JPS62166014A - Cooling method for hot steel plate with different thickness - Google Patents

Cooling method for hot steel plate with different thickness

Info

Publication number
JPS62166014A
JPS62166014A JP61005192A JP519286A JPS62166014A JP S62166014 A JPS62166014 A JP S62166014A JP 61005192 A JP61005192 A JP 61005192A JP 519286 A JP519286 A JP 519286A JP S62166014 A JPS62166014 A JP S62166014A
Authority
JP
Japan
Prior art keywords
cooling
speed
steel plate
threading
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61005192A
Other languages
Japanese (ja)
Inventor
Masanao Yamamoto
山本 政尚
Motohiro Osada
元宏 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP61005192A priority Critical patent/JPS62166014A/en
Publication of JPS62166014A publication Critical patent/JPS62166014A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B15/00Arrangements for performing additional metal-working operations specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B2015/0071Levelling the rolled product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/02Transverse dimensions
    • B21B2261/04Thickness, gauge
    • B21B2261/05Different constant thicknesses in one rolled product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • B21B37/24Automatic variation of thickness according to a predetermined programme

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To uniformly cool steel plate parts in the vicinity of a thickness changing line by obtaining an optimum cooling condition based on a temp. at plural dividing points in the longitudinal direction of the plate and controlling a plate passing speed in accordance with a thickness of the plate. CONSTITUTION:A radiation thermometer 12 measures a temp. at plural dividing points in the longitudinal direction of a hot steel plate S prior to insertion of the plate S into a cooler 3. An optimum cooling condition at each dividing point is calculated a controlling calculator 4 based on the measured value. When the plate is cooled with its thicker part at the head, a passing speed is lowered to supplement a shortage of a cooling time for the thicker part prior to insertion of the thickness changing line into the cooler 3. The passing speed is accelerated up to the speed for a thinner part passing at the instant when the thickness changing line enters the cooler 3. In the case of the thinner part at the head, the speed is first accelerated and then decelerated. In this method, both the thicker and thinner parts around the thickness changing line are uniformly cooled to the target temp.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、飯厚が長手方向に階段状に変fヒする差厚
熱鋼板をこれの長手方向に送りながら鋼板表面に一定量
の冷却水を供給して行う差厚熱−A仮の冷却方法に関す
るものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention provides a method of cooling a steel plate surface by a certain amount while feeding a differential thickness hot steel plate whose steel thickness changes in a stepwise manner in the longitudinal direction. This relates to a differential thickness heat-A temporary cooling method carried out by supplying water.

(従来の技術) 熱間圧延fI4仮の強制水冷却において、冷却終了温度
は鋼板材質に影#ケ与えるので、均一で所望の材質を有
する一板金得るには、鋼板各部を予め定められ九編度に
まで高い精度で冷却しなければならない。熱−板の冷却
終了温度制御方法は特開昭60−87914号で提案さ
れている。この方法は、冷却開始、終了温度をTi、T
φ5冷却速度fVc、冷却ゾーン長さfLcとおいた時
、v*=νclILc / (Ti−Tφ)・・・・・
・・・・(1)で得られる通板速度v6基準通板速度と
し、鋼板長手方向冷却開始時間差による冷却開始温度差
を冷却ゾーン長間で通板速度の加速を行う墨により補正
する方法である。
(Prior art) In hot rolling fI4 temporary forced water cooling, the cooling end temperature affects the steel sheet material, so in order to obtain one sheet metal having a uniform and desired material quality, each part of the steel sheet must be predetermined and nine sheets must be cooled with high precision. A method for controlling the temperature at the end of cooling of a hot plate is proposed in Japanese Patent Application Laid-open No. 87914/1983. In this method, the cooling start and end temperatures are Ti, T
When φ5 cooling rate fVc and cooling zone length fLc, v*=νclILc/(Ti-Tφ)...
...The threading speed obtained in (1) is set to the standard threading speed v6, and the cooling start temperature difference due to the difference in cooling start time in the longitudinal direction of the steel plate is corrected by ink that accelerates the threading speed between the cooling zone lengths. be.

ざらに%m昭6O−938F11号では冷却開始直前の
@変音取込み通板速度の修正を行う方法も提案されてい
る、 これらの通板速度制御の考え方1に第7図に示す。
In Zaraani %m No. 6O-938F11, a method of correcting the threading speed by taking in strange sounds just before the start of cooling is also proposed. Concept 1 of these threading speed control is shown in Fig. 7.

図中V は上記il1式で得られる基準通板速度。V in the figure is the standard threading speed obtained by the above il1 formula.

ΔV、は長手方向冷却開始温度差を補う加速による通板
速度の変化、Δν2は冷却開始温度取込みVCLる通板
速度の修正を示す。第7図に示す通板速度制御は、Δv
1+Δv2がν に比べ小ζい場合、すなわち鋼板長手
方向氷霜冷却速度が一定とみなし得る定厚鋼板では実用
上十分なfP!度?Mしている。
ΔV represents a change in the threading speed due to acceleration to compensate for the difference in cooling start temperature in the longitudinal direction, and Δν2 represents a modification of the threading speed by taking in the cooling start temperature VCL. The sheet threading speed control shown in FIG.
When 1+Δv2 is smaller than ν, fP is practically sufficient for a constant-thickness steel plate where the ice-frost cooling rate in the longitudinal direction of the steel plate can be considered constant! Every time? I'm doing M.

又、差厚鋼板は船舶の@雪1ヒ等に利用これており非強
制冷却型はすでに多(の製造実績がめる。
In addition, differential thickness steel plates are used for ships with snow, etc., and many non-forced cooling types have already been manufactured.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

一定量の冷却水を供給してn1仮ケ通仮させながら強制
水冷却全行う際の問題として、 ■ 通板速度を変ずヒさせる事による冷却終了温度への
影響は鋼板全長のうち冷却ゾーン長相当長に現われる。
Problems when performing forced water cooling while supplying a constant amount of cooling water and temporarily passing n1 are: ■ The effect on the cooling end temperature by keeping the threading speed unchanged is that the cooling zone of the entire length of the steel plate is affected. Appears in long length.

■ 鋼板長乎方向冷却開始温厩は通板速度の影響を受け
るう 02点があげられる。
■ Starting cooling in the longitudinal direction of the steel plate There are two points that are affected by the threading speed.

さらに、差厚鋼板特有の問題として、 ■ 長手方向空冷冷却速度差による冷却開始温度偏差 ■ 長手方向水冷冷却速度差 がある。Furthermore, as a problem specific to differential thickness steel plates, ■ Cooling start temperature deviation due to longitudinal air cooling speed difference ■ Longitudinal water cooling speed difference There is.

上記■は、鋼板全長のうち冷却ゾーン長さ相当分は常に
同時刻に冷却過程にある事によるもので。
The reason for ■ above is that the length of the cooling zone out of the total length of the steel plate is always in the cooling process at the same time.

特願昭fig−93861号の冷却終了温度制?I11
′lけ。
Cooling end temperature system of patent application Shofig-93861? I11
'l be.

この点を逆に利用したものであるが、差厚鋼板の株に長
平方向水冷冷却速度差を有し、大暢な通板速度の加速も
しくは減速が要末される場合にはこの制御方法は長平方
向冷却終了MA度偏差の原因となる。
Although this point is used in reverse, this control method is effective when the stock of differentially thick steel plates has a difference in water cooling speed in the longitudinal direction and smooth acceleration or deceleration of the threading speed is required. This causes a deviation in the MA degree at the end of cooling in the longitudinal direction.

その理由を鋼板長手方向の点P、Q(第8図)について
考える。第8図(イ)に示す如く点PとQの間隔は冷却
ゾーン凡の長さSエリも短いとすると。
The reason for this will be considered with respect to points P and Q (Fig. 8) in the longitudinal direction of the steel plate. As shown in FIG. 8(a), the interval between points P and Q is assumed to be short, as is the length S of the cooling zone.

点PとQけある時間【の間開時に冷却される。点PとQ
は第8図(ロ)に示す如く、冷却ゾーン内を速度Vp 
、VQにて通板づルる事にLり目標冷却終了温度に1で
冷却される。ところで点PとQは上記時間tの間開時に
冷却ゾーン内にあるのであるからこの間でばV、とvQ
は等しくなければならない。
Points P and Q are cooled when they are open for a certain period of time. points P and Q
As shown in Figure 8 (b), the velocity Vp in the cooling zone is
By threading the plate at , VQ, it is cooled to the target cooling end temperature at 1. By the way, since points P and Q are in the cooling zone when opened during the above time t, during this time, V, vQ
must be equal.

今、仮に点Qが冷却開始直前で通板速度VQでは目標冷
却終了温度にまで冷却できない事が判明し通板速度を第
8図中破線で示されるVζに変更し九とする。このとき
通板速度vPはもはやvPでな(なり点Pの冷却終了温
度は目標値から外れてしまう。
Now, suppose that the point Q is just before the start of cooling and it is found that the sheet threading speed VQ cannot cool the sheet to the target cooling end temperature, and the sheet threading speed is changed to Vζ shown by the broken line in FIG. 8 and set to 9. At this time, the sheet passing speed vP is no longer vP (the cooling end temperature at the point P deviates from the target value).

従って鋼板長手方向のある点の冷却終了温度を目標値に
合わせ工うとして、通板速度修正を行うと、他の点に対
しては外乱として作用し、鋼板内の冷却終了m度精fを
低下させる事になる。
Therefore, if the threading speed is corrected in order to adjust the cooling end temperature at a certain point in the longitudinal direction of the steel plate to the target value, it will act as a disturbance at other points, and the cooling end temperature f within the steel plate will be reduced. It will lower it.

また前記■は、通板時の長平方向冷却開始時間差による
ものである。
Moreover, the above-mentioned (2) is due to the difference in cooling start time in the longitudinal direction during sheet passing.

又前記■、■は長手方向板厚差に起因するもので、差厚
鋼板では差厚線で板厚が不連続に変化するため、冷却開
始温度、水冷冷却速度は差厚線近傍で不連続となる。
In addition, the above-mentioned ■ and ■ are caused by the difference in plate thickness in the longitudinal direction. In differential thickness steel plates, the plate thickness changes discontinuously at the difference thickness line, so the cooling start temperature and water cooling cooling rate are discontinuous near the difference thickness line. becomes.

厚部側を先端として一定水讐を供給しなから葛9図(イ
)の如(一定通板速度にて冷却を行った時の冷却終了温
度を第9図(ロ)に示す。この場合の薄部冷却終了温度
は厚部冷却終了温度りり低くなる。
A constant amount of water is supplied with the thick side as the tip, as shown in Figure 9 (a). (The cooling end temperature when cooling is performed at a constant sheet threading speed is shown in Figure 9 (b). In this case The cooling end temperature of the thin part is lower than the cooling end temperature of the thick part.

の通板速度を採つ友場合の冷却終了温度?第10図(ロ
)に示す。この場合薄部冷却中厚部の差厚線側は、冷却
設備内にあり、速度増加の分だけ回部の冷却時間は減少
し、その結果厚部冷却終了温度は差厚線に近い側で三角
形の分亜ヲ呈する。いずれの場合でも、板厚が階段状に
変化する為、厚部、薄部の冷却開始温度差、水冷冷却速
度差にエリ差厚線での冷却終了温度ギャップを生じる。
What is the cooling end temperature when the threading speed is ? It is shown in FIG. 10(b). In this case, the side of the differential thickness line of the thin section cooling medium thick section is inside the cooling equipment, and the cooling time of the circulating section decreases by the amount of speed increase, and as a result, the thick section cooling end temperature is on the side close to the differential thickness line. It exhibits the division of a triangle. In either case, since the plate thickness changes stepwise, a cooling end temperature gap occurs at the edge difference thickness line due to the difference in cooling start temperature and water cooling rate between the thick and thin parts.

従って差厚部近傍で機械的性質の変動が大きくなり、所
望の機械的性質が得られず品質もIIIIIi全長にわ
友って一様でない。
Therefore, the mechanical properties fluctuate greatly near the differential thickness portion, making it impossible to obtain the desired mechanical properties and the quality is not uniform over the entire length.

この発明は上記のような問題点を解決するためになきれ
たもので差厚鋼板を冷却するのに、鋼板長手方向冷却開
始温度予測′M度を向上さぜ差厚鋼板全長にわ几って所
望の冷却終了温度を得て均一でかつ所望の材質を有する
差厚鋼板1に:得る冷却方法を提供することを目的とす
る。
This invention was developed in order to solve the above-mentioned problems.In order to cool steel plates with different thicknesses, it is possible to improve the predicted cooling start temperature in the longitudinal direction of the steel plate. It is an object of the present invention to provide a cooling method for obtaining a uniform differential thickness steel plate 1 having a desired material quality by obtaining a desired cooling end temperature.

1問題点を解決するための手段〕 本発明の要旨とするところは、熱間圧延てれ友鋼板を所
定の温度に強制冷却するのに、冷却開始温度%冷却終了
温度、冷却水の水音、冷却ゾーン長づ、および冷却時の
通板速度を予め設定して冷却する工程において、冷却設
備に装入する前に鋼板長手方向複数分割点の@変音笑測
して、その実測値に基づいて各分割点の最適冷却条件を
演算して、厚肉部を先端として通板する場合は差厚縁冷
却開始直前に減速して、その後薄肉部の通板速度に加速
を行い、薄肉部金先備として通板する場合は差厚I%l
Jl酎却開始耐前に加速して、その後厚肉部の通板速度
に減速を行うことを特徴とする差厚熱鋼板の冷却方法で
ある。
Means for Solving Problem 1] The gist of the present invention is to forcibly cool a hot-rolled steel plate to a predetermined temperature by reducing the cooling start temperature, % cooling end temperature, and the sound of the cooling water. In the process of cooling by setting the cooling zone length and the threading speed during cooling in advance, measurements are taken at multiple dividing points in the longitudinal direction of the steel sheet before loading it into the cooling equipment, and the actual values are used. Based on this, the optimum cooling conditions for each division point are calculated, and when the thick section is used as the tip, the speed is decelerated just before the start of differential thickness edge cooling, and then the speed is accelerated to the thin section. When threading as a gold advance, the difference in thickness is I%l.
This is a method for cooling a differential thickness heated steel sheet, which is characterized by accelerating the speed before the start of cooling and then decelerating the threading speed of the thick section.

〔作用〕[Effect]

鋼板の搬送お工び冷却は例えば次の工うにして行われる
。すなわち、冷却設備内お工びその前後に配されたロー
ラーテーブルにより、搬送され。
The conveyance and cooling of the steel plate is carried out, for example, in the following manner. That is, it is conveyed by roller tables placed before and after the cooling equipment.

冷却設備内のローラーテーブル間お工び上面に配され九
ノズルより冷却水を供給して冷却を行う。
Cooling water is supplied from nine nozzles located on the top of the roller table in the cooling equipment.

以下第1図で作用を説明する。第1図の曲線コに予測冷
却開始温度Tiと通板速度Vの関係71曲線すに通板速
度から求まる冷却開始温度Tiと通板速度Vとの関係を
示す。ここで予I!11冷却開始温匿Tiは例えば、予
測位置の板厚を臂する定厚鋼板の先端部冷却開始温度と
して求める。今、予測冷却開始温度をT、、とすると、
目標冷却終了温度、板厚、冷却水水11−より通板速度
v、が求まる。次に通板速度V、たら予測位置の冷却開
始時間を求め空耐冷却速度より冷却開始温度T、1を計
算する。第1図に示す様にT、  >T、の場合には予
測冷却量始温度をTi2と上げて再度1通板速度v2)
冷却開始臨度Ti2を求める。順次この操作?繰返し、
両冷却開始温&T、、とTi、の差が許容値以下となる
通板速度v?求める。Ti、<T、1の場合には逆の操
作を行う。
The operation will be explained below with reference to FIG. Curve 7 in FIG. 1 shows the relationship between the cooling start temperature Ti and the sheet passing speed V, which is determined from the sheet passing speed. Preliminary here! 11 Cooling start temperature Ti is determined, for example, as the cooling start temperature of the tip of a constant thickness steel plate surrounding the plate thickness at the predicted position. Now, if the predicted cooling start temperature is T, then
The plate threading speed v is determined from the target cooling end temperature, plate thickness, and cooling water 11-. Next, the sheet passing speed V and the cooling start time at the predicted position are determined, and the cooling start temperature T,1 is calculated from the air-resistant cooling rate. As shown in Fig. 1, in the case of T, >T, the predicted cooling amount starting temperature is increased to Ti2 and the one-thread speed v2)
The cooling start criticality Ti2 is determined. This operation sequentially? Repeat,
The threading speed v at which the difference between both cooling start temperatures &T, and Ti is less than the allowable value? demand. If Ti,<T,1, perform the opposite operation.

収束計算にエリ差厚鋼板 長手方向各部の冷却開始温度
予測精度を向上させ、差厚部近傍を除いた部分の冷却終
了温度精度を向上させる。
Improve the accuracy of predicting the cooling start temperature of each section in the longitudinal direction of a steel plate with a difference in edge thickness in convergence calculations, and improve the accuracy of the cooling end temperature in parts excluding the vicinity of the difference thickness section.

又、差厚部近傍に対しては、まず薄部冷却条件より求ま
る速度にて通板全行う。厚部必要冷却時ft1lは薄部
必要冷却時間エリ長い為差厚線が冷却設備に入る前に通
板速度の減速ケ行い厚部冷却時間不足を補う。次に差厚
線が冷却設備に入る瞬間に薄部通板速度まで加速を行う
。その結果、差厚部近傍の厚部、薄部とも目標温度にま
で均一に冷却する事ができ、鋼板全体に一様な所望の機
械的性質kWする差厚鋼板の製造が可能となる。さらに
、薄部冷却の際に冷却水を瞠断t7jは遮蔽を組み合わ
せる事にエリ通板速度の加減速率が小さくなり微かな冷
却時間制御が可解となり、特に差厚部近傍での均一冷却
を向上させる事ができる。
In addition, for the vicinity of the differential thickness section, the sheet is first fully threaded at a speed determined from the thin section cooling conditions. Since the required cooling time for the thin part of ft1l is long when the thick part is required to be cooled, the threading speed is reduced before the differential thickness wire enters the cooling equipment to compensate for the insufficient cooling time for the thick part. Next, the moment the differential thickness wire enters the cooling equipment, it is accelerated to the thin section threading speed. As a result, both the thick and thin portions near the differential thickness portion can be uniformly cooled to the target temperature, making it possible to manufacture a differential thickness steel plate that has the desired mechanical properties kW that are uniform throughout the steel plate. Furthermore, when cooling the thin section, the cooling water t7j is combined with shielding to reduce the acceleration/deceleration rate of the strip threading speed, making it possible to finely control the cooling time, and to ensure uniform cooling especially near the differential thickness section. It can be improved.

〔実施例−1〕 第2図はこの発明を実施する圧延、冷却設備の一例を示
す設備構成図である。仕上圧延機1で圧延された熱鋼板
Sはホットレベラー2で平担に矯正されたのち、冷却設
備3で強制水冷却される。
[Example-1] FIG. 2 is an equipment configuration diagram showing an example of rolling and cooling equipment for implementing the present invention. A hot steel plate S rolled by a finishing mill 1 is flattened by a hot leveler 2 and then forcedly cooled by water in a cooling equipment 3.

冷却設備3は複数の冷却ゾーン7エリなり各冷却ゾーン
7には、それぞれ複数の上下ロール対5お工び冷却水ノ
ズル8が配列されている。鋼板Sは各設備開音ローラー
テーブル6にエリ搬送され、上下ローラ一対5.テーブ
ルローラー6はそれぞれモーター9.10.11により
駆動きれる6ま友仕上圧延機1と冷却設置1iiia間
には放射温度計12が、冷却設備3の直後には、放射温
度計13および鋼板検出器14がそれぞれ配置されてい
る。これらの検出値は制御計算機4に入力される。
The cooling equipment 3 includes a plurality of cooling zones 7, and each cooling zone 7 has a plurality of upper and lower roll pairs 5 and cooling water nozzles 8 arranged therein. The steel plate S is conveyed to an open roller table 6 of each equipment, and a pair of upper and lower rollers 5. The table rollers 6 are each driven by a motor 9, 10, 11. A radiation thermometer 12 is installed between the finishing rolling mill 1 and the cooling installation 1iiiia, and a radiation thermometer 13 and a steel plate detector are installed immediately after the cooling installation 3. 14 are arranged respectively. These detected values are input to the control computer 4.

上記のように構成され九設備において、第3図に示す手
順に従って冷却制御がなされる。、まず、帝却終了温度
、水冷冷却速度、板厚などの冷却条件を制御計算機4に
設定する。制御計算機4は、これら冷却条件に基づいて
、冷却水水量、冷却ゾーン長での計算7行う。
In the nine facilities configured as described above, cooling control is performed according to the procedure shown in FIG. First, cooling conditions such as the end temperature of quenching, water cooling rate, and plate thickness are set in the control computer 4. The control computer 4 performs calculation 7 of the amount of cooling water and the length of the cooling zone based on these cooling conditions.

次に厚部先端の場合について通板速度決定方法を示す博
部冷却条件より厚部通板速度を求め、差厚線より先端側
へ向って以下に示す式にて厚部通板速度を求める。
Next, for the case of the tip of the thick section, find the threading speed of the thick section from the low cooling conditions that show how to determine the threading speed, and then calculate the threading speed of the thick section from the difference thickness line toward the tip using the formula shown below. .

一般に一板先iη)らXの位置が冷却設備に入る時の設
定速度k Vxl 、同位置の冷却時間′frt(xi
 、冷却ゾーン長さf Lcとおくと次式が成立する。
In general, the set speed k Vxl when the position X from one plate tip iη) enters the cooling equipment, the cooling time ′frt(xi
, the cooling zone length fLc, the following equation holds true.

与えられた冷却条件に対し%(2)式を満足するV(x
iを求める事により差厚鋼板を目標温度に冷却する事が
できる。
V(x
By determining i, the differential thickness steel plate can be cooled to the target temperature.

厚部長ざ2g、先端部(厚部)が冷却設備に入つ九後差
厚線が冷却設備に入るまでの厚部通板速度をν眉x)、
蔓厚線が冷却設備に入った後の厚部通板速度をVU(X
) 、厚部必要冷却時rIJjを躇と現わすと(2)式
は。
The thickness of the thick part is 2g, and the threading speed of the thick part until the tip (thick part) enters the cooling equipment and the 9th difference thickness line enters the cooling equipment is ν eyebrow x),
The threading speed of the thick section after the thick wire enters the cooling equipment is expressed as VU (X
), and when rIJj is expressed as hesitation during the required cooling of the thick part, equation (2) is.

となる。becomes.

薄部の冷却開始温度、冷却終了温度をそれぞれT、U 
、 TφU、水冷冷却速度をVcUとおくとVg(x)
 =・Lcxv(fi” /(THU−T4.y )・
・・−f41!りVσfx)が求められる。
The cooling start temperature and cooling end temperature of the thin part are T and U, respectively.
, TφU, water cooling cooling rate is VcU, then Vg(x)
=・Lcxv(fi”/(THU-T4.y)・
...-f41! Vσfx) is obtained.

(3)式左辺第−項をΣで現わし、第2項の積分を実行
すると。
Expressing the -th term on the left side of equation (3) as Σ, and performing the integration of the second term.

ここでム;φで、i = 1は鋼板先端部、i=jは通
板速度を求め工うとする鋼板位置、i=N+1は差厚線
位置である。(第4図参照)(5)式左辺第−項をi 
= jとi = j + 1〜N+1に分割すると。
Here, i=1 is the tip of the steel plate, i=j is the position of the steel plate where the threading speed is to be determined, and i=N+1 is the position of the difference in thickness line. (See Figure 4) The -th term on the left side of equation (5) is i
= j and i = j + 1 to N+1.

(6)式f j = N + I Xi>らj=1まで
適用してvA(xj’を求める。
(6) Formula f j = N + I Xi> is applied up to j=1 to find vA(xj').

vA(工、)とVU金合わせm連麓−)が対象とする差
厚鋼数の通板連層を与え、差厚緩冷却前の加減速も組み
入れられている。
vA (engineering, ) and VU metal fitting m-renroku-) give the target continuous plate threading of the number of steels with different thicknesses, and also incorporate the acceleration and deceleration before slow cooling of the different thicknesses.

次に上記で得られ九通板速度モ)を用いて、鋼板長手方
向各部の冷却開始温度Tirxl’求め、同位置の予測
値Ti(x)との比軟全行う。
Next, the cooling start temperature Tirxl' of each part in the longitudinal direction of the steel plate is determined using the nine plate speeds obtained above, and the comparison with the predicted value Ti(x) at the same position is performed.

Tifxl全予測位置の板厚金有する定厚鋼板の先端部
冷却開始温度を基準として、偏差ΔTを加えた値とし、
同位置のE延終了温反実績’ TFix) ’空冷冷却
速度ゲva(x) ’圧延終了から先端部冷却開始まで
の時間を雷。とおくと、 Ti(x) =TF?x) −’ o ×vjxl+Δ
T ………(7)一方Ti(x)は、 となる。従って ここでαは許容値である。冷却開始温■予潰11位IJ
lx=x; (i−1,2、・・・)に対して(6)、
(7)。
Based on the tip cooling start temperature of a constant thickness steel plate with plate thickness at all predicted positions of Tifxl, the value is the sum of the deviation ΔT,
Temperature and reaction results at the end of E rolling at the same position' TFix) 'Air cooling cooling rate geva(x) 'The time from the end of rolling to the start of tip cooling. Then, Ti(x) = TF? x) −' o ×vjxl+Δ
T......(7) On the other hand, Ti(x) is as follows. Therefore, here α is a permissible value. Cooling start temperature ■ Pre-crushing 11th place IJ
lx=x; (6) for (i-1, 2,...),
(7).

(9)式を用いてv(x)1r収束計算にニジ求める。Using equation (9), calculate v(x)1r convergence.

以上の方法に工って傅られた通板速Fkf ’(xl¥
i制御計算機47D≧ら上、下ローラ−5お工びテーブ
ルローラー6のそれぞれの駆賢モーター9 + 10 
Threading speed Fkf' (xl¥
i control computer 47D ≧ upper and lower rollers - 5 and respective driving motors of table rollers 6 9 + 10
.

11に出力され、差厚−板Sv冷却終了温1iTφが制
#ばれる。
11, and the difference thickness - plate Sv cooling end temperature 1iTφ is controlled.

第5図は厚部側を先端として冷却した場合の冷却終了温
度の測定例を示している。直線aは目標値、実?fMb
はこの発明にエリ冷E(l制碩1した場合の実測値であ
る6ま*、直線Cは第8図に示す速度で冷却7行った場
合の実測値である。
FIG. 5 shows an example of measuring the cooling end temperature when cooling is performed with the thick side as the tip. Is straight line a the target value or actual value? fMb
is the actual measured value when cooling E (l control 1) is applied to this invention, and the straight line C is the actual measured value when cooling is performed 7 times at the rate shown in FIG.

両実測値とも鋼板サイズは、厚部板厚23m。The steel plate size for both actual measurements is 23m thick.

薄部板厚18喝、板長さ14m、板巾3000mのもの
である。
The thickness of the thin part is 18mm, the length is 14m, and the width is 3000m.

〔実施例−2〕 この発明の他の実施例を以下に示す。実施例−1と同じ
設備構成、手順?用い、Iv部耐冷却際。
[Example-2] Another example of this invention is shown below. Same equipment configuration and procedure as Example-1? When used, Iv part is resistant to cooling.

この実施例では冷却水の一部を遮蔽した。この時の一板
通板速贋のシミュレーション結果を第6図に示す。図中
arfiこの実施例の場合の通板速[hhは実施例−1
の方法の通板速度である。なお。
In this example, a portion of the cooling water was blocked. Figure 6 shows the simulation results for one-sheet passing and counterfeiting at this time. In the figure, arfi is the sheet passing speed in this example [hh is Example-1
This is the threading speed of the method. In addition.

冷却開始温度、終了温度−の冷却条件及び鋼板サイズは
実施例−1と同じである。
The cooling conditions including the cooling start temperature and the cooling end temperature and the steel plate size are the same as in Example-1.

〔究明の効果〕[Effect of investigation]

この発明では、鋼板長手方向各部の耐却開始温度予測n
就の向上、及び冷却設備内での一板速贋制御、ま九は同
制御に薄部冷却時に冷却水の遮断もしくはg幣を組み合
わせることにより、差厚鋼板を長手方向にわたって均一
に目標温度にまで冷却する事ができる効果を乗する。
In this invention, the temperature at which the steel plate starts to be scraped at each part in the longitudinal direction is predicted n.
By combining the same control with shutting off the cooling water or cooling the thin section when cooling the thin section, it is possible to uniformly bring the differential thickness steel plate to the target temperature in the longitudinal direction. Multiply the effect of being able to cool down to.

この結果所望の機械的性質?有し、全長にわたって一様
な品質の鋼板?得ることができる。
Does this result in desired mechanical properties? Does the steel plate have uniform quality along its entire length? Obtainable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は冷却開始温度と通板速度の関係を示す図、第2
図はこの発明?実施する圧延、冷却設備の一例を示す設
備構成図、第3図は冷却制御の手順を示すフローチャー
ト、第4図は通板速度決定式(6)の貌明図、第5図は
差厚鋼板の冷却終了温度の測定例?示す図、第6図は他
の実施例の場合の通板速度のシミュレーション効果を示
す図%第7図は従来の通板速度制御の考え方を示す模式
図。 第8図は鋼板長手方向各部の冷却状りを示す図。 第9図は差厚鋼板を調定通板速度にて冷却し友時の冷却
終了温度の模式図%第10図はステップ状の通板速度に
て冷却し九時の冷却開始温度の模式%式% 第3図 71′40 諮 汁5図 時刻 片6回 オフ図 (イ) i80 W密蟹奴 ツ譚酌要
Figure 1 is a diagram showing the relationship between cooling start temperature and sheet threading speed, Figure 2
Is the diagram this invention? An equipment configuration diagram showing an example of the rolling and cooling equipment to be carried out, Fig. 3 is a flowchart showing the cooling control procedure, Fig. 4 is a clear view of the plate threading speed determination formula (6), and Fig. 5 is a differential thickness steel plate. An example of measuring the cooling end temperature? FIG. 6 is a diagram showing the simulation effect of the sheet threading speed in the case of another embodiment. FIG. 7 is a schematic diagram showing the concept of conventional sheet threading speed control. FIG. 8 is a diagram showing the cooling state of each part in the longitudinal direction of the steel plate. Figure 9 is a schematic diagram of the cooling end temperature at 9 o'clock when a steel plate of different thickness is cooled at an adjusted threading speed. Formula % Figure 3 71'40 Consultation 5 Figure Time Piece 6 Off Figure (A) i80 W Secret Crab Slut Account

Claims (3)

【特許請求の範囲】[Claims] (1)熱間圧延された鋼板を所定の温度に強制冷却する
のに、冷却開始温度、冷却終了温度、冷却水の水量、冷
却ゾーン長さ、および冷却時の通板速度を予め設定して
冷却する工程において、冷却設備に装入する前に鋼板長
手方向複数分割点の温度を実測して、その実測値に基づ
いて各分割点の最適冷却条件を演算して、厚肉部を先端
として通板する場合は差厚線冷却開始直前に減速して、
その後薄肉部の通板速度に加速を行い、薄肉部を先端と
して通板する場合は差厚線冷却開始直前に加速して、そ
の後厚肉部の通板速度に減速を行うことを特徴とする差
厚熱鋼板の冷却方法。
(1) To forcefully cool a hot rolled steel plate to a predetermined temperature, the cooling start temperature, cooling end temperature, amount of cooling water, cooling zone length, and sheet threading speed during cooling are set in advance. In the cooling process, before loading the steel plate into the cooling equipment, the temperature at multiple division points in the longitudinal direction of the steel plate is actually measured, and the optimum cooling conditions for each division point are calculated based on the measured values, and the thick part is used as the tip. When threading, reduce the speed just before starting to cool the differential thickness wire,
Thereafter, the threading speed of the thin wall portion is accelerated, and when threading the thin wall portion as the tip, the speed is accelerated immediately before the cooling of the differential thickness line starts, and then the threading speed is decelerated to the thick wall portion. Cooling method for differential thickness heated steel plates.
(2)通板速度を設定するのに、まず冷却設備に装入す
る前の鋼板温度を測定して、板厚差による板内空冷冷却
速度差を考慮して鋼板長手方向複数分割点の冷却開始温
度を予測し通板速度を求め、次にこの通板速度より予測
位置の冷却開始時間を計算して冷却開始温度を求め、こ
の冷却開始温度と先の予測値との差が許容値以下となる
よう収束計算をして通板速度を設定する特許請求の範囲
第1項の差厚熱鋼板の冷却方法。
(2) To set the strip threading speed, first measure the temperature of the steel strip before loading it into the cooling equipment, and cool the steel strip at multiple division points in the longitudinal direction, taking into account the difference in air cooling rate within the strip due to the difference in plate thickness. Predict the starting temperature, find the threading speed, then calculate the cooling start time at the predicted position from this threading speed to find the cooling start temperature, and check if the difference between this cooling start temperature and the previously predicted value is less than the allowable value. A method for cooling a differential thickness heated steel plate according to claim 1, wherein the threading speed is set by performing convergence calculation so that the following is achieved.
(3)薄肉部通板時に冷却水供給の一部又は全部を遮蔽
、遮断を行つて、通板速度設定の一部又はその全部を修
正する特許請求の範囲第1項の差厚熱鋼板の冷却方法。
(3) The differential thickness heated steel sheet according to claim 1, wherein part or all of the cooling water supply is shielded or cut off during the threading of thin-walled parts to correct part or all of the threading speed setting. Cooling method.
JP61005192A 1986-01-14 1986-01-14 Cooling method for hot steel plate with different thickness Pending JPS62166014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61005192A JPS62166014A (en) 1986-01-14 1986-01-14 Cooling method for hot steel plate with different thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61005192A JPS62166014A (en) 1986-01-14 1986-01-14 Cooling method for hot steel plate with different thickness

Publications (1)

Publication Number Publication Date
JPS62166014A true JPS62166014A (en) 1987-07-22

Family

ID=11604352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61005192A Pending JPS62166014A (en) 1986-01-14 1986-01-14 Cooling method for hot steel plate with different thickness

Country Status (1)

Country Link
JP (1) JPS62166014A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182416A (en) * 1992-12-18 1994-07-05 Kawasaki Steel Corp Cooling method for steel sheet
EP1346780A1 (en) * 2000-12-28 2003-09-24 Kawasaki Steel Corporation Hot rolling method and hot rolling line
GB2484917A (en) * 2010-10-25 2012-05-02 Siemens Vai Metals Tech Ltd Method of cooling a longitudinally profiled plate
JP2014161900A (en) * 2013-02-27 2014-09-08 Nippon Steel & Sumitomo Metal Manufacturing apparatus and manufacturing method for differential thickness steel plate
JP2015182102A (en) * 2014-03-24 2015-10-22 Jfeスチール株式会社 Cooling method and cooling facility for lp steel sheet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5138308A (en) * 1974-09-30 1976-03-31 Toray Industries MUKISEIKEITAIHYOMENNIFUTSUSOKEIFUIRUMUOSETSUCHAKUSURU HOHO
JPS6087914A (en) * 1983-10-19 1985-05-17 Nippon Steel Corp On-line cooling method of hot steel plate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5138308A (en) * 1974-09-30 1976-03-31 Toray Industries MUKISEIKEITAIHYOMENNIFUTSUSOKEIFUIRUMUOSETSUCHAKUSURU HOHO
JPS6087914A (en) * 1983-10-19 1985-05-17 Nippon Steel Corp On-line cooling method of hot steel plate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182416A (en) * 1992-12-18 1994-07-05 Kawasaki Steel Corp Cooling method for steel sheet
EP1346780A1 (en) * 2000-12-28 2003-09-24 Kawasaki Steel Corporation Hot rolling method and hot rolling line
EP1346780A4 (en) * 2000-12-28 2005-03-16 Jfe Steel Corp Hot rolling method and hot rolling line
GB2484917A (en) * 2010-10-25 2012-05-02 Siemens Vai Metals Tech Ltd Method of cooling a longitudinally profiled plate
JP2014161900A (en) * 2013-02-27 2014-09-08 Nippon Steel & Sumitomo Metal Manufacturing apparatus and manufacturing method for differential thickness steel plate
JP2015182102A (en) * 2014-03-24 2015-10-22 Jfeスチール株式会社 Cooling method and cooling facility for lp steel sheet

Similar Documents

Publication Publication Date Title
US6615633B1 (en) Metal plateness controlling method and device
EP0228284B1 (en) Method of cooling hot-rolled steel plate
EP1634657B1 (en) Controllable cooling method for thick steel plate, thick steel plate manufactured by the controllable cooling method, and cooling device for the thick steel plate
JPS60174833A (en) Cooling method of hot steel sheet
JP5327140B2 (en) Method for cooling hot rolled steel sheet
JPH0534093B2 (en)
JPS62166014A (en) Cooling method for hot steel plate with different thickness
US11230749B2 (en) Method for operating an annealing furnace
JP3596460B2 (en) Heat treatment method for thick steel plate and heat treatment equipment
JPH0871628A (en) Method for preventing generation of ear waving of steel plate
JP2005270982A (en) Method for controlling cooling of material to be rolled in hot rolling
JPH0729139B2 (en) Cooling control device for hot rolled steel sheet
JP3518504B2 (en) How to set cooling conditions for steel sheets
EP3626358A1 (en) Device and method for cooling steel material
JPH06238312A (en) Method for controlling cooling of hot rolled steel sheet
JP4258341B2 (en) Manufacturing method of high-strength steel sheet with excellent material uniformity in the longitudinal direction of the steel sheet
JP2003253343A (en) Process for continuously heat treating metal strip
JPH09216011A (en) Method for controlling cooling of hot rolled steel sheet
JPH0857523A (en) Controlled cooling method
JPH0381009A (en) Method for controlling plate temperature in warm rolling of stainless steel strip
JP2006055887A (en) Method for controlling cooling of material to be rolled in hot rolling and method for manufacturing hot-rolled metallic sheet
JPS62166013A (en) Cooling method for hot steel slab whose thickness continuously varies in its longitudinal direction
JP3397967B2 (en) Rolling method for section steel
JPS6313608A (en) Width control method for stock to be rolled
JPH0558802B2 (en)