JPH1154112A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH1154112A
JPH1154112A JP9205669A JP20566997A JPH1154112A JP H1154112 A JPH1154112 A JP H1154112A JP 9205669 A JP9205669 A JP 9205669A JP 20566997 A JP20566997 A JP 20566997A JP H1154112 A JPH1154112 A JP H1154112A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
porous current
current collecting
releasing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9205669A
Other languages
Japanese (ja)
Inventor
Noriko Tanaka
紀子 田中
Yumiko Kawamura
弓子 河村
Takafumi Fujii
隆文 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9205669A priority Critical patent/JPH1154112A/en
Publication of JPH1154112A publication Critical patent/JPH1154112A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery having high capacity and an excellent cycle characteristic by using a negative electrode constituted by applying a negative electrode active material capable of storing and releasing a lithium ion to outside both surfaces of its current collecting bodies by sandwiching metallic lithium between plural conductive porous current collecting bodies. SOLUTION: A negative electrode 4 is obtained in such a way that a negative electrode active material 2 capable of storing and releasing a lithium ion is applied to a surface of a porous current collecting body 1, and metallic lithium 3 is press-fitted to the reverse, and the metallic lithium 3 side is put on the inside, and is bent from the center. The press-fitted metallic lithium 3 is uniformly dispersed in a negative electrode active material layer 2 by passing through a pore of the porous current collecting body 1. Therefore, since the whole reverse of the porous current collecting body 1 can be used as a position to which the metallic lithium 3 is stuck, a sufficient quantity of lithium can be replenished. It is better to form the porous current collecting body 1 of conductive porous metallic foil, for example, a copper punching sheet.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水電解液二次電
池、特にその負極の構成に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a structure of a negative electrode thereof.

【0002】[0002]

【従来の技術】非水電解液二次電池の負極としては、金
属リチウム,リチウム合金,リチウムを吸蔵したり放出
することが可能な炭素材料やリチウムの含有が可能な酸
化物を用いることが知られている。しかし、これらの負
極材料では充電時に反応したリチウムイオンのうち放電
時には反応に寄与しないリチウムイオン、すなわち不可
逆なリチウムが存在し、リチウムイオンが含まれない負
極材料を用いて電池を組み立てた場合、正極中のリチウ
ムイオンが負極に移動すると、リチウムイオンの一部が
負極中で不可逆なリチウムとなってしまい、電池容量が
低下していた。
2. Description of the Related Art As a negative electrode of a nonaqueous electrolyte secondary battery, it is known to use lithium metal, a lithium alloy, a carbon material capable of occluding and releasing lithium, and an oxide capable of containing lithium. Have been. However, in these negative electrode materials, lithium ions that do not contribute to the reaction at the time of discharging, that is, irreversible lithium among the lithium ions that have reacted during charging, are present. When the lithium ions inside move to the negative electrode, some of the lithium ions become irreversible lithium in the negative electrode, and the battery capacity is reduced.

【0003】この問題を解決するために、特開平4−2
80082号公報には、導電性で多孔性の集電体を、金
属リチウムとともに負極缶および負極に密着させ、金属
リチウムが多孔性の集電体の孔に埋没した形となり、常
に多孔性の集電体が負極缶と負極の両方に接触しつつ金
属リチウムを負極材料中に取り込ませ、不可逆なリチウ
ム分を補う構成が開示されている。
In order to solve this problem, Japanese Patent Laid-Open No.
No. 80082 discloses that a conductive and porous current collector is brought into close contact with a negative electrode can and a negative electrode together with metallic lithium, and the metallic lithium is buried in the pores of the porous current collector. There is disclosed a configuration in which a metal body takes in metallic lithium into a negative electrode material while making contact with both a negative electrode can and a negative electrode to compensate for irreversible lithium components.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記に
記載した構成では負極の一端に負極缶と密着して金属リ
チウムを存在させているので、負極材料全体に不可逆容
量に相当するリチウムを均一に拡散させて取り込ませる
ことは困難であった。
However, in the structure described above, since metallic lithium is present in close contact with the negative electrode can at one end of the negative electrode, lithium equivalent to the irreversible capacity is uniformly diffused throughout the negative electrode material. It was difficult to incorporate them.

【0005】[0005]

【課題を解決するための手段】これらの課題を解決する
ために本発明は、複数の導電性の多孔性集電体の間に金
属リチウムを挟み、その多孔性集電体の外側の両面にリ
チウムイオンを吸蔵したり放出することが可能な負極活
物質を塗布した構成の負極を使用して、高容量と優れた
サイクル特性を有する非水電解液二次電池を提供するも
のである。
SUMMARY OF THE INVENTION In order to solve these problems, the present invention comprises a method of interposing a metallic lithium between a plurality of conductive porous current collectors, and forming the metallic lithium on both outer surfaces of the porous current collector. An object of the present invention is to provide a nonaqueous electrolyte secondary battery having a high capacity and excellent cycle characteristics using a negative electrode having a configuration in which a negative electrode active material capable of inserting and extracting lithium ions is applied.

【0006】[0006]

【発明の実施の形態】本発明は各請求項に記載した形態
によって実施できるものであり、請求項1記載のよう
に、負極は、複数の導電性の多孔性集電体の間に金属リ
チウムを挟み、その負極の外側の両面にリチウムイオン
を吸蔵したり放出することが可能な負極活物質を塗布し
た構成をもつものとしたものである。すなわち、極板断
面の構造は図1(b)に示すように中央に金属リチウム
を配設し、外側両面に導電性の多孔性集電体を設け、さ
らにその多孔性集電体の外側両面に負極活物質が塗布形
成されている。ここで、多孔性集電体の孔には負極活物
質が充填されている。この負極は、リチウムイオンを吸
蔵したり放出することが可能な負極活物質を、多孔性集
電体の表面に塗着し、裏面には金属リチウムを圧着し、
図1(a)に示すように金属リチウム側を内側にして中
央から折り曲げることにより得られる。圧着した金属リ
チウムは、この多孔性集電体の孔を通って負極活物質内
に均一に拡散される。従ってリチウムを貼り付ける位置
として、多孔性集電体の裏面全体が使用可能であるた
め、充分な量のリチウムを補うことができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention can be practiced according to the embodiments described in the claims. As described in the claim 1, the negative electrode is formed of a metal lithium between a plurality of conductive porous current collectors. And a negative electrode active material capable of occluding and releasing lithium ions is applied to both outer surfaces of the negative electrode. That is, as shown in FIG. 1 (b), the structure of the cross section of the electrode plate is such that metallic lithium is disposed in the center, conductive porous current collectors are provided on both outer surfaces, and both outer surfaces of the porous current collector are provided. The negative electrode active material is formed by coating. Here, the pores of the porous current collector are filled with a negative electrode active material. This negative electrode is coated with a negative electrode active material capable of inserting and extracting lithium ions on the surface of the porous current collector, and metal lithium is pressed on the back surface,
As shown in FIG. 1 (a), it is obtained by bending from the center with the metallic lithium side inside. The pressed metal lithium is uniformly diffused into the negative electrode active material through the pores of the porous current collector. Therefore, since the entire back surface of the porous current collector can be used as a position where the lithium is attached, a sufficient amount of lithium can be supplemented.

【0007】そして本発明における負極の集電体は一実
施の形態として、導電性の多孔性金属箔を使用すること
ができる。その場合、多孔性金属箔の厚みは100μm
以下で平均孔径3mm以下、空孔率10%以上の孔を有
する、例えば銅製のパンチングシートやエキスパンドメ
タルなどにするとよい。しかし前記銅製のパンチングシ
ートやエキスパンドメタルは1つの実施の形態であっ
て、厚みとか平均孔径ならびに空孔率の前記条件が満た
されれば銅製でなくても他の金属が使用できる。
The current collector of the negative electrode according to the present invention can use a conductive porous metal foil as one embodiment. In that case, the thickness of the porous metal foil is 100 μm
For example, a punched sheet made of copper or expanded metal having holes having an average pore diameter of 3 mm or less and a porosity of 10% or more may be used. However, the copper punched sheet or expanded metal is one embodiment, and other metals can be used without being made of copper as long as the above-mentioned conditions of thickness, average pore diameter, and porosity are satisfied.

【0008】また、本発明における負極活物質として
は、実施の形態としてリチウムを吸蔵したり放出するこ
とができる炭素材料,酸化物,金属,合金,硫化物,炭
化物、またはそれらを混合したものなどがあげられる
が、リチウムを吸蔵したり放出する材料であれば前記し
た材料に特に限定する必要はない。
The negative electrode active material according to the present invention is, as an embodiment, a carbon material, an oxide, a metal, an alloy, a sulfide, a carbide capable of occluding and releasing lithium, or a mixture thereof. However, the material is not particularly limited to the above-mentioned materials as long as it is a material that absorbs and releases lithium.

【0009】また、本発明に使用する金属リチウムは、
実施の形態として厚み500μm以下のフープとし、多
孔性集電体の全面あるいは一部分に貼り付けることがで
きる。ただし厚みを500μm以下のフープとすること
に本発明が限定されるものではない。
The metal lithium used in the present invention is:
In an embodiment, a hoop having a thickness of 500 μm or less can be attached to the entire surface or a part of the porous current collector. However, the present invention is not limited to a hoop having a thickness of 500 μm or less.

【0010】[0010]

【実施例】以下、図面とともに本発明の実施例を説明
し、比較例との性能比較をする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings, and the performance will be compared with a comparative example.

【0011】(実施例1)コークスを700℃で焼成し
て得た負極活物質とスチレンブタジエンゴム系結着剤を
重量比で95:3.5の割合で混合したペーストを、図
1に示す厚み10μm,孔径0.3mm,空孔率35%
の銅製のパンチングシート1の片面に塗着,乾燥,圧延
した後、所定の大きさに切断した。負極活物質はパンチ
ングシート1の孔部にも充填されているが、パンチング
シート1の片面に負極活物質層2が形成される。次に、
厚み150μmの金属リチウム3のフープを上記パンチ
ングシート1の裏面の長さ方向において半分の部分に圧
着した。そして、これを図1に示すように、金属リチウ
ム3を内側に挟み込むように任意の箇所から折り曲げ、
図1に示した断面構成の負極4を作成した。5は負極リ
ードを示す。
(Example 1) FIG. 1 shows a paste obtained by mixing a negative electrode active material obtained by firing coke at 700 ° C. and a styrene-butadiene rubber-based binder in a weight ratio of 95: 3.5. Thickness 10μm, pore diameter 0.3mm, porosity 35%
, Dried and rolled, and cut into a predetermined size. Although the negative electrode active material is also filled in the holes of the punched sheet 1, the negative electrode active material layer 2 is formed on one surface of the punched sheet 1. next,
A hoop of metal lithium 3 having a thickness of 150 μm was pressure-bonded to a half portion in the longitudinal direction of the back surface of the punching sheet 1. Then, as shown in FIG. 1, this is bent from an arbitrary position so as to sandwich the metal lithium 3 inside,
A negative electrode 4 having the cross-sectional configuration shown in FIG. 1 was prepared. Reference numeral 5 denotes a negative electrode lead.

【0012】図2に円筒形電池の断面図を示す。図にお
いて、正極6はLiCoO2 活物質に、導電材としてカ
ーボンブラック、結着剤としてポリ4フッ化エチレンの
水性ディスバージョンを重量比で100:2.5:7.
5の割合で混合したものをアルミニウム箔芯材に両面塗
着,乾燥,圧延した後、所定の大きさに切断してチタン
製の正極リード7をスポット溶接した。負極4は前記手
順で作成して銅製の負極リード5をスポット溶接してい
る。8はポリプロピレン製の微孔性フィルムからなるセ
パレータで、正極6と負極4をセパレータ8を介して渦
巻状に巻回して極板群を構成する。極板群の上下にそれ
ぞれポリプロピレン樹脂製の絶縁板9,10を配して鉄
にニッケルメッキしたケース11に挿入し、正極リード
7をチタン製の封口板12に、負極リード5をケース1
1の底部にそれぞれスポット溶接した後、電解液を注入
し、ガスケット13を介して、電池を封口して完成電池
とする。この電池の寸法は直径17mm,高さ50mm
である。14は正極端子であり、負極端子は電池のケー
ス11がこれを兼ねている。電解液はエチレンカーボネ
ートとエチルメチルカーボネートを体積比1:3で混合
し、6フッ化リン酸リチウムを1.5モル/立方デシメ
ートルで溶解したものを用いた。この電池を電池Aとし
た。
FIG. 2 is a sectional view of a cylindrical battery. In the figure, the positive electrode 6 is made of LiCoO 2 active material, carbon black as a conductive material, and an aqueous dispersion of polytetrafluoroethylene as a binder in a weight ratio of 100: 2.5: 7.
The mixture mixed at a ratio of 5 was coated on both sides of an aluminum foil core material, dried and rolled, cut into a predetermined size, and spot-welded with a positive electrode lead 7 made of titanium. The negative electrode 4 is spot-welded to the negative electrode lead 5 made of copper prepared in the above procedure. Reference numeral 8 denotes a separator made of a polypropylene microporous film. The positive electrode 6 and the negative electrode 4 are spirally wound through the separator 8 to form an electrode plate group. Insulating plates 9 and 10 made of polypropylene resin are arranged above and below the electrode plate group, respectively, and inserted into a case 11 plated with nickel on iron.
After spot welding to the bottom of each of the batteries 1, an electrolyte is injected, and the battery is sealed via a gasket 13 to obtain a completed battery. The dimensions of this battery are 17mm in diameter and 50mm in height.
It is. Reference numeral 14 denotes a positive electrode terminal, and the battery terminal 11 also serves as a negative electrode terminal. The electrolyte used was a mixture of ethylene carbonate and ethyl methyl carbonate in a volume ratio of 1: 3, and lithium hexafluorophosphate dissolved at 1.5 mol / cubic decimeter. This battery was designated as battery A.

【0013】(比較例1)コークスを700℃で焼成し
て得た負極活物質を用い、実施例1と同様に銅製のパン
チングシートの片面に塗着,乾燥,圧延した後、所定の
大きさに切断した。パンチングシートの裏面には金属リ
チウムを圧着せず、裏面を内側にして中央から折り曲
げ、負極板を作成した。このように金属リチウムが存在
していないこと以外は実施例1と同様に構成して円筒形
電池を試作し、比較電池Aとした。
(Comparative Example 1) A negative electrode active material obtained by calcining coke at 700 ° C. was applied to one side of a punched sheet made of copper, dried and rolled in the same manner as in Example 1 to obtain a predetermined size. Cut into pieces. Metallic lithium was not pressure-bonded to the back surface of the punched sheet, but was folded from the center with the back surface inside to prepare a negative electrode plate. A cylindrical battery was experimentally manufactured in the same manner as in Example 1 except that no metallic lithium was present, and the battery was designated as Comparative Battery A.

【0014】(実施例2)負極活物質に、球状黒鉛にS
nO2 を重量比50:50で混合したものを用い、導電
性の多孔性集電体として厚み100μm,50メッシュ
の銅製のエキスパンドメタルを用い、厚み80μmの金
属リチウムフープを前記多孔性集電体の裏面全面に圧着
したこと以外は実施例1と同様の円筒形電池を試作し、
電池Bとした。
(Example 2) Spheroidal graphite was added to the negative electrode active material
A mixture of nO 2 at a weight ratio of 50:50, a 100 μm-thick, 50-mesh copper expanded metal as a conductive porous current collector, and a 80 μm-thick metal lithium hoop were connected to the porous current collector. A prototype of a cylindrical battery similar to that of Example 1 except that the battery was crimped on the entire back surface of
Battery B was used.

【0015】(比較例2)金属リチウムフープを多孔性
集電体の裏面に圧着しないこと以外は実施例2と同様の
円筒形電池を試作し、比較電池Bとした。
Comparative Example 2 A cylindrical battery similar to that of Example 2 was produced as a comparative battery B except that a lithium metal hoop was not pressed on the back surface of the porous current collector.

【0016】これらの電池について、0.2C定電流充
放電サイクル試験を行った。充電上限電位は4.2V、
放電下限電位を3.0Vとした。表1にそれぞれの電池
の1サイクル目充電容量,1サイクル目放電容量,50
0サイクル目放電容量を示した。
These batteries were subjected to a 0.2 C constant current charge / discharge cycle test. The charging upper limit potential is 4.2V,
The discharge lower limit potential was 3.0 V. Table 1 shows the charge capacity at the first cycle, discharge capacity at the first cycle, and 50
The discharge capacity at the 0th cycle was shown.

【0017】[0017]

【表1】 [Table 1]

【0018】1サイクル目の充電容量はいずれの電池も
同等であるが、1サイクル目の放電以降、本発明の電池
A,Bは比較電池A,Bより高容量で、充放電サイクル
特性も優れた結果が得られた。
All the batteries have the same charge capacity in the first cycle, but the batteries A and B of the present invention have higher capacities and superior charge-discharge cycle characteristics than the comparative batteries A and B after the discharge in the first cycle. Results were obtained.

【0019】なお、本実施例においては正極にLiCo
2 を用いたが、LiNiO2 ,LiMn24 など他
のLi含有酸化物を用いても同様の効果が得られた。多
孔性集電体の材質としては銅以外にチタン,ニッケルな
どでも同様の効果が得られた。また負極活物質としてあ
げられる炭素材料は黒鉛化材料,易黒鉛化炭素,難黒鉛
化炭素などでも同様の効果が得られ、その他、酸化物,
金属,合金,硫化物,炭化物、またそれらを混合したも
のにおいても同様の効果が得られた。
In this embodiment, LiCo is used for the positive electrode.
Although O 2 was used, similar effects were obtained by using other Li-containing oxides such as LiNiO 2 and LiMn 2 O 4 . Similar effects were obtained when the porous current collector was made of titanium, nickel, or the like in addition to copper. The same effect can be obtained by using a graphitized material, easily graphitized carbon, or non-graphitizable carbon as a carbon material that can be cited as a negative electrode active material.
Similar effects were obtained with metals, alloys, sulfides, carbides, and mixtures thereof.

【0020】[0020]

【発明の効果】以上のように本発明により、リチウムイ
オンを吸蔵したり放出することが可能な負極活物質を、
導電性の多孔性集電体の片面に塗着し、他面には金属リ
チウムを圧着し、金属リチウム側を内側にして金属リチ
ウムを多孔性集電体で挟持する構成とされた負極を用い
ることにより、高容量で充放電サイクル特性に優れた非
水電解液リチウム二次電池を得ることができる。
As described above, according to the present invention, a negative electrode active material capable of inserting and extracting lithium ions is provided.
Use a negative electrode that is coated on one side of a conductive porous current collector, metal lithium is pressed on the other side, and metal lithium is sandwiched by the porous current collector with the metal lithium side inside. Thus, a nonaqueous electrolyte lithium secondary battery having high capacity and excellent charge / discharge cycle characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)本発明の負極を構成する前の断面構成図 (b)(a)に示す負極を折り曲げた負極の断面構成図FIG. 1A is a cross-sectional configuration diagram before forming a negative electrode of the present invention. FIG. 1B is a cross-sectional configuration diagram of a negative electrode obtained by bending the negative electrode shown in FIG.

【図2】本発明の負極を用いた円筒形電池の縦断面図FIG. 2 is a longitudinal sectional view of a cylindrical battery using the negative electrode of the present invention.

【符号の説明】[Explanation of symbols]

1 パンチングシート(多孔性集電体) 2 負極活物質層 3 金属リチウム 4 負極 5 負極リード 6 正極 7 正極リード 8 セパレータ 9,10 絶縁板 11 ケース 12 封口板 13 ガスケット 14 正極端子 REFERENCE SIGNS LIST 1 punching sheet (porous current collector) 2 negative electrode active material layer 3 lithium metal 4 negative electrode 5 negative electrode lead 6 positive electrode 7 positive electrode lead 8 separator 9, 10 insulating plate 11 case 12 sealing plate 13 gasket 14 positive electrode terminal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 負極と正極とを、セパレータを介して渦
巻状に巻回した極板群を備え、前記負極は多孔性集電体
の一方の面にリチウムイオンを吸蔵したり放出すること
が可能な材料が塗布されており、リチウムイオンを吸蔵
したり放出することが可能な材料が塗布されていない他
方の面を相互に向かい合わせるとともに、この相互に向
かい合っている面の間に金属リチウムを配設した非水電
解液二次電池。
An electrode group comprising a negative electrode and a positive electrode spirally wound with a separator interposed therebetween, wherein the negative electrode can occlude or release lithium ions on one surface of a porous current collector. The other surfaces, which are coated with a possible material and not coated with a material capable of occluding and releasing lithium ions, face each other, and metallic lithium is placed between the facing surfaces. Non-aqueous electrolyte secondary battery installed.
【請求項2】 負極と正極とを、セパレータを介して渦
巻状に巻回した極板群を備え、前記負極は1枚の多孔性
集電体の一方の面にリチウムイオンを吸蔵したり放出す
ることが可能な材料が塗布され、リチウムイオンを吸蔵
したり放出することが可能な材料が塗布されていない他
方の面に金属リチウムが圧着されており、前記多孔性集
電体を前記リチウムイオンを吸蔵したり放出することが
可能な材料を塗布された面が外側になるように2つに折
り曲げるとともに、この折り曲げによって前記金属リチ
ウムを、リチウムイオンを吸蔵したり放出することが可
能な材料を塗布されていない面で挟持した非水電解液二
次電池。
2. An electrode group comprising a negative electrode and a positive electrode spirally wound with a separator interposed therebetween, wherein the negative electrode inserts or releases lithium ions on one surface of one porous current collector. A material capable of absorbing and releasing lithium ions is pressed with metal lithium on the other surface on which the material capable of absorbing and releasing lithium ions is not applied, and the porous current collector is covered with the lithium ions. Is folded into two so that the surface coated with a material capable of absorbing and releasing is capable of absorbing and releasing the lithium metal by the bending. A non-aqueous electrolyte secondary battery sandwiched between uncoated surfaces.
JP9205669A 1997-07-31 1997-07-31 Nonaqueous electrolyte secondary battery Pending JPH1154112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9205669A JPH1154112A (en) 1997-07-31 1997-07-31 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9205669A JPH1154112A (en) 1997-07-31 1997-07-31 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH1154112A true JPH1154112A (en) 1999-02-26

Family

ID=16510737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9205669A Pending JPH1154112A (en) 1997-07-31 1997-07-31 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH1154112A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005109548A1 (en) 2004-05-12 2005-11-17 Mitsui Mining & Smelting Co., Ltd. Negative electrode for nonaqueous electrolyte secondary battery and method for producing same
EP1693910A1 (en) * 2003-12-04 2006-08-23 Mitsui Mining & Smelting Co., Ltd. Secondary battery-use electrode and production method therefor and secondary battery
US7682739B2 (en) 2004-05-12 2010-03-23 Mitsui Mining & Smelting Co., Ltd. Negative electrode for nonaqueous secondary battery and process of producing the same
US9553302B2 (en) 2010-01-20 2017-01-24 Samsung Sdi Co., Ltd. Electrode assemblage and rechargeable battery using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1693910A1 (en) * 2003-12-04 2006-08-23 Mitsui Mining & Smelting Co., Ltd. Secondary battery-use electrode and production method therefor and secondary battery
EP1693910A4 (en) * 2003-12-04 2010-06-02 Mitsui Mining & Smelting Co Secondary battery-use electrode and production method therefor and secondary battery
WO2005109548A1 (en) 2004-05-12 2005-11-17 Mitsui Mining & Smelting Co., Ltd. Negative electrode for nonaqueous electrolyte secondary battery and method for producing same
EP1750314A1 (en) * 2004-05-12 2007-02-07 Mitsui Mining and Smelting Co., Ltd Negative electrode for nonaqueous electrolyte secondary battery and method for producing same
EP1750314A4 (en) * 2004-05-12 2008-11-19 Mitsui Mining & Smelting Co Negative electrode for nonaqueous electrolyte secondary battery and method for producing same
US7682739B2 (en) 2004-05-12 2010-03-23 Mitsui Mining & Smelting Co., Ltd. Negative electrode for nonaqueous secondary battery and process of producing the same
US9553302B2 (en) 2010-01-20 2017-01-24 Samsung Sdi Co., Ltd. Electrode assemblage and rechargeable battery using the same

Similar Documents

Publication Publication Date Title
US8187738B2 (en) Spirally-rolled electrodes with separator and the batteries therewith
US7758997B2 (en) Secondary battery
US4929519A (en) Wound electrode assembly for an electrochemical cell
JP4411690B2 (en) Lithium ion secondary battery
WO2018168628A1 (en) Non-aqueous electrolyte secondary battery
JPH11283629A (en) Organic electrolyte battery
JP2000348754A (en) Rolled electrode type battery
JPH06318454A (en) Nonaqueous electrolyte secondary battery
JP7461878B2 (en) Non-aqueous electrolyte secondary battery
JP4636920B2 (en) Battery with spiral electrode
JP4023213B2 (en) Lithium ion secondary battery
JP2001068160A (en) Flat nonaqueous electrolyte secondary battery
JP2000021452A (en) Nonaqueous electrolyte secondary battery
JP3508411B2 (en) Lithium ion secondary battery
JPH1154112A (en) Nonaqueous electrolyte secondary battery
CN112236894A (en) Nonaqueous electrolyte secondary battery
JPH11126600A (en) Lithium ion secondary battery
JPH10302842A (en) Winding type secondary battery
JP2023523740A (en) Lithium ion secondary electrochemical cell
JP2002289260A (en) Flat nonaqueous electrolyte secondary battery
JP2000357535A (en) Rectangular lithium secondary battery
JPH11176420A (en) Nonaqueous electrolyte secondary battery
CN112236895A (en) Nonaqueous electrolyte secondary battery
JP3489381B2 (en) Non-aqueous electrolyte secondary battery
WO2023190027A1 (en) Non-aqueous electrolyte secondary battery