JPH115111A - Device for plate rolling - Google Patents

Device for plate rolling

Info

Publication number
JPH115111A
JPH115111A JP10102730A JP10273098A JPH115111A JP H115111 A JPH115111 A JP H115111A JP 10102730 A JP10102730 A JP 10102730A JP 10273098 A JP10273098 A JP 10273098A JP H115111 A JPH115111 A JP H115111A
Authority
JP
Japan
Prior art keywords
curvature
pass
temperature difference
warpage
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10102730A
Other languages
Japanese (ja)
Other versions
JP3777046B2 (en
Inventor
Yasuhiro Higashida
康宏 東田
Shigeru Ogawa
茂 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10273098A priority Critical patent/JP3777046B2/en
Publication of JPH115111A publication Critical patent/JPH115111A/en
Application granted granted Critical
Publication of JP3777046B2 publication Critical patent/JP3777046B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Metal Rolling (AREA)
  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to control accurately the warpage by estimating and operating the tip warpage generation rate in the pre-pass rolling based upon the amount of curvature therein, circumferential speed of the upper and lower workrolls and upper and lower surface temperatures of the rolled stock and that of the rolled stock before above-said pass rolling. SOLUTION: From the peripheral speed of the upper and lower work rolls at the pre-pass, the temperatures of the upper and lower surfaces of the rolled stock and the tip warpage rate, the warpage rate caused by the difference of the peripheral speed and the warpage rate caused by the temperature difference between the upper and lower surfaces of the rolled stock together with the warpage rate caused by the factors other than mentioned above are obtained. Then the temperature difference between the upper and lower surfaces of the rolled stock is measured and the warpage rate caused by this temperature difference is operated and estimated. Further, based on the non uniform circumferential and the warpage rate caused by factors other than the temperature difference between the upper and lower surfaces and the estimated warpage rate based upon the temperature and the estimated warpage rate based upon the temperature difference between the upper and lower surfaces, the warpage rate to come out at afore-said pass is obtained. The rolling is conducted by setting the peripheral speed so that the warpage is solved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、板状の金属製品を
製造する圧延方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rolling method for producing a sheet metal product.

【0002】[0002]

【従来の技術】板材の圧延時に発生する反りは、圧延能
率の低下、設備事故の発生、精整工程の増加など、製品
の生産性に多大な影響を及ぼす。例えば、精整工程に関
しては、レベラー、プレス等による反りの矯正が必要と
なり、極端な場合、不良部を切断しなければならないこ
ともある。また、さらに大きな反りが発生した場合、板
の衝突によって、圧延設備が破損することもある。この
場合、板自体が製品価値を失うばかりでなく、生産停
止、圧延設備の修理など多大の損害をもたらす。
2. Description of the Related Art Warpage generated during rolling of a sheet material has a great effect on product productivity, such as a reduction in rolling efficiency, occurrence of equipment accidents, and an increase in the refining process. For example, in the refining process, it is necessary to correct a warp by a leveler, a press, or the like, and in an extreme case, it may be necessary to cut a defective portion. Further, when a larger warpage occurs, the rolling equipment may be damaged due to the collision of the plates. In this case, not only does the plate itself lose its product value, but it also causes enormous damage such as production stoppage and repair of rolling equipment.

【0003】圧延反りが発生するメカニズムについて
は、一般に、下記の圧延における上下非対称要因が原因
であると言われている。 ワークロールと圧延材との摩擦係数の上下差…Δμ 圧延材の上下温度差(変形抵抗の上下差)……Δt 上下ワークロール周速度の差……………………ΔV 幾何学条件 ・上下ワークロールの半径差………………………ΔR ・板入射角(上下パスライン差)…………………α しかしながら、上記の上下非対称要因が反りに及ぼす影
響は、必ずしも全て解明されている訳ではない。そこ
で、前パスの反りを測定することによって当該パスの反
り制御を行う方法が、特開昭63−60012号公報、
特開昭63−132708号公報、特開平3−2343
09号公報、特開平4−262811号公報に示されて
いる。これらの方法は、いずれも前パスの反りを測定
し、その反りを解消する制御(例えば、異周速圧延)を
当該パスで実施する方法である。
It is generally said that the mechanism of occurrence of rolling warpage is caused by the following vertical asymmetry factor in rolling. Vertical difference in friction coefficient between work roll and rolled material: Δμ Vertical temperature difference in rolled material (vertical difference in deformation resistance): Δt Difference in circumferential speed of upper and lower work rolls: ΔV Geometric condition Radius difference between upper and lower work rolls .DELTA.R. Plate incident angle (difference between upper and lower pass lines) .alpha. However, the above vertical asymmetry factor does not always affect the warpage. It is not understood. Therefore, a method of controlling the warpage of the previous path by measuring the warp of the previous path is disclosed in Japanese Patent Application Laid-Open No. 63-60012,
JP-A-63-132708, JP-A-3-2343
No. 09 and Japanese Patent Application Laid-Open No. 4-26281. Each of these methods is a method of measuring the warpage of the preceding pass and performing control (for example, different peripheral speed rolling) for eliminating the warpage in the relevant pass.

【0004】[0004]

【発明が解決しようとする課題】前述の特開昭63−6
0012号公報、特開昭63−132708号公報、特
開平3−234309号公報、特開平4−262811
号公報においては、いずれの方法においても前パスの反
りが、当該パスでも継続することを前提としている。し
かしながら、実際の圧延では、条件によっては前パスと
当該パスにおいて反り方向が逆になることもあり、従来
の方法では、制御すると却って反りを増大させる場合も
あった。
SUMMARY OF THE INVENTION The aforementioned Japanese Patent Application Laid-Open No. 63-6 / 1988
0012, JP-A-63-132708, JP-A-3-234309, JP-A-4-262711
In the above publication, it is assumed that the warpage of the previous pass continues in the pass in any of the methods. However, in actual rolling, the warping direction may be reversed between the preceding pass and the pass depending on conditions, and in the conventional method, warpage may be increased by controlling the conventional method.

【0005】本発明の目的は、以上の点に鑑み、板状の
金属製品の製造において、高精度の反り制御の方法を提
供することである。
An object of the present invention is to provide a method of controlling warpage with high accuracy in the manufacture of a plate-shaped metal product in view of the above points.

【0006】[0006]

【課題を解決するための手段】本発明は、かかる課題を
解決するため、前パスにおける先端圧延時の反り量、上
下ワークロール周速度および圧延材の上下面温度、並び
に当該パス圧延前の圧延材の上下面温度を測定し、その
測定結果から当該パスの先端反り量を予測・演算して、
その予測した反り量を解消する上下ワークロールの異周
速率を演算し、該異周速率演算結果に基づいて、上下ワ
ークロール周速度差を設定制御することを特徴とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides an amount of warpage at the time of leading edge rolling in a previous pass, a peripheral speed of upper and lower work rolls, upper and lower surface temperatures of a rolled material, and rolling before the pass rolling. Measure the upper and lower surface temperature of the material, predict and calculate the tip warpage amount of the path from the measurement result,
The method is characterized in that different peripheral speed ratios of the upper and lower work rolls for solving the predicted warpage amount are calculated, and a difference between the upper and lower work roll peripheral speeds is set and controlled based on the calculation result of the different peripheral speed ratios.

【0007】すなわち、本発明の要旨とする処は、以下
の通りである。少なくとも上下ワークロールを有する圧
延機により板材を圧延する方法において、前パスにおけ
る上下ワークロールの周速度、圧延材の上下面温度およ
び前パスにおける圧延材先端部の反り曲率半径とから、
前パスにおける異周速に起因する反り曲率および前パス
における圧延材の上下面温度差に起因する反り曲率を求
め、前パスにおける異周速および上下面温度差以外の要
因による反り曲率を求めると共に、当該パスにおける圧
延材の上下面の温度を測定し、圧延材の上下面の温度差
に起因する当該パスにおける反り曲率を求め、前パスに
おける異周速および上下面の温度差以外の要因による反
り曲率と、当該パスにおける圧延材の上下面の温度差に
起因する反り曲率とに基づいて、当該パスにおける反り
曲率を求め、この反り曲率を解消するように、当該パス
における上下ワークロールの周速度差を設定して板材を
圧延することを特徴とする板圧延方法であり、好ましく
は、当該パスにおける反り曲率を、前パスにおける異周
速および上下面の温度差以外の要因による反り曲率と、
当該パスにおける上下面の温度差に起因する反り曲率の
和とし、この反り曲率を解消するように、当該パスにお
ける上下ワークロールの周速度差を設定して圧延するこ
とを特徴とする板圧延方法であり、より好ましくは、当
該パスにおける反り曲率を、前記前パスにおける異周速
および上下面の温度差以外の要因による反り曲率に前パ
スと当該パスとの形状比の変動を考慮した反り曲率と、
当該パスにおける上下面の温度差に起因する反り曲率の
和とし、この反り曲率を解消するように、当該パスにお
ける上下ワークロールの周速度差を設定して圧延するこ
とを特徴とする板圧延方法である。
That is, the subject of the present invention is as follows. In the method of rolling a plate material by a rolling mill having at least upper and lower work rolls, from the peripheral speed of the upper and lower work rolls in the previous pass, the upper and lower surface temperatures of the rolled material and the radius of curvature of the rolled material tip in the previous pass,
Determine the curvature due to the different peripheral speed in the previous pass and the curvature due to the temperature difference between the upper and lower surfaces of the rolled material in the previous pass, and calculate the curvature due to factors other than the different peripheral speed and the upper and lower surface differences in the front pass. The temperature of the upper and lower surfaces of the rolled material in the pass is measured, and the warp curvature in the pass due to the temperature difference between the upper and lower surfaces of the rolled material is obtained. Based on the warp curvature and the warp curvature caused by the temperature difference between the upper and lower surfaces of the rolled material in the pass, the warp curvature in the pass is determined, and the upper and lower work rolls in the pass are determined so as to eliminate the warp curvature. A plate rolling method characterized in that a plate material is rolled by setting a speed difference, and preferably, the warp curvature in the pass, the different peripheral speed in the previous pass and the upper and lower surfaces of the upper and lower surfaces. And warp curvature due to factors other than the time difference,
A sheet rolling method, wherein the rolling is performed by setting the peripheral speed difference between the upper and lower work rolls in the pass to be the sum of the warpage curvatures caused by the temperature difference between the upper and lower surfaces in the pass, and eliminating the warpage curvature. More preferably, the warp curvature in the path, the warp curvature due to factors other than the different peripheral speed and the temperature difference between the upper and lower surfaces in the previous path, the warp curvature in consideration of the change in the shape ratio between the previous path and the path. When,
A sheet rolling method, wherein the rolling is performed by setting the peripheral speed difference between the upper and lower work rolls in the pass to be the sum of the warpage curvatures caused by the temperature difference between the upper and lower surfaces in the pass, and eliminating the warpage curvature. It is.

【0008】また、好ましくは少なくとも上下ワークロ
ールを有する圧延機により板材を圧延する方法におい
て、前パスにおける上下ワークロールの周速度
(VT R1,VB R1)、圧延材の上下面の温度(tT 1
B 1 )および前パスにおける圧延材先端部の反り曲率
半径ρ1 を測定し、この測定したロールの周速度と反り
曲率半径とから前パスにおける異周速率χ1 および反り
曲率κM1とを求め、この異周速率χ1 に起因する反り曲
率κV1を求めると共に、圧延材の上下面の温度差Δt1
に起因する反り曲率κT1を求め、前パスにおける反り曲
率κM1から異周速率χ1 に起因する反り曲率κV1と上下
面の温度差に起因する反り曲率κT1を差し引いて、前パ
スにおける異周速および上下面の温度差以外の要因によ
る反り曲率κQ1を求め、さらに、当該パスにおける圧延
材の上下面の温度(tT 2 ,tB 2 )を測定し、その温
度差Δt2 に起因する反り曲率κT2を求め、当該パスに
おける異周速および上下面の温度差以外の要因による反
り曲率κQ2をκQ2=κQ1とし、当該パスにおける反り曲
率κP2を、κP2=κQ2+κT2とし、この反り曲率を解消
するように、当該パスにおける上下ワークロールの周速
度差を設定して圧延することを特徴とする板圧延方法で
あり、より好ましくは、当該パスにおける反り曲率κP2
を、前パスにおける異周速及び上下面の温度差以外の要
因による反り曲率κQ1に、前パスと当該パスとの形状比
の変動による影響を考慮した下式に基づいて求めた当該
パスにおける異周速及び上下面の温度差以外の要因によ
る反り曲率κQ2と、当該パスにおける上下面の温度差に
起因する反り曲率κT2との和とすることを特徴とする板
圧延方法である。 κQ2=δ1 ・κQ1 δ1 :形状比(圧延材とワークロールとの接触投影弧長
を入側と出側板厚の平均値で除した値)と反り曲率の関
係を示す学習係数
Preferably, at least upper and lower work tubes are used.
Method of rolling a sheet material with a rolling mill having a roll
The peripheral speed of the upper and lower work rolls in the previous pass
(VT R1, VB R1), The temperature of the upper and lower surfaces of the rolled material (tT 1 ,
tB 1 ) And the curvature of the rolled material tip in the previous pass
Radius ρ1 And measure the roll peripheral speed and warpage
Different peripheral speed ratio in the previous pass from the radius of curvature1 And warp
Curvature κM1And the different peripheral speed ratio χ1 Warpage caused by
Rate κV1And the temperature difference Δt between the upper and lower surfaces of the rolled material.1 
Curvature κ due toT1And warp in the previous pass
Rate κM1Different peripheral speed ratio from1 Curvature κ due toV1And up and down
Warpage curvature κ caused by temperature difference between surfacesT1And subtract
Due to factors other than the different peripheral speeds and the temperature difference between the upper and lower surfaces.
Curvature κQ1And rolling in the pass
Temperature of the upper and lower surfaces of the material (tT Two , TB Two ) Measure the temperature
Difference ΔtTwo Curvature κ due toT2To the path
Due to factors other than different peripheral speeds and temperature differences between the upper and lower surfaces
Curvature κQ2To κQ2= ΚQ1And the curvature of the path
Rate κP2And κP2= ΚQ2+ ΚT2To eliminate this curvature
So that the peripheral speed of the upper and lower work rolls in the pass
A plate rolling method characterized by rolling with a set difference
And more preferably, the curvature κ in the path.P2
Other than the peripheral speed and the temperature difference between the upper and lower surfaces in the previous pass.
Curvature κQ1In addition, the shape ratio between the previous pass and the relevant pass
Calculated based on the following formula taking into account the effects of fluctuations in
Due to factors other than the different peripheral speeds in the pass and the temperature difference between the upper and lower surfaces.
Curvature κQ2And the temperature difference between the upper and lower surfaces in the path
Resulting curvature κT2Characterized by the sum of
It is a rolling method. κQ2= Δ1 ・ ΚQ1 δ1 : Shape ratio (contact projection arc length between rolled material and work roll)
Divided by the average value of the thickness of the inlet and outlet plates) and the curvature
Learning coefficient indicating engagement

【0009】加えて、好ましくは、当該パスにおける反
り曲率κP2を、前記前パスにおける異周速および上下面
の温度差以外の要因による反り曲率κQ1に、前パスと当
該パスの形状比の変動による影響を考慮した下式に基づ
いて求めたκQ2と、当該パスにおける上下面の温度差に
起因する反り曲率κT2との和とすることを特徴とする板
圧延方法である。
[0009] In addition, preferably, the warp curvature κ P2 in the path is changed to the warp curvature κ Q1 due to factors other than the different peripheral speed and the temperature difference between the upper and lower surfaces in the previous path, and the shape ratio of the front path and the path is calculated. This is a plate rolling method characterized by taking the sum of κ Q2 obtained based on the following equation in consideration of the influence of fluctuation and the warp curvature κ T2 caused by the temperature difference between the upper and lower surfaces in the pass.

【0010】κQ2=δ2 ・κQ1 ただし、δ2 :Δμが変わらない場合の形状比がΓ2
場合に発生する反り曲率q(Γ2 ) と形状比がΓ1 の場
合に発生する反り曲率q(Γ1 )との比(q(Γ2 ) /
q(Γ1 )) Δt:圧延材の上下温度差 Δμ:ワークロールと圧延材との摩擦係数の上下差 Γ1 :前パスの形状比 Γ2 :当該パスの形状比 Γ :形状比:圧延材とワークロールとの接触投影弧長
を入側と出側板厚の平均値で除した値 さらに好ましくは、反り曲率に、ワークロール半径/反
り曲率半径として規格化した反り曲率を用いることを特
徴とする板圧延方法である。
[0010] However κ Q2 = δ 2 · κ Q1 , δ 2: warp curvature shape ratio when Δμ does not change occurs when the Γ 2 q (Γ 2) and shape ratio occurs when the gamma 1 The ratio to the warp curvature q (Γ 1 ) (q (Γ 2 ) /
q (Γ 1 )) Δt: Vertical temperature difference of rolled material Δμ: Vertical difference of friction coefficient between work roll and rolled material Γ 1 : Shape ratio of previous pass Γ 2 : Shape ratio of relevant pass Γ: Shape ratio: Rolling The value obtained by dividing the contact projection arc length between the material and the work roll by the average value of the thickness of the entrance side and the thickness of the exit side. More preferably, the warpage curvature is obtained by using the curvature that is standardized as work roll radius / warpage curvature radius. This is a sheet rolling method.

【0011】本発明においては、更に、好ましくは、当
該パスの圧延時に上下材料温度差ΔtC 2 を付与して圧
延を行った場合において、当該パスでの異周速および上
下面温度差以外の反り曲率κQ'2 を κQ'2 =κM2−κV2−κC T2 として、次パスでの異周速および上下面温度差以外の反
り曲率κQ3を κQ3=κQ'2 として、次パスでの圧延材の上下面温度(tT 3 ,tB
3 )を測定し、その温度差Δt3 起因の次パスでの反り
曲率 κT3 を求め、次パスで発生する反り曲率κP3を κP3=κQ3+κT3 好ましくは、κP3=κQ3+η・κT3 と予測し、この反りを解消するように、次パスにおいて
上下ワークロール速度差、上下材料温度差、上下摩擦係
数差のいずれかを単独あるいは組み合わせて設定して圧
延することを特徴とする板圧延方法である。ここで、κ
M2は当該パスにおける反り曲率であり、κV2は当該パス
における上下ワークロール速度差起因の反り曲率であ
り、κC T2は当該パスにおける温度差ΔtC 2 付与後の
上下面温度差起因の反り曲率であり、ηは学習、実験あ
るいは計算で求めた補正係数である。
[0011] In the present invention, more preferably, when rolling is performed by giving the upper and lower material temperature difference Δt C 2 at the time of rolling of the pass, the difference between the different peripheral speed and the upper and lower surface temperature difference in the pass. The curvature curvature κ Q'2 is defined as κ Q′2 = κ M2 −κ V2 −κ C T2 , and the curvature curvature κ Q3 other than the different peripheral speed and the upper and lower surface temperature differences in the next pass is defined as κ Q3 = κ Q′2. , The upper and lower surface temperature of the rolled material in the next pass (t T 3 , t B
3 ) is measured, the curvature κ T3 in the next pass due to the temperature difference Δt 3 is obtained, and the curvature κ P3 generated in the next pass is κ P3 = κ Q3 + κ T3, preferably κ P3 = κ Q3 + η Rolling by predicting κ T3 and setting any of the upper and lower work roll speed differences, upper and lower material temperature differences, and upper and lower friction coefficient differences alone or in combination in the next pass to eliminate this warpage This is a plate rolling method. Where κ
M2 is the warp curvature at the path, kappa V2 is the warp curvature of the upper and lower work rolls speed difference caused in the path, kappa C T2 upper and lower surfaces temperature difference warping of resulting in a temperature difference Delta] t C 2 after application of the path Is a curvature, and η is a correction coefficient obtained by learning, experiment, or calculation.

【0012】また、当該パスの圧延時に上下摩擦係数差
ΔμL 2 を付与して圧延を行った場合において、当該パ
スでの異周速および上下面温度差以外の反り曲率κQ'2
を κQ'2 =κM2−κV2−κT2−κL2 として、好ましくは、 κQ'2 =κM2−κV2−κT2−γ・κL2 として、次パスでの異周速および上下面温度差以外の反
り曲率κQ3を κQ3=κQ'2 として、次パスでの圧延材の上下面温度(tT 3 ,tB
3 )を測定し、その温度差Δt3 起因の次パスでの反り
曲率 κT3 を求め、次パスで発生する反り曲率κP3を κP3=κQ3+κT3 と予測し、この反りを解消するように、次パスにおいて
上下ロール速度差、上下材料温度差、上下摩擦係数差の
いずれかを単独あるいは組み合わせて設定して圧延する
ことを特徴とする板圧延方法である。ここで、κL2は当
該パスにおけるΔμL 2 起因の反り曲率であり、γは学
習、実験あるいは計算で求めた補正係数である。
In addition, when rolling is performed by applying a vertical friction coefficient difference Δμ L 2 during rolling of the pass, the warpage curvature κ Q′2 other than the different peripheral speed and the upper and lower surface temperature difference in the pass.
Κ Q′2 = κ M2 −κ V2 −κ T2 −κ L2 , preferably, as κ Q′2 = κ M2 −κ V2 −κ T2 −γ · κ L2 , Assuming that the curvature κ Q3 other than the upper and lower surface temperature difference is κ Q3 = κ Q′2 , the upper and lower surface temperatures of the rolled material in the next pass (t T 3 , t B
3 ) is measured, the curvature κ T3 in the next pass due to the temperature difference Δt 3 is obtained, and the curvature κ P3 generated in the next pass is predicted as κ P3 = κ Q3 + κ T3 to eliminate this curvature. As described above, the present invention provides a sheet rolling method in which any one of the difference between the upper and lower roll speeds, the difference between the upper and lower material temperatures, and the difference between the upper and lower friction coefficients is set alone or in combination in the next pass. Here, κ L2 is a warpage curvature caused by Δμ L 2 in the path, and γ is a correction coefficient obtained by learning, experiment, or calculation.

【0013】更に、次パスにおける反り曲率κQ3を、当
該パスにおける異周速および上下面温度差以外の要因に
よる反り曲率κQ'2 に、当該パスと次パスとの形状比の
変動の影響を考慮した下式に基づいて求めることを特徴
とし、 κQ3=δ1 ・κQ'2 好ましくは、下式に基づいて求めることを特徴とする板
圧延方法である。 κQ3=δ2 ・κQ'2 但し、 δ1 :形状比(圧延機とワークロールとの接触投影弧長
を入側と出側板厚の平均値で除した値)と反り曲率の関
係を示す学習係数。 δ2 :Δμが変わらない場合の形状比がΓ2 の場合に発
生する反り曲率q(Γ2 ) と形状比がΓ1 の場合に発生
する反り曲率q(Γ1 )との比(q(Γ2 ) /q
(Γ1 )) Δt:圧延材の上下温度差 Δμ:ワークロールと圧延材との摩擦係数の上下差 Γ1 :前パスの形状比 Γ2 :当該パスの形状比 Γ :形状比:圧延材とワークロールとの接触投影弧長
を入側と出側板厚の平均値で除した値 また、本発明においては、反り曲率に、ワークロール半
径/反り曲率半径として規格化した反り曲率を用いるこ
ともできる。
Further, the influence of the change in the shape ratio between the current path and the next path is determined by changing the warp curvature κ Q3 in the next path to the warp curvature κ Q′2 due to factors other than the different peripheral speeds and the temperature difference between the upper and lower surfaces of the current path. Κ Q3 = δ 1 κ Q'2, and more preferably, a sheet rolling method characterized by being determined based on the following equation. κ Q3 = δ 2 · κ Q'2 where δ 1 : The relationship between the shape ratio (the value obtained by dividing the contact projection arc length between the rolling mill and the work roll by the average value of the entrance and exit sheet thicknesses) and the warpage curvature Learning coefficient to indicate. [delta] 2: ratio of warp curvature q (gamma 1) that Δμ warp curvature q (gamma 2) a shape ratio shape ratio when no change occurs in the case of gamma 2 occurs when the gamma 1 (q ( Γ 2 ) / q
1 )) Δt: Vertical temperature difference of rolled material Δμ: Vertical difference of friction coefficient between work roll and rolled material Γ 1 : Shape ratio of previous pass Γ 2 : Shape ratio of relevant pass :: Shape ratio: Rolled material The value obtained by dividing the contact projection arc length between the workpiece and the work roll by the average value of the thicknesses of the entrance side and the exit side. In the present invention, the warpage curvature is defined as the work curvature radius / warpage curvature radius. Can also.

【0014】[0014]

【発明の実施の形態】以下、本発明を図面に基づいて詳
細に説明する。図1に、本発明を適用する圧延機の一例
を示す。上下のワークロール1,2を有する圧延機7の
前後には、ローラーテーブル4,4が設けられている。
ローラーテーブル4の上に図示されている圧延材3は、
上ワークロール1と下ワークロール2で所定の板厚に圧
延される。上ロール系は、上ワークロール1と上バック
アップロール5とから構成され、下ロール系は、下ワー
クロール2と下バックアップロール6とから構成され
る。なお、以下、特に断りのない限り、ロールとはワー
クロールを示すこととする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 shows an example of a rolling mill to which the present invention is applied. Roller tables 4 and 4 are provided before and after a rolling mill 7 having upper and lower work rolls 1 and 2, respectively.
The rolled material 3 illustrated on the roller table 4 is:
The upper work roll 1 and the lower work roll 2 are rolled to a predetermined thickness. The upper roll system is composed of an upper work roll 1 and an upper backup roll 5, and the lower roll system is composed of a lower work roll 2 and a lower backup roll 6. Hereinafter, unless otherwise specified, a roll refers to a work roll.

【0015】また、異周速率χ、反り曲率κおよび規格
化した反り曲率κ* を以下の様に定義するものとする。 異周速率χ=(VT −VB )/max(VT , VB )×10
0(%) ここで、VT は上ロールの周速度、VB は下ロールの周
速度。 反り曲率κ=1/反り曲率半径ρ(圧延ラインより上方
向に反る反りを上反り、正とし、圧延ラインより下方向
に反る反りを下反り、負として表す。) 規格化した反り曲率κ* =ロール半径R/反り曲率半径
ρ(上反り:+,下反り:−) 形状比Γ:圧延材とワークロールとの接触投影弧長をロ
ール入側と出側の板厚の平均値で除した値。
Further, the different peripheral speed χ, the warpage curvature κ, and the normalized warpage curvature κ * are defined as follows. Different peripheral speed ratio χ = (V T −V B ) / max (V T , V B ) × 10
0 (%) where, V T is the circumferential speed of the upper roll, V B is the peripheral speed of the lower roll. Warp curvature κ = 1 / Warp curvature radius ρ (warp warping upward from the rolling line is referred to as upward warpage, positive, and warping downward below the rolling line is referred to as downward warpage, negative.) Standardized warpage curvature κ * = Roll radius R / Warp radius of curvature ρ (upward warp: +, downward warp: −) Shape ratio を: The projected arc length of the contact between the rolled material and the work roll is the average value of the sheet thicknesses on the roll entry and exit sides. Divided by.

【0016】図1に示す圧延機においてリバース圧延を
行う場合に反りが生じると、前述したように、圧延の中
断、大事故の発生等の大きな問題が生じる。反りの発生
原因としては、上述した観点から以下のような上下非対
称要因が考えられる。 ワークロールと圧延材との摩擦係数の上下差…Δμ 圧延材の上下温度差(変形抵抗の上下差)……Δt 上下ワークロール周速度の差……………………ΔV 幾何学条件 ・上下ワークロールの半径差………………………ΔR ・板入射角(上下パスライン差)…………………α したがって、当該パスにおける、これら全ての値を正確
に測定できれば、反りの予測はかなりの精度で可能と考
えられる。しかしながら、例えば、パス毎のΔμを正確
に測定することは、実際上、殆ど不可能である。
If warpage occurs when reverse rolling is performed in the rolling mill shown in FIG. 1, as described above, serious problems such as interruption of rolling and occurrence of a large accident occur. As a cause of the warpage, the following vertical asymmetry factors are considered from the above-described viewpoint. Vertical difference in friction coefficient between work roll and rolled material: Δμ Vertical temperature difference in rolled material (vertical difference in deformation resistance): Δt Difference in circumferential speed of upper and lower work rolls: ΔV Geometric condition Radius difference between upper and lower work rolls .DELTA.R. Plate incidence angle (upper and lower pass line differences) .alpha. Therefore, if all these values in the pass can be measured accurately, Warpage prediction is considered possible with considerable accuracy. However, it is practically almost impossible to accurately measure Δμ for each path, for example.

【0017】そこで、発明者らは、創意工夫の結果、前
パスにおける発生反り量に加え、前パスの圧延の上下ワ
ークロール周速度および圧延材の上下面温度、並びに当
該パス圧延前の圧延材の上下面温度を測定し、それらの
値に基づいて当該パスにおける異周速以外の要因による
反り量を演算すれば、毎パスのΔμの測定を行わなくて
も、正確に当該パスの反りが予測でき、ひいては正確な
反り制御が可能なことを見出した。以下に、リバース圧
延の場合を例に、その詳細を説明する。なお、前パスに
おける反り曲率とは前パス圧延時に発生する反りの曲率
を示し、当該パスにおける反り曲率とは当該パス圧延時
に発生する反りの曲率を示すことにする。
As a result of the ingenuity, the inventors of the present invention have determined, in addition to the warpage generated in the previous pass, the peripheral speeds of the upper and lower work rolls in the previous pass, the upper and lower surface temperatures of the rolled material, and the rolled material before the pass rolling. By measuring the upper and lower surface temperatures and calculating the amount of warpage due to factors other than the different peripheral speeds in the path based on those values, the warpage of the path can be accurately calculated without measuring Δμ for each path. It has been found that it can be predicted, and that accurate warpage control is possible. The details will be described below, taking the case of reverse rolling as an example. Note that the warpage curvature in the previous pass indicates the curvature of the warpage generated during the preceding pass rolling, and the warpage curvature in the relevant pass indicates the curvature of the warpage generated during the preceding rolling.

【0018】発明者らは、まず、図1に示した圧延機を
用いてリバース圧延実験を行い、反りの発生挙動を調べ
た。その結果、Δt,Δμ、ΔV等の上下非対称条件が
存在する時、圧延材の先端部を圧延する場合には反り
(上反りおよび下反りのいずれも発生し得る)が発生す
るが、圧延材の圧延方向中央部および後端部を圧延する
場合には反りが発生しないことを見出し、さらに、その
メカニズムを明らかにした。そのメカニズムは、以下の
通りである。
The inventors first performed a reverse rolling experiment using the rolling mill shown in FIG. 1 to examine the warpage generation behavior. As a result, when there is a vertical asymmetry condition such as Δt, Δμ, ΔV, etc., when the tip of the rolled material is rolled, warpage (both upward warp and downward warp may occur) occurs, It was found that no warping occurred when the center and rear end portions of the rolling direction were rolled, and the mechanism was clarified. The mechanism is as follows.

【0019】なお、先端部および後端部の定義に関して
は、圧延材が圧延によって移動する際に、その前方の端
部を先端部、後方の端部を後端部とする。リバース圧延
の場合、パス毎に圧延材の移動する向きが逆になるため
に、圧延材自体に着目すれば、先端部と後端部はパス毎
に入れ替わる。すなわち、リバース圧延においては、圧
延材における同一場所が先端部の圧延となるのは、2パ
ス毎ということになる。したがって、反りを制御すべき
当該パスをNパスとすれば、そのためにκとχを測定す
べき前パスは、N−2となる。一方、一方向圧延の場合
は、圧延材が圧延によって移動する向きは常に一定のた
め、圧延材自体に着目しても、先端部と後端部の場所は
変化しない。すなわち、一方向圧延では、パス毎に、圧
延材における同一場所が先端部の圧延となるので、当該
パスをNパスとすれば、κとχを測定すべき前パスは、
N−1となる。
With respect to the definition of the front end and the rear end, when the rolled material moves by rolling, the front end is the front end and the rear end is the rear end. In the case of reverse rolling, the moving direction of the rolled material is reversed for each pass, and therefore, if attention is paid to the rolled material itself, the leading end and the rear end are switched for each pass. That is, in the reverse rolling, the same location in the rolled material is rolled at the leading end every two passes. Therefore, assuming that the path whose warpage is to be controlled is the N path, the previous path for which κ and 測定 are to be measured is N-2. On the other hand, in the case of unidirectional rolling, since the direction in which the rolled material moves by rolling is always constant, the positions of the leading end and the trailing end do not change even if attention is paid to the rolled material itself. That is, in one-way rolling, the same location in the rolled material is rolled at the leading end for each pass, so if the pass is N pass, the previous pass to measure κ and χ is
N-1.

【0020】先端部の圧延時には、上述したように、上
反りおよび下反りのいずれもが発生し得る。これは、先
端部の圧延の場合、材料がテーブルローラーに達するま
では材料の変形(反り)を拘束するものが無く、また出
側の材料長さ、すなわちロールバイト出口から材料の圧
延方向先端部までの距離も短いので材料の自重の影響も
小さく、圧延材の上下の温度差等の上下非対称性により
反りが発生し始めると、反りの曲率は限界まで拡大する
からである。
When the tip is rolled, as described above, both upward warpage and downward warpage can occur. This is because, in the case of rolling at the leading end, there is nothing to restrict the deformation (warpage) of the material until the material reaches the table roller, and the material length on the exit side, that is, the leading end of the material in the rolling direction from the roll bite exit. This is because the influence of the material's own weight is small because the distance to the rolled material is short, and when the warp starts to occur due to the vertical asymmetry such as the temperature difference between the upper and lower sides of the rolled material, the curvature of the warp expands to the limit.

【0021】一方、圧延材の圧延方向中央部および後端
部の圧延時には、反りは発生しない。まず、下反りに関
しては、下反りが発生しようとしても、出側のテーブル
ローラーにより材料が拘束され、材料が下方向に大きく
変形できないためである。また、上反りに関しての発生
メカニズムは以下の通りである。ここでは、上下の非対
称要因として、圧延材の上下面の温度差を例示する。図
2に、材料下面が高温の場合における圧延挙動を示す。
下面が高温のため、下面の材料の延伸が大きくなり、ま
ず上方向の先端部の反りが発生する(図2(a))。圧
延が進むとロールバイト前後の材料の拘束のために、反
りは発生しなくなる(図2(b))。さらに圧延が進む
と後端側の材料は短くなり後端が自由となるために、再
び上反りが発生しようとする。しかしながら、ロールバ
イト出側には既に圧延を終了した長い材料が存在するの
で、自重によって、ロールバイト出口における出側速度
の材料上下面での不均一性を解消する大きな張力差が材
料上下面に作用し、後端部においては反りは発生しない
(図2(c))。以上の結果から、制御すべき反りは先
端部の反りであることが判明した。
On the other hand, no warpage occurs at the time of rolling the central portion and the rear end portion of the rolled material in the rolling direction. First, with respect to the downward warpage, even if the downward warpage is to occur, the material is restrained by the table roller on the output side, and the material cannot be largely deformed downward. The mechanism of occurrence of warpage is as follows. Here, a temperature difference between the upper and lower surfaces of a rolled material is exemplified as a vertical asymmetry factor. FIG. 2 shows the rolling behavior when the lower surface of the material is at a high temperature.
Since the lower surface is at a high temperature, the stretching of the material on the lower surface becomes large, and first, the warp of the tip portion in the upward direction occurs (FIG. 2A). As rolling proceeds, warpage does not occur due to the restraint of the material before and after the roll bite (FIG. 2B). As the rolling further proceeds, the material on the rear end side becomes shorter and the rear end becomes free, so that an upward warpage is likely to occur again. However, since there is a long material that has already been rolled on the roll tool exit side, there is a large difference in tension on the upper and lower surfaces of the material due to its own weight, which eliminates non-uniformity of the exit speed at the roll tool exit on the upper and lower surfaces of the material. Acting, no warping occurs at the rear end (FIG. 2 (c)). From the above results, it was found that the warp to be controlled was the warpage of the tip.

【0022】次に、発明者らは、ツインドライブのリバ
ース圧延機を用いた圧延実験により、前パス(1パス
目)と当該パス(3パス目)の先端圧延時における反り
発生挙動および上下ロール周速度および圧延材の上下面
温度を詳細に調べた。表1に、板厚が異なる3本(条件
1,2,3)の鋼材における、1パス目と3パス目の反
り発生挙動を示す。この結果から、いずれの条件におい
ても、1パス目と3パス目において、発生した反りの曲
率半径κM は大きく異なることが判る。例えば、条件2
では、1パス目が上反りなのに対し、3パス目では下反
りが発生している。
Next, the inventors conducted a rolling experiment using a twin-drive reverse rolling mill to determine the warpage generation behavior and the upper and lower rolls in the front pass (first pass) and the front pass (third pass) during tip rolling. The peripheral speed and the upper and lower surface temperatures of the rolled material were examined in detail. Table 1 shows the warpage generation behavior of the first pass and the third pass in three steel materials (conditions 1, 2, and 3) having different plate thicknesses. From this result, it can be seen that the curvature radius κ M of the generated warp greatly differs between the first pass and the third pass under any conditions. For example, condition 2
In the figure, the first pass is upwardly warped, whereas the third pass is downwardly warped.

【0023】発明者らは、各パス後に発生した反り曲率
κM から、後述する異周速起因の反り曲率κV および圧
延材の温度上下面差起因の反り曲率κT を減じた反り曲
率κ Q =κM −κV −κT は、いずれの条件でも1パス
目と3パス目で非常に良く一致することを見出した。す
なわち、当該パス(3パス目)に継続するのは、前パス
(1パス目)圧延時に観察された反り曲率κM ではな
く、κM から異周速起因の反り曲率κV および圧延材の
温度上下面差起因の反り曲率κT を差し引いた反り曲率
κQ ということになる。
The inventors have determined that the curvature produced after each pass.
κMFrom the warpage curvature κ due to the different peripheral speedVAnd pressure
Warp curvature κ due to difference in temperature between upper and lower surfaces of rolled materialTReduced warpage
Rate κ Q= ΚM−κV−κTIs one pass under any conditions
It was found that the eye and the third pass matched very well. You
In other words, the continuation to the pass (third pass) is the previous pass
(First pass) Warpage curvature κ observed during rollingMThen
ΚMCurvature curvature κ due to different peripheral speedVAnd rolled material
Warpage curvature κ caused by temperature differenceTLess curvature
κQIt turns out that.

【0024】したがって、前パス圧延時における発生反
り曲率κM1、異周速率χ1 および圧延材の上下面温度t
T 1 ,tB 1 を測定し、χ1 起因の反り曲率κV1および
Δt 1 (tT 1 とtB 1 との差)起因の反り曲率κT1
求め、前パスでの異周速および上下面温度差以外の要因
による反り曲率κQ1をκQ1=κM1−κV1−κT1より算出
し、当該パスでのΔt2 起因の反り曲率κT2を求めれ
ば、当該パスにおける異周速以外の要因による反り曲率
κP2がκP2=κQ2+κT2により、正確に予測できること
になる。
Therefore, the resistance generated during the preceding pass rolling is reduced.
Curvature κM1, Different peripheral speedχ1 And the upper and lower surface temperature t of the rolled material
T 1 , TB 1 Measure χ1 Warpage curvature κV1and
Δt 1 (TT 1 And tB 1 Curvature κ due toT1To
Factors other than the different peripheral speed and upper and lower surface temperature difference in the previous pass
Curvature κQ1To κQ1= ΚM1−κV1−κT1Calculated from
And Δt in the pathTwo Warpage curvature κT2Sought
If the warpage is due to factors other than the different peripheral speed in the path,
κP2Is κP2= ΚQ2+ ΚT2Can accurately predict
become.

【0025】[0025]

【表1】 [Table 1]

【0026】以上の結果を基に、発明者らは、前パスの
圧延材先端部の圧延における反り量、前パス圧延時の上
下ワークロール周速度および圧延材の上下面温度、並び
に当該パス圧延前の圧延材の上下面温度を測定し、その
測定結果から当該パスの先端反り量を予測・演算して、
その予測した反り量を解消する上下ワークロールの異周
速率を演算し、該異周速率演算結果に基づいて、上下ワ
ークロール周速度差を設定制御する方法、およびより好
ましくは、前パスにおける上下ワークロールの周速度
(VT R1,VB R1)、圧延材の上下面の温度(tT 1
B 1 )および前パスにおける圧延材先端部の反り曲率
半径ρ1 を測定し、この測定したロールの周速度と反り
曲率半径とから前パスにおける異周速率χ1 および反り
曲率κM1とを求め、この異周速率χ1 に起因する反り曲
率κV1を求めると共に、圧延材の上下面の温度差Δt1
に起因する反り曲率κT1を求め、前パスにおける反り曲
率κ M1から異周速率χ1 に起因する反り曲率κV1と上下
面の温度差に起因する反り曲率κT1を差し引いて、前パ
スにおける異周速および上下面の温度差以外の要因によ
る反り曲率κQ1を求め、さらに、当該パスにおける圧延
材の上下面の温度(t T 2 ,tB 2 )を測定し、その温
度差Δt2 に起因する反り曲率κT2を求め、当該パスに
おける異周速および上下面の温度差以外の要因による反
り曲率κQ2をκ Q2=κQ1とし、当該パスにおける反り曲
率κP2を、κP2=κQ2+κT2とし、この反り曲率を解消
するように、当該パスにおける上下ワークロールの周速
度差を設定して圧延する板圧延方法を見出した。
Based on the above results, the inventors of the present invention
The amount of warpage in rolling at the front end of the rolled material,
Lower work roll peripheral speed and upper and lower surface temperature of rolled material,
Measure the upper and lower surface temperature of the rolled material before the pass rolling,
Predict and calculate the amount of tip warpage of the path from the measurement result,
Top and bottom work rolls with different circumferences to eliminate the predicted warpage
The speed ratio is calculated, and the upper and lower
Method for setting and controlling the crawl peripheral speed difference, and better
More preferably, the peripheral speed of the upper and lower work rolls in the previous pass
(VT R1, VB R1), The temperature of the upper and lower surfaces of the rolled material (tT 1 ,
tB 1 ) And the curvature of the rolled material tip in the previous pass
Radius ρ1 And measure the roll peripheral speed and warpage
Different peripheral speed ratio in the previous pass from the radius of curvature1 And warp
Curvature κM1And the different peripheral speed ratio χ1 Warpage caused by
Rate κV1And the temperature difference Δt between the upper and lower surfaces of the rolled material.1 
Curvature κ due toT1And warp in the previous pass
Rate κ M1Different peripheral speed ratio from1 Curvature κ due toV1And up and down
Warpage curvature κ caused by temperature difference between surfacesT1And subtract
Due to factors other than the different peripheral speeds and the temperature difference between the upper and lower surfaces.
Curvature κQ1And rolling in the pass
Temperature of the upper and lower surfaces of the material (t T Two , TB Two ) Measure the temperature
Difference ΔtTwo Curvature κ due toT2To the path
Due to factors other than different peripheral speeds and temperature differences between the upper and lower surfaces
Curvature κQ2To κ Q2= ΚQ1And the curvature of the path
Rate κP2And κP2= ΚQ2+ ΚT2To eliminate this curvature
So that the peripheral speed of the upper and lower work rolls in the pass
A sheet rolling method for rolling with a set difference was found.

【0027】すなわち、本方法を用いれば、前パスと当
該パスの反り方向が逆転する場合においても、正確な反
り制御が可能となる。以下、本制御方法の一例の手順を
説明する。また、表2にそのフローチャートで示す。
That is, if the present method is used, accurate warpage control can be performed even when the warping directions of the preceding pass and the relevant pass are reversed. Hereinafter, an example procedure of the present control method will be described. Table 2 shows the flowchart.

【0028】[0028]

【表2】 [Table 2]

【0029】(1)前パスの圧延データ測定 先端圧延時の反り曲率半径ρ1 および上下ロール速度V
T R1,VB R1、圧延材の上下温度tT 1 ,tB 1 (圧延
前あるいは圧延後)を測定し、反り曲率κM1、異周速率
χ1 および上下温度差Δt1 を求める。反り曲率κM1
関しては、異なるロール半径での結果も利用できるよう
に、式(1.1)で示すように規格化する方が好まし
い。また、反り曲率自体の測定が困難であれば、反りの
高さから反り曲率を算出しても良い。式(1.2)に、
異周速率の求め方の一例を示す。
(1) Measurement of Rolling Data in Previous Pass Warp radius of curvature ρ 1 and vertical roll speed V during tip rolling
T R1, V B R1, the upper and lower temperature t T 1 of the rolled material, t B 1 (after pre-rolling or rolling) was measured, the warpage curvature kappa M1, obtaining the differential speed ratio chi 1 and upper and lower temperature difference Delta] t 1. Regarding the warpage curvature κ M1 , it is preferable to normalize the curvature κ M1 as shown in Expression (1.1) so that the results at different roll radii can be used. If it is difficult to measure the curvature itself, the curvature may be calculated from the height of the curvature. In equation (1.2),
An example of how to obtain the different peripheral speed ratio will be described.

【0030】 κM1 * =ロール半径R/ρ1 (上反り:+、下反り:−) …(1.1) χ1 =(VT R1−VB R1)/Max(VT R1,VB R1)×100(%) …(1.2) Δt1 =tT 1 −tB 1 …(1.3) (2)前パスの反り分析 異周速起因の反り曲率κV1 * の導出 Δt=0、Δμ=0の条件での異周速率χと反り曲率κ
V * の関係から、異周速起因の反り曲率κV1 * を求め
る。χとκV * の関係は例えば、あらかじめ、Δt=
0、Δμ=0の条件下で実験あるいは有限要素法の計算
を行い、その結果から回帰曲線、例えば、式(2.1)
あるいはテーブル等をΓに対応させて作成して、求めて
おく。なお、板厚、鋼種等の影響があれば、これらの条
件毎にχとκ V * の実験または計算を行って、その結果
を式(2.1)あるいはテーブル等に考慮すればよい。
図3(a)は、Δt=0、Δμ=0とした場合の実験に
より、形状比Γと反り曲率κ* との関係を異周速率に関
して示したものである。
ΚM1 *= Roll radius R / ρ1 (Upward warpage: +, downward warp:-) ... (1.1) χ1 = (VT R1-VB R1) / Max (VT R1, VB R1) × 100 (%) (1.2) Δt1 = TT 1 -TB 1 ... (1.3) (2) Warpage analysis of previous path Warp curvature κ caused by different peripheral speedV1 *Derivation of different peripheral speed χ and warpage curvature κ under the condition of Δt = 0 and Δμ = 0
V *From the relationship, the warpage curvature κ caused by different peripheral speedsV1 *Ask for
You. χ and κV *For example, the relation of Δt =
Experiment or finite element method calculation under the condition of 0, Δμ = 0
Is performed, and a regression curve, for example, an equation (2.1) is obtained from the result.
Or create a table etc. corresponding to Γ and ask
deep. If there is an effect of sheet thickness, steel type, etc.
Χ and κ for each case V *Experiment or calculation of the result
May be considered in equation (2.1) or a table.
FIG. 3A shows an experiment when Δt = 0 and Δμ = 0.
From the shape ratio Γ and the curvature κ*Relationship with different peripheral speed ratios
It is shown.

【0031】 κV1 * =fa(χ1 ,Γ1 ) …(2.1) 次に、前パスにおける形状比Γ1 と異周速率χ1 に対応
する反り曲率κV1 * を式(2.1)あるいはテーブルあ
るいは図3(a)から求める。 温度差起因の反り曲率κT1 * の導出 Δμ=0、χ=0の条件でのΔtと反り曲率κT * の関
係から、温度差起因の反り曲率κT1 * を求める。χとκ
T * の関係は上記と同様、例えば、あらかじめ、実験あ
るいは有限要素法の計算を行い、その結果から回帰曲
線、例えば、式(2.2)あるいはテーブル等を作成し
ておく。ここでも、式(2.1)の場合と同様、板厚、
鋼種等の影響があれば、式(2.2)等に、その結果を
考慮すればよい。図3(c)は、χ=0、Δμ=0とし
た場合の実験により、形状比Γと反り曲率κ* との関係
を材料温度差に関して示したものである。
Κ V1 * = fa (χ 1 , Γ 1 ) (2.1) Next, the curvature ratio κ V1 * corresponding to the shape ratio Γ 1 and the different peripheral speed ratio χ 1 in the previous pass is calculated by the equation (2. 1) or from a table or FIG. 3 (a). The temperature difference caused by the warp curvature κ T1 * of derivation Δμ = 0, χ = Δt and from warping curvature κ T * of the relationship between the 0 of conditions, determine the warp curvature of the resulting temperature difference κ T1 *. χ and κ
Similar to the above, the relationship of T * is obtained, for example, by performing an experiment or calculation by the finite element method in advance, and forming a regression curve, for example, equation (2.2) or a table from the result. Here, as in the case of equation (2.1), the plate thickness,
If there is an effect of the type of steel or the like, the result may be considered in equation (2.2) or the like. FIG. 3 (c) shows the relationship between the shape ratio Γ and the curvature κ * with respect to the material temperature difference by an experiment in which χ = 0 and Δμ = 0.

【0032】 κT1 * =fb(Δt1 ,Γ1 ) …(2.2) 次に、前パスにおける形状比Γ1 と温度差Δt1 に対応
する反り曲率κV1 * を式(2.2)あるいはテーブルあ
るいは図3(c)から求める。 異周速χ1 および上下面温度差Δt1 以外の要因に
よる反り曲率κQ1 * の算出下記の式に従い、χ1 および
Δt1 以外の要因による反り曲率κQ1 * を算出する。
Κ T1 * = fb (Δt 1 , Γ 1 ) (2.2) Next, the curvature ratio κ V1 * corresponding to the shape ratio Γ 1 and the temperature difference Δt 1 in the previous pass is calculated by the equation (2.2). ) Or from a table or FIG. 3 (c). In accordance with Equation calculation following differential speed chi 1, below and temperature difference Delta] t 1 warpage curvature due to factors other than kappa Q1 *, to calculate a warped curvature kappa Q1 * due to factors other than chi 1 and Delta] t 1.

【0033】 κQ1 * =κM1 * −κV1 * −κT1 * …(2.3) (3)当該パスの反り曲率κP2 * の予測 異周速χ2 および上下面温度差Δt2 以外の要因に
よる反り曲率κQ2 * の算出 χ1 およびΔt1 以外の要因による反り曲率κQ1 * は、
当該パス(3パス目)に継続することから、当該パスで
のχ2 およびΔt2 以外の要因による反り曲率κ
Q2 * は、下記の式で予測することができる。
Κ Q1 * = κ M1 * −κ V1 * −κ T1 * (2.3) (3) Prediction of Warpage Curvature κ P2 * of the Path Other than Differential Speed χ 2 and Upper and Lower Surface Temperature Difference Δt 2 Of the curvature κ Q2 * due to the factors of 1 and Δt 1 , the curvature κ Q1 *
Since the continuation to the path (third pass), the curvature κ due to factors other than χ 2 and Δt 2 in the path
Q2 * can be predicted by the following equation.

【0034】 κQ2 * =κQ1 * …(3.1) 温度差起因の反り曲率κT2 * の導出 圧延材の上下温度tT 2 ,tB 2 を測定することによ
り、上述の式(2.2)から、κT2 * を予測することが
できる。 κT2 * =fb(Δt2 ,Γ2 ) …(3.2) 当該パスの反り曲率κP2 * の算出 下記の式に従い、当該パスにおける異周速以外の要因に
よるκP2 * を算出する。
Κ Q2 * = κ Q1 * (3.1) Derivation of Warpage Curvature κ T2 * Caused by Temperature Difference By measuring the vertical temperatures t T 2 and t B 2 of the rolled material, the above equation (2) is obtained. From 2), κ T2 * can be predicted. κ T2 * = fb (Δt 2 , Γ 2) in accordance with ... (3.2) wherein the warp curvature kappa P2 * calculated following the path, calculates the kappa P2 * due to factors other than differential speed in the path.

【0035】 κP2 * =κQ2 * +κT2 * …(3.3) (4)当該パスのロール速度設定値の算出 先端圧延中に確保すべき異周速率χ2 の算出 当該パスで発生すると予測されるκP2 * の反りを解消す
るために必要な異周速率χ2 は、当該パスにおける形状
比Γ2 とκP2 * により、式(4.1)から求めることが
できる。式(4.1)は、式(2.1)を変形するだけ
で容易に求めることができる。
Κ P2 * = κ Q2 * + κ T2 * (3.3) (4) Calculation of Roll Speed Setting Value of the Passes Calculation of Different Peripheral Speed Rate χ 2 to be Secured During Tip Rolling differential speed ratio chi 2 required for eliminating the expected kappa P2 * warpage, the shape ratio of the path gamma 2 and kappa P2 *, can be calculated from equation (4.1). Equation (4.1) can be easily obtained by simply modifying equation (2.1).

【0036】 χ2 =fc(κP2 * ,Γ2 )(%) …(4.1) χ2 が求まれば、式(2.1)を逆算することにより当
該パスにおいて、先端圧延中に確保すべきVT R2,VB
R2が求まる。 上記のロール速度を得るのに必要な上下ロール設定
速度VT S2,VB S2の算出 上記のVT R2,VB R2は、先端圧延時に確保すべきロー
ル速度である。したがって、速度制御性の高い圧延機で
あれば、VT S2=VT R2、VB S2=VB R2とすれば良い
が、速度制御性が不十分な圧延機の場合には、VT R2
B R2を確保するためのロール設定速度VT S2,VB S2
を実験などで求めておく。
Χ 2 = fc (κ P2 * , Γ 2 ) (%) (4.1) When χ 2 is obtained, the equation (2.1) is back-calculated to obtain a value during the tip rolling in the pass. V T R2 to be secured, V B
R2 is found. V T R2, V B R2 calculation above said upper and lower required to obtain a roll speed roll set speed V T S2, V B S2 is a roll speed to be secured at the tip rolling. Therefore, if the speed control highly mill, in the case of V T S2 = V T R2, V B S2 = may be the V B R2, but the speed controllability is poor mill, V T R2 ,
Roll set speed V T S2 for ensuring V B R2, V B S2
Is obtained through experiments.

【0037】このようにして求めたロール速度を設定し
て当該パス(Γ2 )を行うことにより反りを制御するこ
とができる。ところで、図3(b)はΔt=0、ΔV=
0とした場合の実験により形状比Γと反り曲率κ* との
関係をΔμに関して、また図3(c)はΔμ=0および
ΔV=0とした場合の実験により形状比Γと反り曲率κ
* との関係をΔtに関して、それぞれ示したものであ
る。これらの関係から異周速及び上下温度差以外の要
因、すなわちΔμ起因の反り曲率は、図3(b)に示す
ようにΓの影響を受けることが分かる。
The warpage can be controlled by setting the roll speed thus obtained and performing the pass (パ ス2 ). By the way, FIG. 3B shows Δt = 0, ΔV =
The relationship between the shape ratio Γ and the warpage curvature κ * is shown in relation to Δμ by an experiment when it is set to 0, and FIG. 3C shows the relationship between the shape ratio Γ and the warpage curvature κ by an experiment when Δμ = 0 and ΔV = 0.
The relationship with * is shown with respect to Δt. From these relationships, it can be seen that factors other than the different peripheral speed and the vertical temperature difference, that is, the warpage curvature caused by Δμ are affected by Γ as shown in FIG.

【0038】上記(3)式においては、当該パスに継続
される反り曲率κQ2 * は、(3.1)式のようにκQ1 *
に相当するとしている。これは、通常の圧延においては
パス毎のΓの変動幅は小さく、図3(b)からも分かる
ように、Γの変化に対するΔμ起因の反り曲率の変化は
小さいので(3)式で仮定したように上述の(3.1)
式のκQ2 * =κQ1 * として周速を設定すればよいが、パ
ス毎にΓが大きく変わる場合などはΔμに起因する反り
曲率とΓの関係を考慮する方法を以下に説明する。
In the above equation (3), the warpage curvature κ Q2 * continued on the path is κ Q1 * as shown in the equation (3.1) .
It is said to be equivalent to. This is assumed in the equation (3) because, in normal rolling, the variation width of Γ for each pass is small, and as can be seen from FIG. 3 (b), the change in the curvature caused by Δμ with respect to the change in 小 さ い is small. As described above (3.1)
The peripheral speed may be set as κ Q2 * = κ Q1 * in the equation. However, in the case where 大 き く greatly changes for each pass, a method of considering the relationship between the warpage curvature due to Δμ and Γ will be described below.

【0039】すなわち、上記(3)式において、(3.
1)式で想定したκQ2 * を式(5)により想定すること
が好ましい。 κQ2 * =δ・κQ1 * …(5) δは、式(6)で示されるように、Δμが一定である時
の、形状比がΓ2 の場合に発生する反り曲率qと形状比
がΓ1 の場合に発生する反り曲率qとの比である。
That is, in the above equation (3), (3.
It is preferable to estimate κ Q2 * assumed in the expression (1) by the expression (5). κ Q2 * = δ · κ Q1 * ... (5) δ , as shown in equation (6), when Δμ is constant, warp curvature q and shape ratio shape ratio occurs when the gamma 2 There is the ratio of the warp curvature q that occurs when the gamma 1.

【0040】 δ=q(Γ2 ) /q(Γ1 ) …(6) ここで、Γ1 は前パスの形状比、Γ2 は当該パスの形状
比。q(Γ)の具体的な求め方は、一例として、図3
(b)の任意の曲線、例えばΔμ=0.10の場合の曲
線から読みとっても良いし、これを数式化した式から求
めればよい。
Δ = q (Γ 2 ) / q (Γ 1 ) (6) where Γ 1 is the shape ratio of the previous path, and Γ 2 is the shape ratio of the path. The specific method of obtaining q (求 め) is shown in FIG.
It may be read from an arbitrary curve of (b), for example, a curve in the case of Δμ = 0.10, or it may be obtained from a mathematical expression.

【0041】[0041]

【数1】 (Equation 1)

【0042】なお、図3(b)から分かるように、q
(Γ)自体は、Δμによって異なるので、厳密には、各
Δμに応じた曲線の近似式を用いるべきである。しかし
ながら、図3(b)から分かるように、下記で表示する
ことが可能である。
As can be seen from FIG.
(Γ) itself varies depending on Δμ, so strictly speaking, an approximate expression of a curve corresponding to each Δμ should be used. However, as can be seen from FIG. 3 (b), it is possible to display:

【0043】[0043]

【数2】 (Equation 2)

【0044】また、最終的に必要なのは、q(Γ)自体
では無く、q(Γ2 ) /q(Γ1 ) なので、式(8)よ
り、
Also, what is ultimately needed is not q (Γ) itself, but q (Γ 2 ) / q (Γ 1 ).

【0045】[0045]

【数3】 (Equation 3)

【0046】となる。したがって、式(7)を用いれば
良いことになる。なお、δは簡易的に、前パスと当該パ
スにおける形状比Γ1 ,Γ2 とその時の異周速および上
下面温度差以外の要因による反り曲率κM1−κV1
κT1,κM2−κV2−κT2を実生産で測定し、学習するこ
とにより求めても良い。また、上記のδに関しては、Δ
μのみを考慮し、入射角αの影響を考慮していないが、
αに関しては、下記に示すように実生産の条件では、反
りに影響を殆ど及ぼさないので、特に考慮する必要は無
い。
Is as follows. Therefore, it suffices to use equation (7). Note that δ is simply the warpage curvature κ M1 −κ V1 − due to factors other than the shape ratios Γ 1 , Γ 2 of the previous pass and the relevant pass and the different peripheral speeds and the temperature difference between the upper and lower surfaces at that time.
κ T1 , κ M2 −κ V2 −κ T2 may be determined by measuring and learning in actual production. For the above δ, Δ
Considering only μ and not considering the effect of the incident angle α,
Regarding α, there is almost no influence on warpage under the conditions of actual production, as described below, so there is no need to particularly consider it.

【0047】 −1°<α<1°の範囲ではαを変化
させても、図3(a)の曲線は全く変化が無く、この範
囲ではαは反りに全く影響を及ぼさない。 通常の圧延条件では、パスラインを調整しなくて
も、板の寸法上、αが1°以上になることは、殆どあり
得ない。 特に、本発明では、前パスと当該パスの板入射角の
変化量Δαによる反り量の変化が最も重要であるが、実
際のΔαの値は非常に小さい(例えば、ロール半径50
0mm、板長さ1000mmの場合、N−2パス目で130
mmから110mmまで圧延し、Nパス目で50mmから30
mmまで圧延するという、非常に極端な条件(Γ1 =0.
83、Γ2 =2.49)の場合でさえも、両者の板入射
角の差Δαは、パスラインを調整せずに一定としても、
わずかΔα=0.1°程度である)。
In the range of -1 ° <α <1 °, even if α is changed, the curve in FIG. 3A has no change, and α has no influence on the warpage in this range. Under normal rolling conditions, even if the pass line is not adjusted, it is almost impossible that α becomes 1 ° or more due to the dimensions of the plate. Particularly, in the present invention, the change in the amount of warpage due to the change amount Δα of the incident angle of the plate between the previous pass and the pass is most important, but the actual value of Δα is very small (for example, the roll radius 50
In the case of 0 mm and a board length of 1000 mm, it is 130 at the N-2th pass.
Rolled from mm to 110mm, N-passed from 50mm to 30mm
mm, very extreme conditions (Γ 1 = 0.
83, Γ 2 = 2.49), even if the difference Δα between the plate incident angles is constant without adjusting the pass line,
Only Δα = about 0.1 °).

【0048】以上は、全て、リバース圧延を例に説明し
てきたが、板先端部が圧延されている場合に測定および
制御を行えば、複数のシングルスタンドの圧延機で一方
向のみに圧下して圧延する場合やタンデム圧延機で圧延
する場合にも、本発明を用いることが可能である。この
場合には、当該パスをNパス目とすると前パスはN−1
目となる。また、上述の説明においては、制御手段とし
て異周速圧延を用いたが、上下材料温度差および上
下摩擦係数差を強制的に付与することによっても反りを
制御することができる。以下にその方法を示す。 〔上下材料温度差による制御〕表3に、前パス(添え字
1 )での圧延データを測定して、当該パスで(添え
2 )で材料温度差によって反り制御を実施し、さら
に、当該パスで圧延データを測定し、次パス(添え
3 )の反りを予測・制御するまでを示す。
The above description is based on reverse rolling as an example.
Has been measured, but the measurement and
With control, one single stand rolling mill
When rolling down only in the direction or rolling with a tandem rolling mill
In this case, the present invention can be used. this
In this case, if the path is the N-th path, the previous path is N-1.
It will be an eye. In the above description, the control means
Although different peripheral speed rolling was used,
Warping can also be achieved by forcibly applying a lower friction coefficient difference.
Can be controlled. The method is described below. [Control by upper and lower material temperature difference] Table 3 shows the previous pass (subscript
1) Is measured in the rolling data,
Character Two), The warpage is controlled by the material temperature difference.
In the next pass, measure the rolling data in the
CharacterThree) Is shown until the warpage is predicted and controlled.

【表3】 (1)前パスの板先端部の圧延データ測定 前述の異周速圧延での制御の場合と同様、先端圧延時の
反り曲率κM1 * 、異周速率χ1 、圧延材の上下面温度t
T 1 ,tB 1 を測定する。 発生反りの曲率 κM1 * 圧延時の異周速率 χ1 圧延材の上下面温度 tT 1 ,tB 1 (2)前パスの反りの分析 前述の異周速圧延での制御の場合と全く同様に、式(1
0.1),(10.2),(10.3)から、κV1 *
κT1 * ,κQ1 * を求める。 異周速圧延起因の反り曲率κV1 * の導出 κV1 * =fa(χ1 ,Γ1 ) …(10.1) 温度差起因の反り曲率κT1 * の導出 κT1 * =fb(Δt1 ,Γ1 ) …(10.2) 異周速および上下面温度差以外の要因による反り曲率
κQ1 * κQ1 * =κM1 * −κV1 * −κT1 * …(10.3) (3)当該パスで発生する反り曲率κP2 * の予測 この場合も、異周速圧延での制御の場合と全く同様に、
式(10.4),(10.5),(10.6)から、κ
Q2 * ,κT2 * ,κP2 * を求める。なお、この場合も式
(5)の場合と同様、(10.4)’の方が好ましい。 異周速および上下面温度差以外の要因による反り曲率
κQ2 * κQ2 * =κQ1 * …(10.4) κQ2 * =δ・κQ1 * …(10.4)’ 温度差起因の反り曲率κT2 * の導出(tT 2 ,tB 2
の測定) κT2 * =fb(Δt2 ,Γ2 ) …(10.5) 当該パスの異周速以外の要因による反り曲率κP2 *
算出 κP2 * =κQ2 * +κT2 * …(10.6) (4)当該パスでの反り制御 付与すべき上下材料温度差ΔtC 2 の計算 当該パスで発生する反り曲率はκP2 * となることから、
κP2 * を解消するために付与すべきΔtC 2 を式(1
0.7)から求める。式(10.7)は、式(10.
5)を逆算することにより、容易に求まる。 ΔtC 2 =fe(κP2 * ,Γ2 ) …(10.7) ΔtC 2 の付与 上記で求めたΔtC 2 を圧延中の材料に付与する。方法
としては、圧延前の素材の上面あるいは下面を冷却ある
いは加熱すれば良く、冷却には水冷装置等、加熱にはヒ
ーター等を用いれば良い。必要なΔtC 2 を得るための
冷却能力等の調整(例えば、冷却水の流量)は、予め、
有限要素法等による計算や実験で求めておけば良い。 (5)当該パスの板先端部の圧延データ測定 次パスの反り曲率を予測するために、下記の測定を行
う。 発生反りの曲率 κM2 * 先端圧延時の異周速率 χ2 (tT 2 ,tB 2 は上記で測定済み) (6)当該パスの反りの分析 式(10.8),(10.9),(10.10)から、
当該パスで発生した異周速および上下面温度差以外の要
因による反り曲率κQ'2 * を算出する。(’を付けて、
当該パスで発生すると予測される異周速および上下面温
度差以外の要因による反り曲率κQ2 * と区別した。)な
お、式(10.9)における、温度差付与後の上下材料
温度差Δt2 +ΔtC 2 値は、冷却後の上下面温度を直
接測定して求めても良い。 異周速圧延起因の反り曲率κV2 * の導出 κV2 * =fa(χ2 ,Γ2 ) …(10.8) 温度差付与後の上下材料温度差起因の反り曲率κC T2
* の導出 κC T2 * =fb(Δt2 +ΔtC 2 ,Γ2 ) …(10.9) 異周速および上下面温度差以外の要因による反り曲率
κQ'2 * の算出 κQ'2 * =κM2 * −κV2 * −κC T2 * …(10.10) (7)次パスで発生する反り曲率κP3 * の予測 式(10.11),(10.12),(10.13)か
ら、次パスで発生する反り曲率κP3 * を求める。なお、
式(7)で示したように、κQ3 * は、式(10.1
1)’で予測する方が好ましい。さらに、ΔtC 2 の付
与による板厚方向の温度分布は、通常の温度差の場合と
異なることも考えられるので、κP3 * に関しても、(1
0.13)’で求める方が好ましい。ここで、ηは学
習、実験あるいは計算で求めた補正係数である。 異周速および上下面温度差以外の要因による反り曲率
κQ3 * κQ3 * =κQ'2 * …(10.11) κQ3 * =δ・κQ'2 * …(10.11)’ 温度差起因の反り曲率κT2 * の導出(tT 3 ,tB 3
の測定) κT3 * =fb(Δt3 ,Γ3 ) …(10.12) 次パスの異周速以外の要因による反り曲率κP3 * の算
出 κP3 * =κQ3 * +κT3 * …(10.13) κP3 * =κQ3 * +η・κT3 * …(10.13)’ (8)次パスの反り制御(κP3 * を解消する制御) 式(10.13)で次パスで発生する反り曲率κP3 *
予測できることから、κP3 * を解消するためには、下記
のいずれかの方法で、再度反りを制御すれば良い。な
お、上下摩擦係数差による反り制御に関しては、後述す
る。 異周速圧延による反り制御 上下材料温度差による反り制御 上下摩擦係数差による反り制御(後述) 〔上下摩擦係数差による制御〕表4に、前パス(添え字
1 )での圧延データを測定して、当該パスで(添え
2 )で摩擦係数差によって反り制御を実施し、さら
に、当該パスで圧延データを測定し、次パス(添え
3 )の反りを予測・制御するまでを示す。
[Table 3](1) Rolling data measurement of the front end of the plate in the previous pass As in the case of the control at the different peripheral speed rolling described above, the rolling data at the front end rolling is used.
Warp curvature κM1 *, Different peripheral speedχ1, The upper and lower surface temperature t of the rolled material
T 1, TB 1Is measured. Curvature of generated warpage κM1 * Different peripheral speed rate during rolling χ1 Upper and lower surface temperature of rolled material tT 1, TB 1 (2) Analysis of Warpage of Previous Pass Just like the control in the above-mentioned different peripheral speed rolling, the equation (1) is used.
0.1), (10.2), (10.3), κV1 *,
κT1 *, ΚQ1 *Ask for. Warpage curvature κ caused by different peripheral speed rollingV1 *Derivation κV1 *= Fa (χ1, Γ1) ... (10.1) Warp curvature κ caused by temperature differenceT1 *Derivation κT1 *= Fb (Δt1, Γ1…… (10.2) Warpage curvature due to factors other than different peripheral speeds and temperature difference between upper and lower surfaces
κQ1 * κQ1 *= ΚM1 *−κV1 *−κT1 * ... (10.3) (3) Warp curvature κ generated in the pathP2 *In this case, too, just as in the case of control with different peripheral speed rolling,
From equations (10.4), (10.5), and (10.6), κ
Q2 *, ΚT2 *, ΚP2 *Ask for. In this case, the expression
As in the case of (5), (10.4) 'is more preferable. Warpage curvature due to factors other than different peripheral speeds and upper and lower surface temperature differences
κQ2 * κQ2 *= ΚQ1 * … (10.4) κQ2 *= Δ · κQ1 * ... (10.4) 'Warp curvature κ caused by temperature differenceT2 *(TT Two, TB Two
Measurement) κT2 *= Fb (ΔtTwo, ΓTwo) (10.5) Warpage curvature κ due to factors other than the different peripheral speed of the pathP2 *of
Calculation κP2 *= ΚQ2 *+ ΚT2 * ... (10.6) (4) Warpage control in the relevant path Temperature difference Δt between upper and lower materials to be givenC TwoThe curvature generated in the path is κP2 *From
κP2 *Δt to be given in order to eliminateC TwoTo the formula (1
0.7). Equation (10.7) is calculated by using equation (10.
It can be easily obtained by back calculation of 5). ΔtC Two= Fe (κP2 *, ΓTwo) (10.7) ΔtC TwoΔt determined aboveC TwoTo the material being rolled. Method
The upper or lower surface of the material before rolling is cooled
Or by heating, cooling with a water cooling device, etc.
It is only necessary to use a heater or the like. Required ΔtC TwoTo get
Adjustment of cooling capacity etc. (for example, cooling water flow rate)
What is necessary is just to obtain | require by calculation by a finite element method etc. or experiment. (5) Measurement of rolling data at the end of the plate in the relevant pass In order to predict the curvature of the next pass, the following measurements were performed.
U. Curvature of generated warpage κM2 * Different peripheral speed rate during tip rolling χTwo (TT Two, TB Two(6) Analysis of the warpage of the path From equations (10.8), (10.9) and (10.10),
Other than the different peripheral speed and temperature difference between the upper and lower surfaces
Curvature κQ'2 *Is calculated. (With '
Different peripheral speed and upper and lower surface temperatures expected to occur in this pass
Warpage curvature κ due to factors other than differenceQ2 *And distinguished. )
In addition, the upper and lower materials after the application of the temperature difference in the equation (10.9)
Temperature difference ΔtTwo+ ΔtC TwoThe value is the upper and lower surface temperature after cooling.
It may be determined by direct measurement. Warpage curvature κ caused by different peripheral speed rollingV2 *Derivation κV2 *= Fa (χTwo, ΓTwo) ... (10.8) Warpage curvature κ caused by temperature difference between upper and lower materials after applying temperature differenceC T2
*Derivation κC T2 *= Fb (ΔtTwo+ ΔtC Two, ΓTwo…… (10.9) Warpage curvature due to factors other than different peripheral speeds and temperature difference between upper and lower surfaces
κQ'2 *Calculation κQ'2 *= ΚM2 *−κV2 *−κC T2 * ... (10.10) (7) Warp curvature κ generated in the next passP3 *Equations (10.11), (10.12), (10.13)
From the next pass, the curvature κP3 *Ask for. In addition,
As shown in equation (7), κQ3 *Is given by the equation (10.1
1) 'is more preferable. Further, ΔtC TwoAttached
The temperature distribution in the sheet thickness direction by applying
It can be different, so κP3 *As for (1)
0.13) '. Where η is
It is a correction coefficient obtained by learning, experiment, or calculation. Warpage curvature due to factors other than different peripheral speeds and upper and lower surface temperature differences
κQ3 * κQ3 *= ΚQ'2 * ... (10.11) κQ3 *= Δ · κQ'2 * ... (10.11) 'Warp curvature κ caused by temperature differenceT2 *(TT Three, TB Three
Measurement) κT3 *= Fb (ΔtThree, ΓThree) (10.12) Warpage curvature κ due to factors other than the different peripheral speed of the next passP3 *Calculation
Out κP3 *= ΚQ3 *+ ΚT3 * ... (10.13) κP3 *= ΚQ3 *+ Η ・ κT3 * ... (10.13) '(8) Warpage control of next path (κP3 *The curvature κ generated in the next pass in equation (10.13)P3 *But
From what can be predicted, κP3 *In order to eliminate
The warpage may be controlled again by one of the methods described above. What
The warpage control based on the difference between the upper and lower friction coefficients will be described later.
You. Warpage control by different peripheral speed rolling Warpage control by upper and lower material temperature difference Warpage control by upper and lower friction coefficient difference (described later) [Control by upper and lower friction coefficient difference]
1) Is measured in the rolling data,
Character Two), Warpage control is performed based on the friction coefficient difference.
In the next pass, measure the rolling data in the
CharacterThree) Is shown until the warpage is predicted and controlled.

【表4】 (1)前パスの板先端部の圧延データ測定 前述の異周速圧延での制御の場合と同様、先端圧延時の
反り曲率κM1 * 、異周速率χ1 、圧延材の上下面温度t
T 1 ,tB 1 を測定する。 発生反りの曲率 κM1 * 圧延時の異周速率 χ1 圧延材の上下面温度 tT 1 ,tB 1 (2)前パスの反りの分析 前述の異周速圧延での制御の場合と全く同様に、式(1
1.1),(11.2),(11.3)から、κV1 *
κT1 * ,κQ1 * を求める。 異周速圧延起因の反り曲率κV1 * の導出 κV1 * =fa(χ1 ,Γ1 ) …(11.1) 温度差起因の反り曲率κT1 * の導出 κT1 * =fb(Δt1 ,Γ1 ) …(11.2) 異周速および上下面温度差以外の要因による反り曲率
κQ1 * κQ1 * =κM1 * −κV1 * −κT1 * …(11.3) (3)当該パス発生する反り曲率κP2 * の予測 この場合も、異周速圧延での制御の場合と全く同様に、
式(11.4),(11.5),(11.6)から、κ
Q2 * ,κT2 * ,κP2 * を求める。なお、この場合も式
(5)の場合と同様、κQ2 * は、式(11.4)’で求
める方が好ましい。 異周速および上下面温度差以外の要因による反り曲率
κQ2 * κQ2 * =κQ1 * …(11.4) κQ2 * =δ・κQ1 * …(11.4)’ 温度差起因の反り曲率κT2 * の導出(tT 2 ,tB 2
の測定) κT2 * =fb(Δt2 ,Γ2 ) …(11.5) 当該パスの異周速以外の要因による反り曲率κP2 *
算出 κP2 * =κQ2 * +κT2 * …(11.6) (4)当該パスでの反り制御 付与すべき上下摩擦係数差ΔμL 2 の計算 χ=0,Δt=0の条件でのΔμと反り曲率κμ* の関
係から、κP2 * を解消するために付与すべき上下摩擦係
数差ΔμL 2 を求める。Δμとκμ* との関係は例え
ば、あらかじめ、χ=0,Δt=0の条件下で実験ある
いは有限要素法の計算を行い、その結果から回帰曲線、
例えば式(11.7)、あるいはテーブル等をΓに対応
させて作成して、求めておく。なお、板厚、鋼種等の影
響があれば、これらの条件毎に実験又は計算を行って、
その結果を式(11.7)、あるいはテーブル等に考慮
すればよい。図3(b)は、χ=0,Δt=0とした場
合の実験により、形状比Γと反り曲率κμ* との関係を
Δμに関して示したものである。 ΔμL 2 =fg(κP2 * ,Γ2 ) …(11.7) ΔμL 2 の付与 上記で求めたΔμL 2 を付与する。方法の一例として
は、上面あるいは下面を潤滑すれば良い。必要なΔμL
2 を得るための潤滑の調整(例えば、潤滑油の流量等)
は、予め、有限要素法等による計算や実験で求めておけ
ば良い。 (5)当該パスの板先端部の圧延データ測定 発生反りの曲率 κM2 * 先端圧延時の周速率 χ2 ΔμL 2 付与後の上下面温度 tT 2',tB 2' (6)当該パスの反りの分析 上記のχ2 および式(11.8)から異周速圧延起因の
反り曲率κV2 * を求め、さらにΔt2'=tT 2'−tB 2'
および式(11.9)から上下材料温度差起因の反り曲
率κT2 * を求める。式(11.10)において、κL2 *
は反り制御で付与したΔμL 2 起因の反り曲率を表す。
ΔμL 2 は上下の潤滑の差で付与されるのが一般的なの
で、その場合には次パスまでに潤滑油は冷却水で流され
てしまい、次パスの圧延までには、ΔμL 2 ≒0になる
と考えられる。したがって、次パスに継続する反り曲率
κQ'2 * は、式(11.10)で示されることになる。
ただし、ΔμL 2 の影響が残存する場合もあるので、そ
の場合は式(11.11)に示すように、ΔμL 2 の影
響を考慮すればよい。γは、補正係数であるが、学習で
求めても良いし、実験あるいは有限要素法等による計算
で求めても良い。 異周速圧延起因の反り曲率κV2 * の導出 κV2 * =fa(χ2 ,Γ2 ) …(11.8) 上下材料温度差起因の反り曲率κT2 * の導出 κT2' * =fb(Δt2',Γ2 ) …(11.9) 異周速および上下面温度差以外の要因による反り曲率
κQ'2 * の算出 κQ'2 * =κM2 * −κV2 * −κT2' * −κL2 * …(11.10) κQ'2 * =κM2 * −κV2 * −κT2' * −γ・κL2 * …(11.11) ここで、κL2 * は反り制御で付与したΔμL 2 起因の反
り曲率、γは補正係数 (7)次パスで発生する反り曲率κP3 * の予測 式(11.12),(11.13),(11.14)か
ら、次パスで発生する反り曲率κP3 * を求める。なお、
式(7)で示したように、κQ3 * は、式(11.1
2)’で予測する方が好ましい。 異周速および上下面温度差以外の要因による反り曲率
κQ3 * の算出 κQ3 * =κQ'2 * …(11.12) κQ3 * =δ・κQ'2 * …(11.12)’ 温度差起因の反り曲率κT2 * の導出(tT 3 ,tB 3
の測定) κT3 * =fb(Δt3 ,Γ3 ) …(11.13) 次パスで発生する反り曲率κP3 * の算出 κP3 * =κQ3 * +κT3 * …(11.14) (8)次パスの反り制御(κP3 * を解消する制御) 式(11.14)で次パスで発生する反り曲率κP3 *
予測できることから、κP3 * を解消するためには、下記
のいずれかの方法で、再度反りを制御すれば良い。 異周速圧延による反り制御 上下材料温度差による反り制御 上下摩擦係数差による反り制御
[Table 4] (1) Rolling data measurement at the front end of the plate in the previous pass As in the case of the above-mentioned control at the different peripheral speed rolling, the warpage curvature κ M1 * at the front end rolling, the different peripheral speed ratio χ 1 , the upper and lower surface temperatures t of the rolled material t
Measure T 1 and t B 1 . Curvature of generated warpage κ M1 * Different peripheral speed rate during rolling χ 1 Upper and lower surface temperature of rolled material t T 1 , t B 1 (2) Analysis of warpage of previous pass Completely same as control at the above-mentioned different peripheral speed rolling Similarly, equation (1)
1.1), (11.2) and (11.3), κ V1 * ,
Find κ T1 * , κ Q1 * . Derivation of warpage curvature κ V1 * caused by different peripheral speed rolling κ V1 * = fa (χ 1 , Γ 1 ) (11.1) Derivation of warpage curvature κ T1 * caused by temperature difference κ T1 * = fb (Δt 1 , Γ 1 ) ... (11.2) Warpage curvature κ Q1 * κ Q1 * = κ M1 *V1 *T1 * … (11.3) (3) ) Prediction of the warpage curvature κ P2 * in which the path occurs In this case as well, in the same way as in the case of control at different peripheral speed rolling,
From equations (11.4), (11.5) and (11.6), κ
Q2 *, κ T2 *, determine the κ P2 *. Note that, in this case as well, as in the case of the equation (5), it is preferable to obtain κ Q2 * by the equation (11.4) ′. Warp curvature κ Q2 * κ Q2 * = κ Q1 * ... (11.4) κ Q2 * = δ · κ Q1 * ... (11.4) 'due to temperature difference Derivation of the warpage curvature κ T2 * (t T 2 , t B 2
Κ T2 * = fb (Δt 2 , Γ 2 ) (11.5) Calculation of warpage curvature κ P2 * due to factors other than the different peripheral speed of the path κ P2 * = κ Q2 * + κ T2 * ( 11.6) (4) calculated chi = 0 of the upper and lower coefficient of friction difference [Delta] [mu L 2 should warpage control granted in the path, from [Delta] [mu and warp curvature Kappamyu * relationship in terms of Delta] t = 0, the kappa P2 * A difference Δμ L 2 between the upper and lower friction coefficients to be given to eliminate the difference is obtained. The relationship between Δμ and κμ * can be determined, for example, by performing an experiment or calculation by the finite element method in advance under the conditions of χ = 0 and Δt = 0,
For example, formula (11.7) or a table or the like is created and determined in association with Γ. In addition, if there is an effect of sheet thickness, steel type, etc., conduct experiments or calculations for each of these conditions,
The result may be considered in equation (11.7), a table, or the like. FIG. 3B shows the relationship between the shape ratio Γ and the curvature κμ * with respect to Δμ by an experiment in which χ = 0 and Δt = 0. Δμ L 2 = fg (κ P2 *, Γ 2) ... (11.7) to give the Δμ Δμ L 2 obtained in the given above of L 2. As an example of the method, the upper surface or the lower surface may be lubricated. Required Δμ L
Adjustment of lubrication to obtain 2 (for example, lubricating oil flow rate)
May be obtained in advance by calculation using a finite element method or the like or by experiment. (5) Rolling data measurement at the end of the plate in the relevant pass Curvature of generated warpage κ M2 * Peripheral velocity during tip rolling χ 2 Δμ L 2 Upper and lower surface temperatures t T 2 ', t B 2 ' (6) path search of warp curvature kappa V2 * analysis above chi 2 and formula of warpage (11.8) of the differential speed rolling caused a further Δt 2 '= t T 2' -t B 2 '
From Equation (11.9), the warpage curvature κ T2 * resulting from the temperature difference between the upper and lower materials is obtained. In equation (11.10), κ L2 *
Represents the warpage curvature caused by Δμ L 2 given by the warpage control.
Since Δμ L 2 is generally given by the difference between the upper and lower lubrication, in that case, the lubricating oil is flowed by the cooling water by the next pass, and Δμ L 2 ≒ It is considered to be 0. Therefore, the warpage curvature κ Q′2 * that continues in the next pass is represented by Expression (11.10).
However, since the effect of Δμ L 2 may remain, in such a case, the effect of Δμ L 2 may be considered as shown in Expression (11.11). Although γ is a correction coefficient, it may be obtained by learning, or may be obtained by experiment, calculation by the finite element method, or the like. Derivation of warpage curvature κ V2 * caused by different peripheral speed rolling κ V2 * = fa (χ 2 , Γ 2 ) (11.8) Derivation of warpage curvature κ T2 * caused by temperature difference between upper and lower materials κ T2 ' * = fb (Δt 2 ′, Γ 2 )… (11.9) Calculation of warpage curvature κ Q′2 * due to factors other than different peripheral speeds and upper and lower surface temperature differences κ Q′2 * = κ M2 * −κ V2 * −κ T2 '* -κ L2 * ... ( 11.10) κ Q'2 * = κ M2 * -κ V2 * -κ T2' * -γ · κ L2 * ... (11.11) here, κ L2 * is warp curvature of the [Delta] [mu L 2 due imparted by the warp control, gamma correction coefficient (7) warp curvature kappa P3 * of prediction expression which occurs in the next pass (11.12), (11.13), (11.14) Then, the curvature κ P3 * generated in the next pass is obtained. In addition,
As shown by the equation (7), κ Q3 * is calculated by the equation (11.1)
2) 'is more preferable. Calculation of the warpage curvature κ Q3 * due to factors other than the different peripheral speeds and the temperature difference between the upper and lower surfaces κ Q3 * = κ Q'2 * ... (11.12) κ Q3 * = δ · κ Q'2 * ... (11.12) ) 'Derivation of warpage curvature κ T2 * due to temperature difference (t T 3 , t B 3
Κ T3 * = fb (Δt 3 , Γ 3 ) (11.13) Calculation of warpage curvature κ P3 * generated in the next pass κ P3 * = κ Q3 * + κ T3 * (11.14) ( 8) Warp Control of Next Path (Control to Eliminate κ P3 * ) Since the curvature κ P3 * generated in the next path can be predicted by equation (11.14), to eliminate κ P3 * , The warpage may be controlled again by one of the methods. Warpage control by different peripheral speed rolling Warpage control by upper and lower material temperature difference Warpage control by upper and lower friction coefficient difference

【0049】[0049]

【実施例】【Example】

〔実施例1〕ワークロール径1000mmの圧延機を用い
て、板厚100mm、板幅1760mmのスラブを板厚55
mmまで、表5に示したパススケジュールでリバース圧延
した。
Example 1 A slab having a thickness of 100 mm and a width of 1760 mm was cut into a slab having a thickness of 55 mm using a rolling mill having a work roll diameter of 1000 mm.
mm was reverse-rolled according to the pass schedule shown in Table 5.

【0050】[0050]

【表5】 [Table 5]

【0051】表6に実施例と比較例を示す。本発明の実
施例では、まず、前パス(1パス目)での圧延時の先端
部の反り曲率半径、ロール周速度、圧延材の上下面温度
を測定した結果、先端部の反り曲率はκM1 * =−0.3
33であり、先端部の異周速率はχ1 =4.0%であ
り、先端部の温度差Δt1 =42℃が得られた。このχ
1 およびΔt1 に起因する前パスにおける反り曲率κV1
* ,κT1 * をあらかじめ実験で求めておいた回帰式より
算出したところ、κV1 * =−0.142、κT1 *=−
0.088であった。次に、当該パスにおける異周速お
よび温度差以外の要因による反り曲率κQ2 * =κQ1 *
κQ1 * =κM1 * −κV1 * −κT1 * =−0.333−(−
0.142)−(−0.088)=−0.103を求め
た。さらに、当該パスでの圧延材の上下面温度を測定し
た結果、先端部の温度差Δt2 =24℃が得られた。こ
のΔt2 に起因する前パスにおける反り曲率κT2 * をあ
らかじめ実験で求めておいた回帰式より算出したとこ
ろ、κT2 * =−0.051であった。この結果を基に、
当該パスにおける異周速以外の要因によるκP2 * をκP2
*=κQ2 * +κT2 * =−0.103−0.051=−
0.154が求まり、これを解消する異周速率χ2 =−
4.2%を、前述の回帰式より求め、当該パス(3パス
目)で付与した。その結果、殆ど反りの無い板を圧延す
ることができた。
Table 6 shows Examples and Comparative Examples. The present invention
In the example, first, the tip at the time of rolling in the previous pass (first pass)
Radius of curvature, roll peripheral speed, upper and lower surface temperature of rolled material
As a result, the curvature of the tip is κM1 *= -0.3
33 and the peripheral speed ratio at the tip is χ1 = 4.0%
Temperature difference Δt at the tip1 = 42 ° C. This χ
1 And Δt1 Curvature κ in the previous pass due toV1
*, ΚT1 *From the regression equation determined in advance by experiments
When calculated, κV1 *= −0.142, κT1 *= −
0.088. Next, the different peripheral speed and
Curvature κ due to factors other than temperature and temperature difference κQ2 *= ΚQ1 *=
κQ1 *= ΚM1 *−κV1 *−κT1 *= −0.333 − (−
0.142)-(-0.088) = -0.103
Was. Further, the upper and lower surface temperatures of the rolled material in the pass are measured.
As a result, the temperature difference ΔtTwo = 24 ° C. This
ΔtTwo Curvature κ in the previous pass due toT2 *Oh
Calculated from the regression equation previously determined in the experiment
ΚT2 *= -0.051. Based on this result,
Κ due to factors other than the different peripheral speed in the pathP2 *To κP2
*= ΚQ2 *+ ΚT2 *= -0.103-0.051 =-
0.154 is obtained, and the different peripheral speed ratio す る for solving this is obtained.Two = −
4.2% is calculated from the above regression equation,
Eye). As a result, a plate with almost no warpage is rolled.
I was able to.

【0052】一方、比較例では、前パス(1パス目)で
の先端部の反り曲率κM1 * =−0.333(下反り)を
測定し、その反りが当該パスにも継続するとして(κP2
* =−0.333:下反り)、その反りを解消するχ2
=−9.2%(下高速)を当該パス(3パス目)で付与
した。当該パスでの反り量を過大に評価したので、付与
したχ2 が大きすぎ、大きな上反りが発生した。
On the other hand, in the comparative example, the warpage curvature κ M1 * = − 0.333 (downward warpage) of the front end in the previous pass (first pass) is measured, and it is assumed that the warpage continues in the previous pass ( κ P2
* = -0.333: under warp), χ 2 to eliminate the warp
= -9.2% (lower high speed) was given in the pass (third pass). Having overestimated the amount of warpage in the path, applying the chi 2 is too large, a large cambered occurs.

【0053】[0053]

【表6】 〔実施例2〕上記実施例1においては異周速圧延による
制御の例を示したが、以下に、上下材料温度差および上
下摩擦係数差を強制的に付与することによって反りを制
御する方法に関しての実施例を示す。両者ともに、ワー
クロール径1000mmの圧延機を用いて、板厚100m
m、板幅1760mmのスラブを板厚42mmまで、表7に
示したパススケジュールでリバース圧延した。
[Table 6] [Embodiment 2] In the above-mentioned Embodiment 1, an example of control by different peripheral speed rolling was shown. The following describes a method for controlling warpage by forcibly giving a difference between upper and lower material temperatures and a difference between upper and lower friction coefficients. The following shows an example. In both cases, using a rolling mill with a work roll diameter of 1000 mm, the sheet thickness is 100 m.
A slab having a width of 1760 mm and a width of 1760 mm was reverse-rolled to a thickness of 42 mm according to the pass schedule shown in Table 7.

【表7】 表8に上下材料温度差による制御方法に関しての実施例
を示す。まず、前パス(1パス目)での圧延時の先端部
の反り曲率半径、ロール周速度、圧延材の上下面温度を
測定した結果、先端部の反り曲率はκM1 * =−0.33
3、先端部の異周速率はχ1 =4.0%、先端部の温度
差Δt1 =42℃が得られた。このχ1およびΔt1
起因する前パスにおける反り曲率κV1 * ,κT1 * をあら
かじめ実験で求めておいた回帰式より算出したところ、
κV1 * =−0.142,κT1 * =−0.088となっ
た。次に、当該パス(3パス目)における異周速および
温度差以外の要因による反り曲率κQ2 * =κQ1 * =κM1
* −κV1 * −κT1 * =−0.333−(−0.142)
−(−0.088)=−0.103を求めた。さらに、
当該パスでの圧延材の上下面温度を測定した結果、先端
部の温度差Δt2 =24℃が得られた。このΔt2 に起
因する前パスにおける反り曲率κT2 * をあらかじめ実験
で求めておいた回帰式より算出したところ、κT2 * =−
0.051であった。この結果を基に、当該パスにおけ
る異周速以外の要因による反り曲率、すなわち当該パス
における予測反り曲率κP2 * をκP2 * =κQ2 * +κT2 *
=−0.103−0.051=−0.154で求め、こ
れを解消するために付与すべき上下材料温度差ΔtC 2
=−71℃(上面冷却)を別途算出した回帰式から求め
た。次に、ΔtC 2 =−71℃が付与できる冷却水の条
件(流量、流速、時間等)を回帰式から算出し、当該パ
ス(3パス目)において、その条件での上面冷却を行っ
た上で、同速圧延(χ2 =0%)を実施した。その結
果、殆ど反りの無い板(κM2 * =−0.003)を圧延
することができた。上下面温度差に関しては、上面を冷
却したので、温度差付与後(制御後)の上下材料温度差
は、Δt2 +ΔtC 2 =24+(−71)=−47℃と
なり、この温度差(−47℃)が起因で発生する反り
は、回帰式より、κC T2 * =0.102と計算された。
したがって、当該パス(3パス目)における異周速およ
び上下面温度差以外の要因による反り曲率κQ'2 * を算
出したところ、κQ'2 * =κM2 * −κV2 * −κC T2 *
−0.003−0−0.102=−0.105となっ
た。よって、次パス(5パス目)における、異周速およ
び上下面温度差以外の要因による反り曲率κQ3 * を、κ
Q3 * =κQ'2 * =−0.105で求めた。ここで、次パ
スにおける圧延材の上下面温度を測定した結果、先端部
の温度差Δt3 =−32℃が得られた。Δt3 =−32
℃起因の反りκT3 * を、回帰式より求め、κT3 * =0.
070が得られた。したがって、次パス(5パス目)で
発生する反り曲率κP3 * をκP3 * =κQ3 *+κT3 * =−
0.105+0.070=−0.035と予測し、その
反りを解消する異周速率χ3 =−0.95%を回帰式よ
り求めて、異周速圧延を実施した。その結果、次パス
(5パス目)においても、殆ど反りの無い板(κM3 *
0.001)を圧延することができた。
[Table 7]Table 8 shows examples of the control method based on the temperature difference between the upper and lower materials.
Is shown. First, the tip at the time of rolling in the previous pass (first pass)
Radius of curvature, roll peripheral speed, and upper and lower surface temperature of rolled material
As a result of measurement, the curvature of the tip is κM1 *= -0.33
3. Different peripheral speed ratio at the tip1= 4.0%, tip temperature
Difference Δt1= 42 ° C. This χ1And Δt1To
Curvature κ in the previous pass due toV1 *, ΚT1 *Oh
When calculated from the regression equation obtained in the preliminary experiment,
κV1 *= −0.142, κT1 *= −0.088
Was. Next, the different peripheral speed in the pass (third pass) and
Warpage curvature κ due to factors other than temperature difference κQ2 *= ΚQ1 *= ΚM1
*−κV1 *−κT1 *= -0.333-(-0.142)
− (− 0.088) = − 0.103 was determined. further,
As a result of measuring the upper and lower surface temperatures of the rolled material in the pass,
Temperature difference ΔtTwo= 24 ° C. This ΔtTwoKi
Curvature κ in the previous passT2 *Experiment in advance
Calculated from the regression equation obtained inT2 *= −
0.051. Based on this result,
Curvature due to factors other than the different peripheral speed
Predicted curvature κ inP2 *To κP2 *= ΚQ2 *+ ΚT2 *
= −0.103−0.051 = −0.154
Material temperature difference Δt to be given in order to eliminate thisC Two
= -71 ° C (top surface cooling) is obtained from a separately calculated regression equation.
Was. Next, ΔtC Two= Cooling water strip to which -71 ° C can be applied
Parameters (flow rate, flow velocity, time, etc.) are calculated from the regression equation.
In the third pass, the upper surface is cooled under that condition
And rolled at the same speed (χTwo= 0%). The result
As a result, a board with almost no warpage (κM2 *= -0.003)
We were able to. Regarding the upper and lower surface temperature difference, cool the upper surface
The temperature difference between the upper and lower materials after the temperature difference was applied (after control)
Is ΔtTwo+ ΔtC Two= 24 + (− 71) = − 47 ° C.
And the warpage caused by this temperature difference (-47 ° C)
Is, from the regression equation, κC T2 *= 0.102 was calculated.
Therefore, the different peripheral speed and the
Curvature κ due to factors other than temperature difference between upper and lower surfacesQ'2 *Is calculated
When I put out, κQ'2 *= ΚM2 *−κV2 *−κC T2 *=
−0.003-0−0.102 = −0.105
Was. Therefore, in the next pass (fifth pass),
Curvature κ due to factors other than temperature difference between upper and lower surfacesQ3 *And κ
Q3 *= ΚQ'2 *= -0.105. Here, the next
As a result of measuring the upper and lower surface temperatures of
Temperature difference ΔtThree= -32 ° C was obtained. ΔtThree= -32
Warpage due to ° CT3 *From the regression equation, κT3 *= 0.
070 was obtained. Therefore, in the next pass (fifth pass)
The generated curvature κP3 *To κP3 *= ΚQ3 *+ ΚT3 *= −
0.105 + 0.070 = -0.035
Different peripheral speed ratio to eliminate warpageχThree= -0.95% from the regression equation
Different peripheral speed rolling was carried out. As a result, the next pass
(Fifth pass), a plate with almost no warpage (κM3 *=
0.001) could be rolled.

【表8】 [Table 8]

【表9】 次に、表9に上下摩擦係数差による制御方法に関しての
実施例を示す。まず、前パス(1パス目)での圧延時の
先端部の反り曲率半径、ロール周速度、圧延材の上下面
温度を測定した結果、先端部の反り曲率はκM1 * =−
0.333、先端部の異周速率はχ1 =4.0%、先端
部の温度差Δt1 =42℃が得られた。このχ1 および
Δt1 に起因する前パスにおける反り曲率κV1 * ,κT1
* をあらかじめ実験で求めておいた回帰式より算出した
ところ、κV1 * =−0.142,κ T1 * =−0.088
となった。次に、当該パス(3パス目)における異周速
および温度差以外の要因による反り曲率κQ2 * =κQ1 *
=κM1 * −κV1 * −κT1 * =−0.333−(−0.1
42)−(−0.088)=−0.103を求めた。さ
らに、当該パスでの圧延材の上下面温度を測定した結
果、先端部の温度差Δt 2 =24℃が得られた。このΔ
2 に起因する前パスにおける反り曲率κT2 * をあらか
じめ実験で求めておいた回帰式より算出したところ、κ
T2 * =−0.051であった。この結果を基に、当該パ
スにおける異周速以外の要因による反り曲率、すなわち
当該パスにおける予測反り曲率κP2 * をκP2 * =κQ2 *
+κT2 * =−0.103−0.051=−0.154で
求め、これを解消するために付与すべき上下摩擦係数差
ΔμL 2 =0.071(下面潤滑)を別途算出した回帰
式から求めた。次に、上下摩擦係数差ΔμL 2 =0.0
71が付与できる潤滑の条件(潤滑油の種類、流量、時
間等)を回帰式から算出し、当該パス(3パス目)にお
いて、その条件での潤滑を行った上で、同速圧延(χ2
=0%)を実施した。その結果、殆ど反りの無い板(κ
M2 * =0.002)を圧延することができた。上下面温
度差に関しては、使用した潤滑油の量が少なかったの
で、摩擦係数差付与後(制御後)の上下材料温度差はΔ
2 ' は、制御前と変わらず、Δt2 ' =Δt2 =24
℃であった。したがって、当該パス(3パス目)におけ
る異周速および上下面温度差以外の要因による反り曲率
κQ'2 * を算出したところ、κQ'2 * =κM2 * −κV2 *
−κT2 '*−κL2 * =0.002−0−(−0.051)
−0.154=−0.101となった。よって、次パス
(5パス目)における、異周速および上下面温度差以外
の要因による反り曲率κQ3 * を、κQ3 *=κQ'2 * =−
0.101で求めた。ここで、次パスにおける圧延材の
上下面温度を測定した結果、先端部の温度差Δt3 =1
8℃が得られた。Δt3 =18℃起因の反りκ T3 * を、
回帰式より求め、κT3 * =−0.040が得られた。し
たがって、次パス(5パス目)で発生する反り曲率κP3
* を、κP3 * =κQ3 * +κT3 * =−0.101−0.0
40=−0.141と予測し、その反りを解消する異周
速率χ3=−3.84%を回帰式より求めて、異周速圧
延を実施した。その結果、次パス(5パス目)において
も、殆ど反りの無い板(κM3 * =−0.001)を圧延
することができた。
[Table 9]Next, Table 9 shows the control method based on the difference between the upper and lower friction coefficients.
An example will be described. First, when rolling in the previous pass (first pass)
Tip radius of curvature, roll peripheral speed, upper and lower surfaces of rolled material
As a result of measuring the temperature, the curvature of the tip is κM1 *= −
0.333, Different peripheral speed ratio at tip1= 4.0%, tip
Temperature difference Δt1= 42 ° C. This χ1and
Δt1Curvature κ in the previous pass due toV1 *, ΚT1
*Was calculated from the regression equation determined in advance by experiments.
Where κV1 *= −0.142, κ T1 *= -0.088
It became. Next, the different peripheral speed in the pass (third pass)
Curvature due to factors other than temperature and temperature difference κQ2 *= ΚQ1 *
= ΚM1 *−κV1 *−κT1 *= −0.333 − (− 0.1
42) − (− 0.088) = − 0.103. Sa
Furthermore, the results of measuring the upper and lower surface temperatures of the rolled material in the pass
As a result, the temperature difference Δt at the tip Two= 24 ° C. This Δ
tTwoCurvature κ in the previous pass due toT2 *Clear
When calculated from the regression equation obtained in the first experiment, κ
T2 *= -0.051. Based on this result,
Curvature due to factors other than different peripheral speeds,
Predicted curvature κ for the pathP2 *To κP2 *= ΚQ2 *
+ ΚT2 *= -0.103-0.051 = -0.154
Vertical friction coefficient difference to be obtained and given to eliminate this
ΔμL Two= 0.071 (lower surface lubrication) calculated separately
It was determined from the equation. Next, the vertical friction coefficient difference ΔμL Two= 0.0
Lubrication conditions (type of lubricating oil, flow rate, time
Is calculated from the regression equation, and the path (third pass)
After lubrication under the same conditions,Two
= 0%). As a result, a plate with almost no warpage (κ
M2 *= 0.002). Upper and lower surface temperature
Regarding the degree of difference, the amount of lubricating oil used was small.
The temperature difference between the upper and lower materials after the friction coefficient difference is applied (after control) is Δ
tTwo 'Is the same as before control, ΔtTwo '= ΔtTwo= 24
° C. Therefore, in the pass (third pass)
Curvature due to factors other than different peripheral speeds and upper and lower surface temperature differences
κQ'2 *Is calculated, κQ'2 *= ΚM2 *−κV2 *
−κT2 '*−κL2 *= 0.002-0-(-0.051)
-0.154 = -0.101. Therefore, the next pass
Other than the different peripheral speed and the temperature difference between the upper and lower surfaces in (5th pass)
Curvature κ due to the factor ofQ3 *And κQ3 *= ΚQ'2 *= −
It was determined to be 0.101. Here, the rolled material in the next pass
As a result of measuring the upper and lower surface temperatures, the temperature difference ΔtThree= 1
8 ° C. was obtained. ΔtThree= Warp due to 18 ° C κ T3 *To
Calculated from regression equation, κT3 *= -0.040 was obtained. I
Therefore, the curvature κ generated in the next pass (fifth pass)P3
*And κP3 *= ΚQ3 *+ ΚT3 *= -0.101-0.0
Predicts 40 = -0.141 and eliminates warpage
Speed χThree= −3.84% obtained from the regression equation
Nobu was carried out. As a result, in the next pass (fifth pass)
Also, a board with almost no warpage (κM3 *= -0.001)
We were able to.

【表10】 [Table 10]

【表11】 [Table 11]

【0054】[0054]

【発明の効果】以上のように、この発明によれば、反り
の無い板を容易に製造できることを可能としたので、形
状の優れた板状の金属製品を効率よく生産できる効果が
ある。
As described above, according to the present invention, it is possible to easily manufacture a plate having no warpage, so that a plate-shaped metal product having an excellent shape can be efficiently produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用する圧延機の一例を示す図。FIG. 1 is a diagram showing an example of a rolling mill to which the present invention is applied.

【図2】圧延材下面が高温の場合における、圧延時の反
り発生挙動を示す図。
FIG. 2 is a view showing a warpage generation behavior during rolling when the lower surface of a rolled material is at a high temperature.

【図3】形状比が反り曲率に及ぼす非対称要因と形状比
の影響を示す図。
FIG. 3 is a diagram showing the effect of the asymmetry factor and the shape ratio that the shape ratio has on the curvature of curvature.

【符号の説明】[Explanation of symbols]

1…上ワークロール 2…下ワークロール 3…圧延材 4…ローラーテーブル 5…上バックアップロール 6…下バックアップロール 7…圧延機 Reference Signs List 1 upper work roll 2 lower work roll 3 rolled material 4 roller table 5 upper backup roll 6 lower backup roll 7 rolling mill

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも上下ワークロールを有する圧
延機により板材を圧延する方法において、前パスにおけ
る上下ワークロールの周速度、圧延材の上下面温度およ
び前パスにおける圧延材先端部の反り曲率半径とから、
前パスにおける異周速に起因する反り曲率および前パス
における圧延材の上下面温度差に起因する反り曲率と前
パスにおける異周速および上下面温度差以外の要因によ
る反り曲率を求めると共に、当該パスにおける圧延材の
上下面の温度を測定し、圧延材の上下面の温度差に起因
する当該パスにおける反り曲率を求め、前パスにおける
異周速および上下面の温度差以外の要因による反り曲率
と、当該パスにおける圧延材の上下面の温度差に起因す
る反り曲率とに基づいて、当該パスにおける反り曲率を
求め、この反り曲率を解消するように、当該パスにおけ
る上下ワークロールの周速度差、上下材料温度差、上下
摩擦係数差を単独あるいは組み合わせて設定して板材を
圧延することを特徴とする板圧延方法。
1. A method of rolling a sheet material by a rolling mill having at least upper and lower work rolls, wherein a peripheral speed of upper and lower work rolls in a previous pass, upper and lower surface temperatures of the rolled material, a curvature radius of curvature of a rolled material tip in the previous pass, and From
The warp curvature caused by the different peripheral speed in the previous pass and the warp curvature caused by the temperature difference between the upper and lower surfaces of the rolled material in the previous pass and the warp curvature caused by factors other than the different peripheral speed and the upper and lower surface temperatures in the previous pass are determined. Measure the temperature of the upper and lower surfaces of the rolled material in the pass, find the curvature of the roll due to the temperature difference between the upper and lower surfaces of the rolled material, and calculate the curvature due to factors other than the different peripheral speed and the temperature difference between the upper and lower surfaces in the previous pass. And the warp curvature caused by the temperature difference between the upper and lower surfaces of the rolled material in the pass, the warp curvature in the pass is determined, and the peripheral speed difference between the upper and lower work rolls in the pass is determined so as to eliminate the warp curvature. A sheet rolling method, wherein the sheet material is rolled by setting the difference between the upper and lower material temperatures and the difference between the upper and lower materials independently or in combination.
【請求項2】 当該パスにおける反り曲率を、前パスに
おける異周速および上下面の温度差以外の要因による反
り曲率と、当該パスにおける上下面の温度差に起因する
反り曲率の和と等しいと予測し、この反り曲率を解消す
るように、当該パスにおける上下ワークロールの速度
差、上下材料温度差、上下摩擦係数差を単独あるいは組
み合わせて設定して圧延することを特徴とする請求項1
の板圧延方法。
2. The warp curvature in the path is equal to the sum of the warp curvature due to factors other than the different peripheral speed and the temperature difference between the upper and lower surfaces in the previous pass and the warp curvature due to the temperature difference between the upper and lower surfaces in the pass. 2. The rolling method according to claim 1, wherein the rolling is performed by setting the speed difference between the upper and lower work rolls, the temperature difference between the upper and lower work rolls, the difference between the upper and lower material temperatures, and the difference between the upper and lower friction coefficients alone or in combination so as to eliminate the warpage.
Sheet rolling method.
【請求項3】 当該パスにおける反り曲率を、前記前パ
スにおける異周速および上下面の温度差以外の要因によ
る反り曲率に前パスと当該パスとの形状比の変動を考慮
した反り曲率と、当該パスにおける上下面の温度差に起
因する反り曲率の和と等しいと予測し、この反り曲率を
解消するように、当該パスにおける上下ワークロールの
速度差、上下材料温度差、上下摩擦係数差を単独あるい
は組み合わせて設定して圧延することを特徴とする請求
項1または2の板圧延方法。
3. The warp curvature in the path, the warp curvature due to factors other than the different peripheral speed and the temperature difference between the upper and lower surfaces of the front path, the warp curvature in consideration of the change in the shape ratio between the front path and the path, Predicted to be equal to the sum of the warp curvatures due to the temperature difference between the upper and lower surfaces in the pass, and to eliminate the warp curvature, the speed difference between the upper and lower work rolls, the upper and lower material temperature difference, and the upper and lower friction coefficient difference in the pass are considered. 3. The sheet rolling method according to claim 1, wherein the rolling is performed by setting one or a combination thereof.
【請求項4】 少なくとも上下ワークロールを有する圧
延機により板材を圧延する方法において、前パスにおけ
る上下ワークロールの周速度(VT R1,VB R1)、圧延
材の上下面の温度(tT 1 ,tB 1 )および前パスにお
ける圧延材先端部の反り曲率半径ρ1 を測定し、この測
定したロールの周速度と反り曲率半径とから前パスにお
ける異周速率χ1 および反り曲率κM1とを求め、この異
周速率χ1 に起因する反り曲率κV1を求めると共に、圧
延材の上下面の温度差Δt1 に起因する反り曲率κT1
求め、前パスにおける反り曲率κM1から異周速率χ1
起因する反り曲率κV1と上下面の温度差に起因する反り
曲率κT1を差し引いて、前パスにおける異周速および上
下面の温度差以外の要因による反り曲率κQ1を求め、さ
らに、当該パスにおける圧延材の上下面の温度(t
T 2 ,tB 2 )を測定し、その温度差Δt2 に起因する
反り曲率κT2を求め、当該パスにおける異周速および上
下面の温度差以外の要因による反り曲率κQ2をκQ2=κ
Q1とし、当該パスにおける反り曲率κP2を、κP2=κQ2
+κT2と予測し、この反り曲率κP2を解消するように、
当該パスにおける上下ワークロールの速度差、上下材料
温度差、上下摩擦係数差を単独あるいは組み合わせて設
定して圧延することを特徴とする請求項1または2の板
圧延方法。
4. A pressure having at least upper and lower work rolls.
In the method of rolling a sheet material by a rolling machine,
Peripheral speed (VT R1, VB R1),rolling
Temperature of the upper and lower surfaces of the material (tT 1 , TB 1 ) And the previous pass
Radius of curvature of the tip of rolled material1 Measure
In the previous pass from the roll peripheral speed and the curvature radius of curvature
Different peripheral speed ratio け る1 And curvature κM1And ask for this difference
Circumferential rateχ1 Curvature κ due toV1And the pressure
Temperature difference Δt between upper and lower surfaces of rolled material1 Curvature κ due toT1To
And the curvature κ of the previous passM1Different peripheral speed ratio from1 To
Resulting curvature κV1Caused by temperature difference between the upper and lower surfaces
Curvature κT1Subtract the different peripheral speed in the previous pass and
Warpage curvature κ due to factors other than temperature difference on the lower surfaceQ1Ask for
In addition, the temperature of the upper and lower surfaces of the rolled material in the pass (t)
T Two , TB Two ) And the temperature difference ΔtTwo caused by
Warp curvature κT2And the different peripheral speed and
Warpage curvature κ due to factors other than temperature difference on the lower surfaceQ2To κQ2= Κ
Q1And the curvature κ of the pathP2And κP2= ΚQ2
+ ΚT2And warp curvature κP2To eliminate
Speed difference between upper and lower work rolls in this pass, upper and lower materials
Temperature difference and vertical friction coefficient difference can be set individually or in combination.
3. The plate according to claim 1, wherein the plate is rolled.
Rolling method.
【請求項5】 当該パスにおける反り曲率κP2を、前パ
スにおける異周速及び上下面の温度差以外の要因による
反り曲率κQ1に、前パスと当該パスとの形状比の変動に
よる影響を考慮した下式に基づいて求めた当該パスにお
ける異周速及び上下面の温度差以外の要因による反り曲
率κQ2と、当該パスにおける上下面の温度差に起因する
反り曲率κT2との和とすることを特徴とする請求項1ま
たは3に記載の板圧延方法。 κQ2=δ1 ・κQ1 δ1 :形状比(圧延材とワークロールとの接触投影弧長
を入側と出側板厚の平均値で除した値)と反り曲率の関
係を示す学習係数
5. A warp curvature kappa P2 in the path, the warp curvature kappa Q1 due to factors other than the temperature difference between the differential speed and the upper and lower surfaces of the front path, the effects of changes in the path and the shape ratio of the path The sum of the warpage curvature κ Q2 due to factors other than the different peripheral speed and the temperature difference between the upper and lower surfaces in the path obtained based on the following equation considered, and the curvature κ T2 due to the temperature difference between the upper and lower surfaces in the path. The sheet rolling method according to claim 1, wherein the sheet is rolled. κ Q2 = δ 1 · κ Q1 δ 1 : Learning coefficient indicating the relationship between the shape ratio (the value obtained by dividing the projected arc length of the contact between the rolled material and the work roll by the average value of the entrance and exit sheet thicknesses) and the curvature.
【請求項6】 当該パスにおける反り曲率κP2を、前記
前パスにおける異周速および上下面の温度差以外の要因
による反り曲率κQ1に、前パスと当該パスの形状比の変
動による影響を考慮した下式に基づいて求めたκQ2と、
当該パスにおける上下面の温度差に起因する反り曲率κ
T2との和とすることを特徴とする請求項1または3に記
載の板圧延方法。 κQ2=δ2 ・κQ1 ただし、δ2 :Δμが変わらない場合の形状比がΓ2
場合に発生する反り曲率q(Γ2 ) と形状比がΓ1 の場
合に発生する反り曲率q(Γ1 )との比(q(Γ2 ) /
q(Γ1 )) Δt:圧延材の上下温度差 Δμ:ワークロールと圧延材との摩擦係数の上下差 Γ1 :前パスの形状比 Γ2 :当該パスの形状比 Γ :形状比:圧延材とワークロールとの接触投影弧長
を入側と出側板厚の平均値で除した値
6. A warp curvature kappa P2 in the path, the warp curvature kappa Q1 due to factors other than the temperature difference between the differential speed and the upper and lower surfaces of the front path, the effects of changes in the path and the shape ratio of the path Κ Q2 calculated based on the following formula,
Warp curvature κ due to temperature difference between upper and lower surfaces in the path
The sheet rolling method according to claim 1 or 3, wherein the sum is equal to T2 . κ Q2 = δ 2 κ Q1 , where δ 2 : warpage curvature q (Γ 2 ) generated when the shape ratio is Γ 2 when Δμ does not change and warpage curvature q generated when the shape ratio is Γ 1 (gamma 1) the ratio of (q (Γ 2) /
q (Γ 1 )) Δt: Vertical temperature difference of rolled material Δμ: Vertical difference of friction coefficient between work roll and rolled material Γ 1 : Shape ratio of previous pass Γ 2 : Shape ratio of relevant pass Γ: Shape ratio: Rolling The value obtained by dividing the projected arc length of the contact between the material and the work roll by the average value of the entry and exit plate thicknesses
【請求項7】 当該パスの圧延時に上下材料温度差Δt
C 2 を付与して圧延を行った場合において、当該パスで
の異周速および上下面温度差以外の反り曲率κQ'2 を κQ'2 =κM2−κV2−κC T2 として、次パスでの異周速および上下面温度差以外の反
り曲率κQ3を κQ3=κQ'2 として、次パスでの圧延材の上下面温度(tT 3 ,tB
3 )を測定し、その温度差Δt3 起因の次パスでの反り
曲率 κT3 を求め、次パスで発生する反り曲率κP3を κP3=κQ3+κT3 好ましくは、κP3=κQ3+η・κT3と予測し、この反り
を解消するように、次パスにおいて上下ワークロール速
度差、上下材料温度差、上下摩擦係数差のいずれかを単
独あるいは組み合わせて設定して圧延することを特徴と
する請求項4に記載の板圧延方法。ここで、κM2は当該
パスにおける反り曲率であり、κV2は当該パスにおける
上下ワークロール速度差起因の反り曲率であり、κC T2
は当該パスにおける温度差ΔtC 2 付与後の上下面温度
差起因の反り曲率であり、ηは学習、実験あるいは計算
で求めた補正係数である。
7. A temperature difference Δt between upper and lower materials during rolling of the pass.
In case of performing rolling by applying a C 2, the warp curvature kappa Q'2 other than the upper and lower surfaces temperature difference differential speed and in the path as κ Q'2 = κ M2 -κ V2 -κ C T2, The warpage curvature κ Q3 other than the different peripheral speed and the upper and lower surface temperature difference in the next pass is defined as κ Q3 = κ Q′2 , and the upper and lower surface temperatures of the rolled material in the next pass (t T 3 , t B
3 ) is measured, the curvature κ T3 in the next pass due to the temperature difference Δt 3 is obtained, and the curvature κ P3 generated in the next pass is κ P3 = κ Q3 + κ T3, preferably κ P3 = κ Q3 + η Rolling by predicting κ T3 and setting any of the upper and lower work roll speed differences, upper and lower material temperature differences, and upper and lower friction coefficient differences alone or in combination in the next pass to eliminate this warpage The sheet rolling method according to claim 4. Here, κ M2 is the curvature of curvature in the pass, κ V2 is the curvature of curvature due to the difference between the upper and lower work roll velocities in the pass, and κ C T2
Is the warp curvature of the upper and lower surfaces temperature difference due to the temperature difference Delta] t C 2 after application of the path, eta learning, a correction coefficient determined by experiments or calculation.
【請求項8】 当該パスの圧延時に上下摩擦係数差Δμ
L 2 を付与して圧延を行った場合において、当該パスで
の異周速および上下面温度差以外の反り曲率κQ'2 を κQ'2 =κM2−κV2−κT2−κL2 として、好ましくは、 κQ'2 =κM2−κV2−κT2−γ・κL2 として、次パスでの異周速および上下面温度差以外の反
り曲率κQ3を κQ3=κQ'2 として、次パスでの圧延材の上下面温度(tT 3 ,tB
3 )を測定し、その温度差Δt3 起因の次パスでの反り
曲率 κT3 を求め、次パスで発生する反り曲率κP3を κP3=κQ3+κT3 と予測し、この反りを解消するように、次パスにおいて
上下ロール速度差、上下材料温度差、上下摩擦係数差の
いずれかを単独あるいは組み合わせて設定して圧延する
ことを特徴とする請求項4に記載の板圧延方法。ここ
で、κL2は当該パスにおけるΔμL 2 起因の反り曲率で
あり、γは学習、実験あるいは計算で求めた補正係数で
ある。
8. A difference Δμ in vertical friction coefficient during rolling of the pass.
In the case where rolling is performed with L 2 added , the warpage curvature κ Q′2 other than the different peripheral speed and the upper and lower surface temperature difference in the pass is given by κ Q′2 = κ M2 −κ V2 −κ T2 −κ L2 Preferably, as κ Q′2 = κ M2 −κ V2 −κ T2 −γ · κ L2 , the curvature κ Q3 other than the different peripheral speed and the upper and lower surface temperature difference in the next pass is κ Q3 = κ Q ′. The temperature of the upper and lower surfaces of the rolled material in the next pass (t T 3 , t B
3 ) is measured, the curvature κ T3 in the next pass due to the temperature difference Δt 3 is obtained, and the curvature κ P3 generated in the next pass is predicted as κ P3 = κ Q3 + κ T3 to eliminate this curvature. 5. The sheet rolling method according to claim 4, wherein in the next pass, any one of the difference between the upper and lower roll speeds, the difference between the upper and lower material temperatures, and the difference between the upper and lower friction coefficients is set alone or in combination, and the rolling is performed. Here, κ L2 is a warpage curvature caused by Δμ L 2 in the path, and γ is a correction coefficient obtained by learning, experiment, or calculation.
【請求項9】 次パスにおける反り曲率κQ3を、当該パ
スにおける異周速および上下面温度差以外の要因による
反り曲率κQ'2 に、当該パスと次パスとの形状比の変動
の影響を考慮した下式に基づいて求めることを特徴と
し、 κQ3=δ1 ・κQ'2 好ましくは、下式に基づいて求めることを特徴とする請
求項7または請求項8に記載の板圧延方法。 κQ3=δ2 ・κQ'2 但し、 δ1 :形状比(圧延機とワークロールとの接触投影弧長
を入側と出側板厚の平均値で除した値)と反り曲率の関
係を示す学習係数。 δ2 :Δμが変わらない場合の形状比がΓ2 の場合に発
生する反り曲率q(Γ2 ) と形状比がΓ1 の場合に発生
する反り曲率q(Γ1 )との比(q(Γ2 ) /q
(Γ1 )) Δt:圧延材の上下温度差 Δμ:ワークロールと圧延材との摩擦係数の上下差 Γ1 :前パスの形状比 Γ2 :当該パスの形状比 Γ :形状比:圧延材とワークロールとの接触投影弧長
を入側と出側板厚の平均値で除した値
9. A warp curvature kappa Q3 in the next pass, the warp curvature kappa Q'2 due to factors other than the upper and lower surfaces temperature difference and differential speed in the path, the influence of variations in the shape ratio of the path and the next path The sheet rolling according to claim 7 or 8, characterized in that it is determined on the basis of the following equation considering κ Q3 = δ 1 · κ Q'2. Method. κ Q3 = δ 2 · κ Q'2 where δ 1 : The relationship between the shape ratio (the value obtained by dividing the contact projection arc length between the rolling mill and the work roll by the average value of the entrance and exit sheet thicknesses) and the warpage curvature Learning coefficient to indicate. [delta] 2: ratio of warp curvature q (gamma 1) that Δμ warp curvature q (gamma 2) a shape ratio shape ratio when no change occurs in the case of gamma 2 occurs when the gamma 1 (q ( Γ 2 ) / q
1 )) Δt: Vertical temperature difference of rolled material Δμ: Vertical difference of friction coefficient between work roll and rolled material Γ 1 : Shape ratio of previous pass Γ 2 : Shape ratio of relevant pass :: Shape ratio: Rolled material Value obtained by dividing the contact projection arc length between the workpiece and the work roll by the average value of the entrance and exit sheet thicknesses
【請求項10】 反り曲率に、ワークロール半径/反り
曲率半径として規格化した反り曲率を用いることを特徴
とする請求項1ないし請求項10のいずれかに記載の板
圧延方法。
10. The sheet rolling method according to claim 1, wherein a warpage curvature standardized as a work roll radius / warpage curvature radius is used as the warpage curvature.
JP10273098A 1997-04-24 1998-04-14 Sheet rolling method Expired - Fee Related JP3777046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10273098A JP3777046B2 (en) 1997-04-24 1998-04-14 Sheet rolling method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-107722 1997-04-24
JP10772297 1997-04-24
JP10273098A JP3777046B2 (en) 1997-04-24 1998-04-14 Sheet rolling method

Publications (2)

Publication Number Publication Date
JPH115111A true JPH115111A (en) 1999-01-12
JP3777046B2 JP3777046B2 (en) 2006-05-24

Family

ID=26443406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10273098A Expired - Fee Related JP3777046B2 (en) 1997-04-24 1998-04-14 Sheet rolling method

Country Status (1)

Country Link
JP (1) JP3777046B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010188384A (en) * 2009-02-19 2010-09-02 Nisshin Steel Co Ltd Method for controlling warpage of tip of hot bar
CN114160588A (en) * 2020-09-11 2022-03-11 宝山钢铁股份有限公司 Warping buckle head control method for rolling stainless steel composite plate
CN114289524A (en) * 2021-12-30 2022-04-08 燕山大学 Wide-thick plate-shaped buckle head dynamic regulation and control method based on digital twinning

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010188384A (en) * 2009-02-19 2010-09-02 Nisshin Steel Co Ltd Method for controlling warpage of tip of hot bar
CN114160588A (en) * 2020-09-11 2022-03-11 宝山钢铁股份有限公司 Warping buckle head control method for rolling stainless steel composite plate
CN114289524A (en) * 2021-12-30 2022-04-08 燕山大学 Wide-thick plate-shaped buckle head dynamic regulation and control method based on digital twinning

Also Published As

Publication number Publication date
JP3777046B2 (en) 2006-05-24

Similar Documents

Publication Publication Date Title
TW401328B (en) Rolling roll profile control equipment
JPH0448521B2 (en)
JPWO2009113719A1 (en) Learning method of rolling load prediction in hot plate rolling.
JP4709628B2 (en) Cold rolled steel sheet manufacturing method
JPS6293017A (en) Control method for plate profile on rolling
JP2007260775A (en) Method of and device for rolling metal plate
JP3844280B2 (en) Reduction leveling setting method in sheet rolling
JPH115111A (en) Device for plate rolling
JP3774563B2 (en) Sheet rolling method
JP4873902B2 (en) Operation support apparatus, operation support method, computer program, and computer-readable recording medium in continuous processing equipment for metal strip
JP2008115426A (en) Method for predicting width-directional quality of skin-pass rolled steel sheet, and method for operating continuous annealing line used for above method
JP2003039108A (en) Method for controlling meandering of thin strip cast slab
JP3636151B2 (en) Metal strip manufacturing method
RU2189875C2 (en) Device for automatic control of strip flatness
JP2006122980A (en) Method for predicting deformation resistance of rolling material and frictional coefficient between roll and rolling material in tandem cold rolling mill, and tandem cold rolling method
JP3298465B2 (en) Prevention method of sheet warpage in hot rolling
JP4010301B2 (en) Hot rolled steel sheet production line and method
JP4227686B2 (en) Edge drop control method during cold rolling
JP2019111568A (en) Running plate thickness change method and device
JPS62166014A (en) Cooling method for hot steel plate with different thickness
JP2786771B2 (en) Camber control method in metal rolling
JP2574520B2 (en) Rolled material flatness control method
JPH10235420A (en) Method for controlling camber in cold rolling
JPS6376709A (en) Width control method for tandem rolling mill
JPH0919706A (en) Method for deciding rolling schedule in cold tandem mill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050801

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140303

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees