補償間隔を最適化し、伝送特性劣化を最小限に抑えることができる光増幅中継伝送システムを提供することを目的とする。 [0006] The present invention is to optimize the pulse duty factor and dispersion compensating distance transmission signal, and an object thereof is to provide an optical amplifier repeater transmission system capable of minimizing the transmission characteristic deterioration. 【0007】 【課題を解決するための手段】本発明の光増幅中継伝送システムは、光送信手段、伝送路光ファイバおよび光増幅中継器、光受信手段から構成され、光送信手段で発生する信号光の信号形式として、パルス占有率rが0<r [0007] Means for Solving the Problems An optical amplifier repeater transmission system of the present invention, the optical transmission means, the transmission line optical fiber and the optical amplification repeater is configured from the light receiving means, a signal generated in the optical transmission means as a signal format of light pulse duty factor r is 0 <r
≦0.5 のRZ(リターン・トゥ・ゼロ)強度変調信号とすることを特徴とする(請求項1)。 ≦ 0.5 of RZ be (Return To Zero) intensity-modulated signal and wherein the (claim 1). 【0008】また、本発明の光増幅中継伝送システムは、伝送路光ファイバの平均波長分散を一定挿入間隔ごとに補償する分散補償媒質を備える。 Further, optical amplifier repeater transmission system of the present invention comprises a dispersion compensation medium for compensating the average wavelength dispersion of the transmission line optical fiber at regular insertion interval. このときの分散補償間隔Lcomp [km] と、分散補償間隔における伝送路光ファイバの平均波長分散値D [ps/nm/km] とビットレートB [Gbps] と波長λ [nm] と光速c [km/s] により表される特徴的な長さ(1/(|λ 2 D/2πc|B 2 ))との比αをα=Lcomp/(1/(|λ 2 D/2πc|B 2 )) とし、このαを0.03 ≦α≦ 0.09 の範囲に設定する( 請求項1 )。 A dispersion compensation interval LCOMP [miles] In this case, the average wavelength dispersion value D of the transmission line optical fiber in the dispersion compensation interval [ps / nm / km] and the bit rate B [Gbps] the wavelength lambda [nm] and the speed of light c [ characteristic length represented by km / s] (1 / ( | λ 2 D / 2πc | B 2)) the ratio alpha of α = Lcomp / (1 / ( | λ 2 D / 2πc | B 2 )), and sets the alpha in the range of 0.03 ≦ α ≦ 0.09 (claim 1). なお、送信信号のビットレートBが変化した場合には、分散補償間隔Lcompまたは伝送路光ファイバの平均波長分散値Dを調整することにより、αを上記の範囲に設定することができる。 In the case where the bit rate B of the transmission signal changes, by adjusting the average wavelength dispersion value D of the dispersion compensation interval Lcomp or transmission line optical fiber, the α can be set in the above range. 【0009】また、伝送路光ファイバとして正分散(異常分散)のものを用いた場合には、信号光にスペクトル広がりが生じ、波形劣化の原因となる。 Further, in the case of using the positive dispersion (anomalous dispersion) as a transmission path optical fiber, spectral broadening occurs in the signal light, causing the waveform deterioration. このため、負分散伝送路より伝送距離が制限されることになる。 Therefore, so that the transmission distance from negative dispersion transmission line is limited. そこで、本発明の光増幅中継伝送システムは、全伝送路光ファイバの平均波長分散値および分散補償間隔における伝送路光ファイバの平均波長分散値Dが負分散のものを用いる( 請求項2 )。 Therefore, the optical amplifier repeater transmission system of the present invention, the average wavelength dispersion value D of the transmission line optical fiber in the average wavelength dispersion value and dispersion compensating distance of all transmission line optical fiber used as the negative dispersion (claim 2). 【0010】また、本発明の光増幅中継伝送システムの光送信手段は、互いに異なる波長の信号光を発生する複数の光送信器と、各光送信器から出力される信号光を合波した波長多重信号光を光伝送路に送信する合波器とを含み、光受信手段は、光伝送路から入力される波長多重信号光を各波長の信号光に分波する分波器と、各波長の信号光を受信する複数の光受信器と、各波長の信号光をその波長ごとに分散補償する分散媒質を含むようにしてもよい( 請求項3 )。 Further, the light transmitting means of the optical amplifier repeater transmission system of the present invention, the wavelength multiplexed by a plurality of optical transmitters for generating the signal light of different wavelengths, the signal light output from the optical transmitter and a multiplexer for transmitting a multiplexed optical signal to the optical transmission line, the light receiving means includes a demultiplexer the wavelength-multiplexed signal light is demultiplexed into signal light of each wavelength input from the optical transmission line, each wavelength a plurality of optical receivers for receiving the signal light may be a signal light of each wavelength to include a dispersion medium for dispersion compensation for each its wavelength (claim 3). 【0011】 【発明の実施の形態】 (第1の実施形態)図1は、本発明の光増幅中継伝送システムの第1の実施形態を示す。 DETAILED DESCRIPTION OF THE INVENTION (First Embodiment) FIG. 1 illustrates a first embodiment of an optical amplifier repeater transmission system of the present invention. 【0012】ここに示すシステムは、光送信器10と、 [0012] The system shown here includes an optical transmitter 10,
光伝送路20と、光受信器30とにより構成される。 An optical transmission path 20 constituted by the optical receiver 30. 光送信器10が発生する信号光は、パルス占有率rが0< The signal light optical transmitter 10 is generated, pulse duty factor r is 0 <
r≦0.5 のRZ強度変調信号である。 A RZ intensity modulated signal r ≦ 0.5. 【0013】光伝送路20は、信号光を伝送する伝送路光ファイバ21と、この伝送路光ファイバ21で伝送される信号光を増幅する光増幅器22と、この伝送路光ファイバ21に挿入されこの伝送路光ファイバ21の波長分散を補償する分散補償媒質23とにより構成される。 [0013] the optical transmission line 20 includes a transmission path optical fiber 21 which transmits the signal light, an optical amplifier 22 for amplifying the signal light transmitted by the optical fiber transmission line 21 is inserted into the transmission path optical fiber 21 It composed of a dispersion compensation medium 23 which compensates for the chromatic dispersion of the transmission line optical fiber 21.
分散補償媒質23は、伝送路光ファイバ21の前後どちらに挿入されてもよい。 Dispersion compensation medium 23 may be inserted before or after the optical fiber transmission path 21. また、分散補償媒質23としては、例えば分散補償光ファイバまたは光ファイバグレーティングを用いることができる。 Further, as the dispersion compensation medium 23 may be, for example, the dispersion compensating optical fiber or the optical fiber grating. 【0014】図2および図3は、光送信器のパルス占有率と光受信器におけるSNRとの関係を計算機シミュレーションにより求めた結果を示す。 [0014] Figures 2 and 3 show the results of the relationship between the SNR calculated by computer simulation in the pulse duty factor of the optical transmitter and the optical receiver. なお、条件は、信号光の波長1556nm、光増幅器中継間隔50km、光増幅器出力−3dBm、光増幅器の雑音指数4dBとしている。 The condition is in the wavelength 1556nm of the signal light, the optical amplifier repeater spacing 50 km, optical amplifier output -3 dBm, the noise figure 4dB of the optical amplifier. 【0015】図2は、光伝送路で分散補償を行わない場合のシミュレーション結果である。 [0015] Figure 2 is a simulation result when the optical transmission path without carrying out a dispersion compensation. 光伝送路の波長分散値は、分散と非線形効果による波形劣化が顕著にならない値として−0.1 ps/nm/kmとしている。 Wavelength dispersion value of the optical transmission line, the waveform degradation due to dispersion and nonlinear effects are a -0.1 ps / nm / km as a value not significantly. 光送信器10のビットレートを10Gbit/s とし、パルス占有率rを 0.2 The bit rate of the optical transmitter 10 and 10 Gbit / s, the pulse duty factor r 0.2
から1.0 まで変化させ、伝送距離 500kmにおけるSN Varied from to 1.0, SN in the transmission distance 500km
Rを示す。 Shows the R. この結果から、0<r≦0.5 で最良のSNR From this result, the best SNR in 0 <r ≦ 0.5
が得られていることが分かる。 It can be seen that is obtained. これは、平均信号光電力が同一条件では、パルス占有率を小さくするほど、信号光のピーク電力が大きくなるためである。 This is because the average signal light power is the same condition, the smaller the pulse duty factor, because the peak power of the signal light increases. 【0016】図3は、光伝送路で分散補償を行った場合のシミュレーション結果である。 [0016] Figure 3 is a simulation result when the optical transmission path was dispersed compensation. 光送信器10のビットレートを10Gbit/s 、上記の分散補償間隔Lcompと特徴的な長さの比α(=Lcomp/(1/(|λ 2 D/2πc| The ratio of the bit rate of the optical transmitter 10 10 Gbit / s, the above dispersion compensating intervals LCOMP and characteristic length α (= Lcomp / (1 / (| λ 2 D / 2πc |
2 )))を0.01〜0.12とし、パルス占有率rを 0.2から B 2))) was used as a 0.01 to 0.12, the pulse duty factor r 0.2
1.0 まで変化させ、伝送距離6000kmにおけるSNRを示す。 Varied from 1.0, it shows the SNR in the transmission distance 6000 km. この結果から、α=0.06ではNRZ信号(r=1. This result, alpha = 0.06 The NRZ signal (r = 1.
0)を用いるよりもRZ信号(0<r≦0.5 )を用いた方が良好なSNRが得られることが分かる。 0) it can be seen that a good SNR can be obtained better with RZ signals than (0 <r ≦ 0.5) used. また、同一条件における実験結果でも、RZ信号(0<r≦0.5 )で良好なSNRが得られ、伝送特性が改善されていることが分かる。 Further, even in the experimental results under the same conditions, good SNR was obtained by RZ signal (0 <r ≦ 0.5), it can be seen that the transmission characteristics are improved. なお、α=0.01、r=0.6 でも同程度のSN In addition, α = 0.01, r = 0.6, even the same degree of SN
Rが得られるが、分散補償器を多く用いる必要がある。 R is obtained, it is necessary to use a large amount of dispersion compensator. 【0017】表1は、αに対する最良のSNRおよび最適なパルス占有率rを計算機シミュレーションにより求めた結果を示す。 [0017] Table 1 shows the results of the best SNR and optimal pulse duty factor r was obtained by computer simulation for alpha. なお、条件は図3のシミュレーションと同じである。 The conditions are the same as the simulation of FIG. 【0018】 【表1】 [0018] [Table 1] 【0019】表1に示すように、0.03≦α≦0.09が、分散補償間隔Lcompをある程度確保しながら良好なSNR As shown in Table 1, 0.03 ≦ α ≦ 0.09 is good SNR while the dispersion compensating distance Lcomp to certain degree
が得られる範囲と言える。 It can be said that the range can be obtained. また、そのときのパルス占有率rは 0.2〜0.4 であり、0<r≦0.5 を満たす。 The pulse ratio r at this time is 0.2 to 0.4, satisfy 0 <r ≦ 0.5. 【0020】(第2の実施形態)図4は、本発明の光増幅中継伝送システムの第2の実施形態を示す。 [0020] (Second Embodiment) FIG. 4 shows a second embodiment of an optical amplifier repeater transmission system of the present invention. ここに示すシステムは、光波長多重送信端局40と、光伝送路2 The system shown here includes an optical wavelength multiplexing transmitting terminal station 40, the optical transmission path 2
0と、光波長多重受信端局50とにより構成される。 0 and constituted by an optical wavelength multiplexing receiving terminal 50. 【0021】光波長多重送信端局40は、互いに異なる波長の信号光を発生する4個の光送信器10a〜10d The optical wavelength multiplexing transmitting terminal 40, four optical transmitters 10a~10d for generating a signal light of different wavelengths
と、光送信器10a〜10dから出力される各波長の信号光を合波して光伝送路20に送出する合波器41とを備える。 When, and a multiplexer 41 to be transmitted to the optical transmission line 20 and the signal light of each wavelength output from the optical transmitter 10a~10d multiplexed. 【0022】光波長多重受信端局50は、伝送された波長多重信号光を各波長の信号光に分波する分波器51 The optical wavelength multiplexing receiving terminal 50, demultiplexer for demultiplexing a wavelength-multiplexed signal light transmitted to the signal light of each wavelength 51
と、分波された信号光を各波長ごとに分散補償する受信用分散補償媒質52a〜52dと、分散補償された各波長の信号光を受信する光受信器30a〜30dとを備える。 If, comprising a receiving dispersion compensating medium 52a~52d for dispersion compensation signal light demultiplexed for each wavelength, and an optical receiver 30a~30d for receiving a signal light of each dispersed compensated wavelength. 【0023】図5は、光送信器のパルス占有率と光受信器におけるSNRとの関係を計算機シミュレーションにより求めた結果を示す。 [0023] Figure 5 shows the results of the relationship between the SNR calculated by computer simulation in the pulse duty factor of the optical transmitter and the optical receiver. なお、条件は、光送信器10a The condition is, the optical transmitter 10a
〜10dのビットレートを10Gbit/s 、光増幅器出力を−3dBm/ch、分散補償間隔Lcompと特徴的な長さの比α(=Lcomp/(1/(|λ 2 D/2πc|B 2 )))を0. Bit rate 10Gbit / s of ~10D, an optical amplifier output -3 dBm / ch, the ratio of dispersion compensation interval LCOMP and characteristic length α (= Lcomp / (1 / (| λ 2 D / 2πc | B 2) )) 0.
06とし、パルス占有率rを 0.2から1.0 まで変化させ、 And 06, a pulse duty factor r is varied from 0.2 to 1.0,
伝送距離6000kmにおけるSNRを示す。 It shows the SNR in the transmission distance 6000 km. この結果から、波長多重伝送時においても、単一波長伝送時と同様に、RZ信号(0<r≦0.5 )を用いた方が良好なSN From this result, even when the wavelength multiplexing transmission, as in the case of single-wavelength transmission, good is better to use an RZ signal (0 <r ≦ 0.5) SN
Rが得られることが分かる。 It can be seen that R is obtained. 【0024】ここで、本発明の光増幅中継伝送システムは、比較的少ない波長多重数(例えば数十波長以内)を対象として分散補償を最適な間隔で行い、良好なSNR [0024] Here, the optical amplifier repeater transmission system of the present invention is carried out in optimal spacing dispersion compensation relatively small number of multiplexed wavelengths (e.g. within tens wavelength) as the target, a good SNR
を得るものである。 It is intended to obtain. なお、波長多重数がそれよりも多くなった場合には、特願平9−39560(光波長多重伝送装置)に記載のように、パルス占有率rが 0.6から1. Incidentally, when the number of multiplexed wavelengths becomes greater than it, as described in Japanese Patent Application No. 9-39560 (optical wavelength multiplex transmission apparatus), the pulse duty factor r 0.6 1.
0 のRZ強度変調信号を用いることにより、相互位相変調による伝送特性劣化を最小限に抑えることができる。 By using the zero RZ intensity modulated signal, it is possible to minimize the transmission characteristic deterioration due to cross-phase modulation. 【0025】以上説明した実施形態では、光受信器のベースバンド帯域幅が一定の条件で説明したが、送信信号のパルス占有率rの変化に伴って光受信器のベースバンド帯域幅を変化させてもよい。 [0025] In the embodiment described above, the baseband bandwidth of the optical receiver explained in certain conditions, by changing the baseband bandwidth of the optical receiver with a change in pulse duty factor r of the transmission signal it may be. また、送信信号のビットレートBが変化した場合には、分散補償間隔Lcompおよび伝送路光ファイバの平均波長分散値Dを調整することにより、同様の効果を得ることができる。 Also, when the bit rate B of the transmission signal changes, by adjusting the average wavelength dispersion value D of the dispersion compensation interval Lcomp and the transmission path optical fiber, it is possible to obtain the same effect. 【0026】 【発明の効果】以上説明したように、本発明の光増幅中継伝送システムは、光送信器の信号形式をパルス占有率rが0<r≦0.5 のRZ強度変調信号とすることにより、伝送特性劣化を最小限に抑えることができる。 [0026] As described above, according to the present invention, the optical amplifier repeater transmission system of the present invention, by a signal format of an optical transmitter pulse duty factor r is an RZ intensity modulated signal 0 <r ≦ 0.5 , it is possible to minimize the transmission characteristic deterioration. また、分散補償間隔Lcompを最適化することができるので、必要以上の数の分散補償器を伝送路光ファイバに挿入する必要がなく、無駄な手間とコストを省くことができる。 Further, it is possible to optimize the dispersion compensation interval LCOMP, it is not necessary to insert more than necessary number of dispersion compensators to the transmission line optical fiber, it is possible to omit wasteful labor and cost.

【図面の簡単な説明】 【図1】本発明の光増幅中継伝送システムの第1の実施形態を示すブロック図。 BRIEF DESCRIPTION OF THE DRAWINGS block diagram showing a first embodiment of an optical amplifier repeater transmission system of the present invention; FIG. 【図2】分散補償なしのシミュレーション結果を示す図。 FIG. 2 is a diagram showing the simulation results without dispersion compensation. 【図3】分散補償ありのシミュレーション結果および実験結果を示す図。 FIG. 3 shows a dispersion compensating There simulation results and experimental results. 【図4】本発明の光増幅中継伝送システムの第2の実施形態を示すブロック図。 Block diagram showing a second embodiment of an optical amplifier repeater transmission system of the present invention; FIG. 【図5】光波長多重伝送のシミュレーション結果を示す図。 5 is a diagram showing a simulation result of the optical wavelength multiplex transmission. 【符号の説明】 10 光送信器20 光伝送路21 伝送路光ファイバ22 光増幅器23 分散補償媒質30 光受信器40 光波長多重送信端局41 合波器50 光波長多重受信端局51 分波器52 受信用分散補償媒質 [Description of reference numerals] 10 optical transmitter 20 optical transmission line 21 transmission line optical fiber 22 an optical amplifier 23 dispersion compensation medium 30 optical receiver 40 WDM transmission terminal 41 multiplexer 50 WDM receiving terminal 51 minutes wave vessel 52 receiving the dispersion compensation medium

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl. 7識別記号 FI H04J 14/02 (72)発明者 今井 崇雅 東京都新宿区西新宿三丁目19番2号 日 本電信電話株式会社内 (56)参考文献 特開 平9−181705(JP,A) 特開 平7−58699(JP,A) 特開 平7−336301(JP,A) 特開 平6−85758(JP,A) (58)調査した分野(Int.Cl. 7 ,DB名) H04B 10/00 - 10/28 H04J 14/00 - 14/08 ────────────────────────────────────────────────── ─── of the front page continued (51) Int.Cl. 7 identification mark FI H04J 14/02 (72) inventor Imai Takamasa Tokyo Nishi-Shinjuku, Shinjuku-ku, Third Street No. 19 No. 2 Date. this telegraph and telephone within Co., Ltd. (56 ) references Patent flat 9-181705 (JP, A) JP flat 7-58699 (JP, A) JP flat 7-336301 (JP, A) JP flat 6-85758 (JP, A) (58) survey the field (Int.Cl. 7, DB name) H04B 10/00 - 10/28 H04J 14/00 - 14/08

Claims (1)

  1. (57)【特許請求の範囲】 【請求項1】 光送信手段で発生させた信号光を光ファイバ伝送路および光増幅中継器を介して光受信手段に伝送する光増幅中継伝送システムにおいて、 前記光送信手段で発生する信号光の信号形式は、パルス占有率rが 0<r≦0.5 のRZ(リターン・トゥ・ゼロ)強度変調信号とし、 前記伝送路光ファイバの平均波長分散を一定挿入間隔ごとに補償する分散補償媒質を有し、その分散補償間隔L (57) In the Claims 1. A optical amplifier repeater transmission system for transmitting a signal light generated by the optical transmission means to the light receiving means via the optical fiber transmission path and the optical amplifier repeater, the signal format of the signal light generated by the optical transmission unit, pulse duty factor r is set to 0 <r ≦ 0.5 of RZ (return-to-zero) intensity modulation signal, predetermined insertion interval the average wavelength dispersion of the transmission path optical fiber It has a dispersion compensation medium for compensating each, the dispersion compensating distance L
    comp [km] と、分散補償間隔における伝送路光ファイバの平均波長分散値D [ps/nm/km] とビットレートB[Gbp comp [miles] and the average wavelength dispersion value D [ps / nm / km] and the bit rate B [Gbp of the transmission line optical fiber in the dispersion compensation interval
    s]と波長λ [nm] と光速c [km/s] により表される特徴的な長さとの比を【数1】 s] the wavelength lambda [nm] and the speed of light c [miles / s] Equation 1] the ratio of the characteristic length, represented by の範囲に設定したことを特徴とする光増幅中継伝送システム。 Optical amplifier repeater transmission system, characterized in that set in the range of. 【請求項2】 全伝送路光ファイバの平均波長分散値および分散補償間隔における伝送路光ファイバの平均波長分散値Dが負分散であることを特徴とする請求項1に記載の光増幅中継伝送システム。 Wherein the optical amplifier repeater transmission according to claim 1, wherein the average wavelength dispersion value D of the transmission line optical fiber in the average wavelength dispersion value and dispersion compensating distance of all transmission line optical fiber is a negative dispersion system. 【請求項3】 光送信手段は、互いに異なる波長の信号光を発生する複数の光送信器と、各光送信器から出力される信号光を合波した波長多重信号光を光伝送路に送信する合波器とを含み、 光受信手段は、前記光伝送路から入力される波長多重信号光を各波長の信号光に分波する分波器と、各波長の信号光を受信する複数の光受信器と、各波長の信号光をその波長ごとに分散補償する分散媒質を含むことを特徴とする請求項1または請求項2に記載の光増幅中継伝送システム。 Wherein the light transmitting means transmits a plurality of optical transmitters for generating the signal light of different wavelengths, the optical transmission path wavelength multiplexed signal light multiplexed by the signal light output from the optical transmitter and a multiplexer for optical receiving means comprises a demultiplexer for demultiplexing the wavelength-multiplexed signal light into signal lights of respective wavelengths input from the optical transmission line, a plurality of receiving signal light of each wavelength optical amplifier repeater transmission system according to claim 1 or claim 2, characterized in that it comprises an optical receiver, a dispersion medium for dispersion compensation signal light of each wavelength for each that wavelength.
JP20878397A 1997-08-04 1997-08-04 Optical amplifier repeater transmission system Expired - Fee Related JP3529983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20878397A JP3529983B2 (en) 1997-08-04 1997-08-04 Optical amplifier repeater transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20878397A JP3529983B2 (en) 1997-08-04 1997-08-04 Optical amplifier repeater transmission system

Publications (2)

Publication Number Publication Date
JPH1155190A JPH1155190A (en) 1999-02-26
JP3529983B2 true JP3529983B2 (en) 2004-05-24

Family

ID=16562038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20878397A Expired - Fee Related JP3529983B2 (en) 1997-08-04 1997-08-04 Optical amplifier repeater transmission system

Country Status (1)

Country Link
JP (1) JP3529983B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2791835B1 (en) * 1999-03-31 2001-06-29 Cit Alcatel Apparatus and polarization dispersion compensation method in an optical transmission system
US6850499B2 (en) 2001-01-05 2005-02-01 Qualcomm Incorporated Method and apparatus for forward power control in a communication system

Also Published As

Publication number Publication date
JPH1155190A (en) 1999-02-26

Similar Documents

Publication Publication Date Title
Bergano et al. Wavelength division multiplexing in long-haul transmission systems
US5559920A (en) Dispersion compensation in optical fiber communications
Breuer et al. Comparison of NRZ-and RZ-modulation format for 40-Gb/s TDM standard-fiber systems
Yano et al. 2.6 Terabit/s WDM transmission experiment using optical duobinary coding
US6151145A (en) Two-wavelength WDM Analog CATV transmission with low crosstalk
CN100502274C (en) Remote-transmission in dispersion controlled optical communication system
US5877879A (en) Wavelength division multiplexing optical transmission system and optical transmitting device used in the transmission system
US5946119A (en) Wavelength division multiplexed system employing optimal channel modulation
CN1236577C (en) Optical signal transmission method for reducing degenerate caused by non-linear effect
JP3373332B2 (en) Pre-emphasis scheme wavelength multiplexing communication method and apparatus
Leibrich et al. CF-RZ-DPSK for suppression of XPM on dispersion-managed long-haul optical WDM transmission on standard single-mode fiber
EP0792034A2 (en) Optical transmission device, WDM optical transmission apparatus, and optical transmission system using return-to-zero optical pulses
Ono et al. Characteristics of optical duobinary signals in terabit/s capacity, high-spectral efficiency WDM systems
CA2198503C (en) Dispersion-tolerant 10 gb/s optical transceiver
JP3771738B2 (en) Wavelength multiplexing optical transmission system
US20040105682A1 (en) Electrical domain mitigation of polarization dependent effects in an optical communications system
EP0938197A2 (en) High capacity chirped-pulse wavelength-division multiplexed communication method and apparatus
US6021245A (en) Method and optical transmission system for compensating dispersion in optical transmission paths
US7058311B1 (en) System and method for dispersion compensation in an optical communication system
JP3173591B2 (en) Optical transmitter and an optical transmission system and a signal light modulating methods
US6043914A (en) Dense WDM in the 1310 nm band
US6731877B1 (en) High capacity ultra-long haul dispersion and nonlinearity managed lightwave communication systems
US6366728B1 (en) Composite optical fiber transmission line method
EP1323250B1 (en) Method and system for transmitting signals with spectrally enriched optical pulses
US5959750A (en) Method of upgrading transmission capacity by Raman amplification

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees