JPS62166013A - Cooling method for hot steel slab whose thickness continuously varies in its longitudinal direction - Google Patents

Cooling method for hot steel slab whose thickness continuously varies in its longitudinal direction

Info

Publication number
JPS62166013A
JPS62166013A JP61005191A JP519186A JPS62166013A JP S62166013 A JPS62166013 A JP S62166013A JP 61005191 A JP61005191 A JP 61005191A JP 519186 A JP519186 A JP 519186A JP S62166013 A JPS62166013 A JP S62166013A
Authority
JP
Japan
Prior art keywords
cooling
longitudinal direction
steel plate
temperature
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61005191A
Other languages
Japanese (ja)
Inventor
Masanao Yamamoto
山本 政尚
Motohiro Osada
元宏 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP61005191A priority Critical patent/JPS62166013A/en
Publication of JPS62166013A publication Critical patent/JPS62166013A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • B21B37/24Automatic variation of thickness according to a predetermined programme
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/02Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
    • B21B2001/028Slabs

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To improve the predicting accuracy of a cooling start temp. of a tapered steel slab and to reduce a temp. deviation of the slab at the end of cooling by predicting a cooling start temp. at plural dividing points in the slab longitudinal direction, considering the effect of a passing speed of the slab in a cooler. CONSTITUTION:A radiation thermometer 12 measures a temp. at plural dividing points in the longitudinal direction of a hot steel slab S prior to insertion of the slab S into a cooler 3. The measured temps. are inputted into a controlling calculator 4. Cooling conditions such as a cooling finishing temp., cooling speed by water cooling, and slab thickness are set in the calculator 4 and an optimum cooling condition for each dividing point is calculated. A slab passing speed according to the thickness of the slab S is corrected and a required cooling time is obtained based on the calculated cooling condition. In this method, the tapered slab S is totally cooled to a required temp.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は板厚が長手方向に連続的に変化する熱鋼板を
、これの長手方向に送りながら一定量の冷却水を供給し
て行う鋼板の冷却方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention is a hot steel plate whose thickness changes continuously in the longitudinal direction. The present invention relates to a cooling method.

〔従来の技術〕[Conventional technology]

熱間圧延鋼板の強制水冷却において、冷却終了温度は鋼
板材質に影響を与えるので、均一で所望の材質を有する
鋼板を得るには、鋼板各部を予め定められた温度にまで
商い精度で冷却しなければならない。熱鋼板の冷却終了
温度制一方法は特開昭60−87914号で提案されて
いる。この方法は、冷却開始、終了温度をT i 、 
Tψ、冷却速度全VC、冷却シー7長さをLcとおいた
時、V”=VclILc/(Ti−TψJ      
−−−−= (t)で得られる通板速度V*を基準通板
速度とし、鋼板長手方向冷却開始時間差による冷却開始
温度差を冷却ゾーン長間で通板速度の加速を行う事によ
り補正する方法である。
In forced water cooling of hot-rolled steel plates, the cooling end temperature affects the steel plate material, so in order to obtain a steel plate with a uniform desired material quality, each part of the steel plate must be cooled to a predetermined temperature with precision. There must be. A method of controlling the temperature at which cooling of a hot steel plate ends is proposed in Japanese Patent Application Laid-open No. 87914/1983. In this method, the cooling start and end temperatures are T i ,
When Tψ, cooling rate total VC, and cooling sea 7 length are set as Lc, V”=VclILc/(Ti−TψJ
−−−−= The threading speed V* obtained in (t) is set as the standard threading speed, and the cooling start temperature difference due to the difference in cooling start time in the longitudinal direction of the steel plate is corrected by accelerating the threading speed between the cooling zone lengths. This is the way to do it.

さらに特願昭60−93861号では冷却開始直前の温
度を取込み通板速度の修正を行う方法も提案されている
Furthermore, Japanese Patent Application No. 60-93861 proposes a method in which the temperature immediately before the start of cooling is taken in and the sheet threading speed is corrected.

これらの通板速度側−の考え方を第6図に示す。The concept of these threading speeds is shown in Figure 6.

1中v8は上記(1)式で得られる基準通板速度、Δv
lは長手方向冷却開始温度差を補う加速による通板速度
の変化、△v2は冷却開始温度取込みによる通板速度の
修正を示す。この第6図に示す通板速度制御は、ΔV!
+Δv2がV“に比べ小さい場合、すなわち鋼板長手方
向水冷冷却速度が一定とみなし得る定厚鋼板では実用上
十分な精[’irN している。
1, v8 is the standard threading speed obtained from the above formula (1), Δv
1 indicates a change in the threading speed due to acceleration to compensate for the difference in cooling start temperature in the longitudinal direction, and Δv2 indicates a correction of the threading speed by incorporating the cooling start temperature. The sheet threading speed control shown in FIG. 6 is based on ΔV!
When +Δv2 is smaller than V'', that is, in a steel plate of constant thickness where the water-cooling rate in the longitudinal direction of the steel plate can be considered constant, the precision ['irN] is sufficient for practical use.

又テーパ<−*VS板に代表される板厚が長手方向に連
続的に変化する鋼板は船舶の軽量化等に利用されており
非強制冷却似はすでに多くの製造実績がある。
Also, steel plates whose thickness changes continuously in the longitudinal direction, such as taper<-*VS plates, are used to reduce the weight of ships, and there are already many manufacturing results for non-forced cooling types.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

一定量の冷却水を供給して鋼板を通板させながら強制水
冷却を行う際の問題として、 ■ 通板速度全変化させる事による冷却終了温度への影
響は鋼板全長のうち冷却ゾーン長相当長に現われる。
Problems when performing forced water cooling while passing a steel plate by supplying a fixed amount of cooling water: ■ The effect on the cooling end temperature due to a total change in the passing speed is that the length of the steel plate equivalent to the cooling zone length is appears in

■ 鋼板長手方向冷却開始温度は通板速度の影響を受け
る。
■ The starting temperature of cooling in the longitudinal direction of the steel plate is affected by the threading speed.

の2点があけられる。There are two points.

さらに板厚が長手方向に連続的に変化する鋼板特有の問
題として、 ■ 長手方向空冷冷却速度差による冷却開始温度差。
Furthermore, there are problems specific to steel plates whose thickness changes continuously in the longitudinal direction: ■ Differences in cooling start temperature due to differences in air cooling speeds in the longitudinal direction.

■ 長手方向水冷冷却速度差。■Longitudinal water cooling speed difference.

がある。上記■、■02点はいずれも長手方向板厚差に
起因するもので、この為定厚鋼板に比べ大幅な通板速度
の加速が必要となる。
There is. The above points (2) and (2) are both caused by the difference in plate thickness in the longitudinal direction, and for this reason, it is necessary to significantly accelerate the threading speed compared to a constant thickness steel plate.

上記■は、鋼板全長のり、ち冷却ゾーン長さ相当分は常
に同時刻に冷却過程にある事によるもので、特願118
60−93861号の冷却終了温度制御は、この点を逆
に利用したものであるが、板厚が長手方向に連続的に変
化する鋼板の様に長手方向水冷冷却速度差を有し、大幅
な通板速度加速が要求される場合には、この制御方法は
長手方向冷却終了温度偏差一原因となる。
The above (■) is due to the fact that the entire length of the steel plate and the length of the cooling zone are always in the cooling process at the same time.
The cooling end temperature control in No. 60-93861 takes advantage of this point, but like a steel plate whose thickness changes continuously in the longitudinal direction, there is a difference in water cooling speed in the longitudinal direction, and there is a large difference in cooling rate. If acceleration of the threading speed is required, this control method may cause longitudinal end-of-cooling temperature deviations.

その理由を鋼板長手方向の点P、Q(第7図]について
考える。第7図(イ)に示す如く点PとQの間隔は冷却
シー7Rの長さSよりも短いとすると点PとQはある時
間tの間、同時に冷却される。
The reason for this is considered with respect to points P and Q (Fig. 7) in the longitudinal direction of the steel plate.As shown in Fig. 7 (a), if the distance between points P and Q is shorter than the length S of the cooling seam 7R, then point P and Q is simultaneously cooled for a certain time t.

点PとQは、第7図(ロ)に示す如く、冷却シー7内を
速度Vp 、 V’qにて通板される事により目標冷却
終了温匿にまで冷却される。ところで点PとQは上記時
間tの間、同時に冷却ゾーン内にあるのであるからこの
間ではvPとVQは等しくなければならない。今、仮に
点Qが冷却開始直前で通板速[VQでは目標冷却終了温
度にまで冷却できない事が判明し通板速度金弟7図中破
線で示されるv′QK変てしまり。従って鋼板長手方向
のある点の冷却終了温度?目標値に合わせようとして、
通板速度修正を行うと、他の点に対しては外乱として作
用し、鋼板内の冷却終了温度精度を低下させる事になる
As shown in FIG. 7(b), points P and Q are passed through the cooling sheath 7 at speeds Vp and V'q to be cooled to the target cooling end temperature. By the way, since points P and Q are simultaneously in the cooling zone during the above-mentioned time t, vP and VQ must be equal during this time. Now, suppose that point Q is just before the start of cooling, and it turns out that the sheet threading speed [VQ cannot be cooled to the target cooling end temperature, and the sheet threading speed V'QK shown by the broken line in Figure 7 changes. Therefore, what is the cooling end temperature at a certain point in the longitudinal direction of the steel plate? Trying to meet the target value,
If the sheet threading speed is corrected, it will act as a disturbance at other points, reducing the accuracy of the cooling end temperature within the steel sheet.

ま九前記■は、通板時の長手方向冷却開始時間差による
ものである。
(9) The above item (2) is due to the difference in cooling start time in the longitudinal direction during sheet passing.

従って板厚が長手方向に連続的に変化する鋼板に対して
前述した定厚鋼板に対する速度制御を適用し友のでは十
分な冷却終了温度精度が得られず、その結果、所望の鋼
板材質が得られず品質も鋼板全長にわ九って一様でない
Therefore, if the speed control described above for a constant thickness steel plate is applied to a steel plate whose thickness changes continuously in the longitudinal direction, sufficient accuracy of the cooling end temperature cannot be obtained, and as a result, the desired steel plate material cannot be obtained. However, the quality is not uniform across the entire length of the steel plate.

この発明は上記のような問題点を解決するためになされ
九もので、銅厚が長手方向に連続して変化する鋼板を冷
却するのに鋼板長手方向冷却開始温度予測精度を向上さ
せ冷却終了温度偏差を少なくシ、テーパー厚鋼板全体を
所望の温度にまで冷却する方法を提供する事を目的とす
る。
This invention was made to solve the above-mentioned problems, and it improves the accuracy of predicting the cooling start temperature in the longitudinal direction of the steel plate and improves the cooling end temperature when cooling a steel plate whose copper thickness changes continuously in the longitudinal direction. The purpose of the present invention is to provide a method for cooling the entire tapered thick steel plate to a desired temperature while minimizing deviation.

〔問題点全解決するための手段〕[Means to solve all problems]

本発明の要旨とするところは熱間圧延された鋼板を所定
の温度に強制冷却するのに、冷却開始温度、冷却終了温
度、冷却水の水着、冷却ゾーン長さ、および冷却時の通
板速度を予め設定して冷却する工程において、冷却設備
に装入する前に鋼板長手方向複数分割点の温度を実測し
て、その実測値に基づいて各分割点の最適冷却条件全演
算して、通板する鋼板の板厚に応じて冷却時の通板速度
を修正することを特徴とする板厚が長手方向に連続して
変化する熱鋼板の冷却方法である。
The gist of the present invention is to forcibly cool a hot-rolled steel plate to a predetermined temperature by determining the cooling start temperature, cooling end temperature, cooling water bathing temperature, cooling zone length, and sheet threading speed during cooling. In the process of setting and cooling the steel plate in advance, the temperature at multiple division points in the longitudinal direction of the steel plate is actually measured before loading it into the cooling equipment, and the optimum cooling conditions for each division point are all calculated based on the measured values. This is a method for cooling a hot steel plate whose thickness changes continuously in the longitudinal direction, which is characterized by modifying the threading speed during cooling according to the thickness of the steel plate to be plated.

〔作用〕[Effect]

鋼板の搬送および冷却は例えば次のようにして行われる
。すなわち冷却設備内およびその前後に配されtローラ
ーテーブルにより搬送され、冷却設備内のローラーテー
ブル間および上面に配され九ノズルより冷却水を供給し
て冷却を行う。
For example, the steel plate is transported and cooled as follows. That is, it is conveyed by T-roller tables arranged in and before and after the cooling equipment, and cooled by supplying cooling water from nine nozzles arranged between the roller tables in the cooling equipment and on the upper surface.

以下第1図で作用を説明する。第1図の曲f!aに予測
冷却開始温度Tiと通板速度Vの関係を、曲mbに通板
速度から求まる冷却開始温度’lI’iと通板速度Vと
の関係を示す。ここで予測冷却開始温度Tiは例えば、
予測位置の板厚を有する定厚鋼板の先端部冷却開始温度
として求める。今、予測冷却泡 開始温fj””E i lとすると、目標冷却終了温度
、板厚、冷却水水量より通板速度v1が求まる。次に通
板速度vlから予測位置の冷却開始時間を求め空冷冷却
速度より冷却開始温度Ti1t”計算する。第1図に示
す様にTi1)Tilの場合には予測冷却開始温度1T
i2と上げて再度、通板速度v2.冷却開始温度Tj1
を求める。順次この操作全繰返し、両冷却開始温度’r
ilとTilの差が許容値以下となる→通板速度Vを求
める。T il (T ilの場合には逆の操作を行う
The operation will be explained below with reference to FIG. Song f! in Figure 1! Curve a shows the relationship between the predicted cooling start temperature Ti and the sheet threading speed V, and curve mb shows the relationship between the cooling start temperature 'lI'i found from the sheet threading speed and the sheet threading speed V. Here, the predicted cooling start temperature Ti is, for example,
It is determined as the cooling start temperature of the tip of a constant thickness steel plate having the thickness at the predicted position. Now, assuming that the predicted cooling bubble start temperature is fj''''E i l, the sheet passing speed v1 can be determined from the target cooling end temperature, sheet thickness, and amount of cooling water. Next, the cooling start time at the predicted position is determined from the sheet threading speed vl, and the cooling start temperature Ti1t is calculated from the air-cooling cooling rate.As shown in Figure 1, in the case of Ti1), the predicted cooling start temperature is 1T.
Increase it to i2 and then increase the threading speed to v2. Cooling start temperature Tj1
seek. Repeat this operation in sequence until both cooling start temperatures 'r
The difference between il and Til becomes less than the allowable value → Find the threading speed V. T il (If T il, perform the opposite operation.

又、冷却開始温度予測位置が多い程、冷却終了温度精度
は同上する。
Also, the more cooling start temperature prediction positions there are, the higher the accuracy of the cooling end temperature will be.

〔実施列〕[Implementation row]

第2図はこの発明を実施する圧延〜冷却設備の一列金示
す設備構成図である。仕上圧延機1で圧延されt熱鋼板
Sはホットレペラー2で平担に矯正されたのち、冷却設
備3で強制水冷却される。
FIG. 2 is an equipment configuration diagram showing a line of rolling to cooling equipment for carrying out the present invention. A hot steel sheet S rolled by a finishing mill 1 is flattened by a hot leveler 2 and then forcedly cooled by water in a cooling equipment 3.

冷却設備3は複数の冷却シー77よりなり各冷却シー7
7にはそれぞれ複数の上下ロール対5および冷却水ノズ
ル8が配列されてい°る。鋼板Sは各設備間をローラー
テーブル6により搬送され、上下ローラ一対5.テーブ
ルローラー6はそれぞれモーター9,10.11により
駆動される。また仕上圧延機1と冷却設備3間には放射
温度計12が、冷却設備3の直後には放射温度計13お
よび鋼板検出器14がそれぞれ配置されている。これら
の検出値は制御計算機4に入力される。
The cooling equipment 3 includes a plurality of cooling seams 77, and each cooling seam 7
A plurality of upper and lower roll pairs 5 and cooling water nozzles 8 are arranged in each of the rollers 7 . The steel plate S is conveyed between each facility by a roller table 6, and a pair of upper and lower rollers 5. The table rollers 6 are driven by motors 9, 10.11, respectively. Further, a radiation thermometer 12 is arranged between the finishing rolling mill 1 and the cooling equipment 3, and a radiation thermometer 13 and a steel plate detector 14 are arranged immediately after the cooling equipment 3. These detected values are input to the control computer 4.

上記のように構成されt設備において、第3図に示す手
順に従って冷却制御がなされる。まず、冷却終了温度、
水冷冷却速度、板厚などの冷却条件を制御計算機4に設
定する。制御計算機4は、これら冷却条件に基づいて冷
却水水量、冷却ゾーン長の計算を行う。
In the equipment configured as described above, cooling control is performed according to the procedure shown in FIG. First, the cooling end temperature,
Cooling conditions such as water cooling rate and plate thickness are set in the control computer 4. The control computer 4 calculates the amount of cooling water and the length of the cooling zone based on these cooling conditions.

以下では、板厚が長手方向に直線的に変化するテーパ−
厚鋼板での実施列について述べる。
In the following, the taper plate thickness changes linearly in the longitudinal direction.
We will discuss the implementation row on thick steel plate.

鋼板長手方向の複数分割点の冷却開始m変音予測し、同
予測値と冷却条件より伝熱差分式を用いて必要冷却時間
、通板速度を求める。
The cooling start m sound at multiple division points in the longitudinal direction of the steel plate is predicted, and the required cooling time and strip threading speed are determined using the heat transfer difference formula from the predicted value and the cooling conditions.

通板速度は、−第4図を参照して以下に示す式に従って
求める。
The sheet threading speed is determined according to the formula shown below with reference to FIG.

A板先端からXの位置が冷却設備に入った時の設定速度
をv(x)、同位置の冷却時間”【(X)、冷却ゾーン
長音Lcとおくと次式が成立する。
If the set speed when the position X from the tip of plate A enters the cooling equipment is v(x), the cooling time at the same position is ``(X), and the cooling zone long note Lc, the following equation is established.

な、k(2)式で”(X)”一定として積分を実行する
と前記(υ式が得られる。
In addition, if the integration is performed in the k(2) equation with "(X)" constant, the above-mentioned (υ equation) is obtained.

第4図に先端からXの位置が冷却開始および冷却終了の
位置にある鋼板を示す。板厚f b 、に1.に□全冷
却条件より求まる定数とすると、 L (x) == K1 ” h ’        
・=・・・・・・(3)と現わされる。テーパー厚鋼板
ではh = a x + bとなるから(1)式は(2
) 、 (3)式よりとなる。(4)式の右辺を展開す
ると、Kl (a x + b )’ =:C6+c、
 x+02 x2+Q3xj+  ・・’(5)従って
(6)式ヲ(1)式に代入し積分を実行すると、dl do  ((x+L l−x l+−((x+L )2
−x2)+x=x i(i=1 、2 、  ・−−−
)について冷却条件より(7)式の右辺のt    f
求めcio l dl + dl + ”’ ””の連
(xiJ 立方程弐8)ヲ解けばv(x)は求められる。
FIG. 4 shows a steel plate in which the position X from the tip is the cooling start and cooling end position. Plate thickness f b , 1. □Assuming a constant determined from the total cooling conditions, L (x) == K1 ” h '
・=・・・・・・(3) For tapered thick steel plates, h = a x + b, so equation (1) becomes (2
), from equation (3). Expanding the right side of equation (4), Kl (a x + b )' =: C6 + c,
x+02 x2+Q3xj+...'(5) Therefore, by substituting equation (6) into equation (1) and performing integration, dl do
-x2)+x=x i(i=1, 2, ・---
), from the cooling conditions, t f on the right side of equation (7)
By solving the series (xiJ cubic degree 28), v(x) can be found.

d6((xl+LJ−)Li)+  ((xi−1−L
J”−xl2)−:<I’:+d鵞 +   ((xi+L13−1i3)−1・−−−=l
(、、”−f13)次に(8)式で得られた通板速度v
(x)を用いて、鋼板長手方向各部の冷却開始@度T 
i (x> を求め、同位置の予61111直’L’ 
t (x)との比較を行う。T t (x)を予測位置
の板厚を肩する定厚鋼板の先端部冷却開始温度を基準と
して、偏差Δ′rを加えた値とし、同位置の圧延終了l
ll1!度実績會TF (x) +空冷冷却速度をva
 (x戸圧蝿終了から先端部冷却開始までの時間t”t
oとおくと、 T1.)(x)=T F(x)  t 6 X V a
(x)+ΔT     ”’ ”’(9)一方、Ti 
(x)は、 となる。従って、 ここでαは許容値である。
d6((xl+LJ-)Li)+((xi-1-L
J"-xl2)-:<I':+d+ ((xi+L13-1i3)-1・---=l
(,,”-f13) Next, the threading speed v obtained from equation (8)
Using (x), start cooling of each part in the longitudinal direction of the steel plate @ degree T
Find i (x>
A comparison is made with t (x). T t (x) is the value obtained by adding the deviation Δ'r to the tip cooling start temperature of a constant thickness steel plate that covers the plate thickness at the predicted position, and the rolling end l at the same position.
ll1! Degree actual meeting TF (x) + air cooling cooling rate va
(x time from the end of door pressure to the start of tip cooling t"t
If we set o, then T1. )(x)=T F(x) t 6 X V a
(x) + ΔT ”'”' (9) On the other hand, Ti
(x) becomes . Therefore, here α is the tolerance value.

冷却開始温度子側位置x=xi (i=1,2.−・−
−−−Jに対して(8) 、 (9) 、 (10式を
用いて”(X)”収束計算により求める。
Cooling start temperature element side position x=xi (i=1, 2.-・-
---J is determined by "(X)" convergence calculation using equations (8), (9), and (10).

以上の方法によって得られた通板速度v(x)は制御計
算機4から上下ローラー5およびテーブルローラ6の駆
動モーター9,10.11に出力され、テーパー厚鋼板
Sの冷却終了温度゛rψが制御される。
The threading speed v(x) obtained by the above method is output from the control computer 4 to the drive motors 9, 10, 11 of the upper and lower rollers 5 and the table roller 6, and the cooling end temperature ゛rψ of the tapered thick steel plate S is controlled. be done.

第5図は冷却開始温度の測定列を示している。FIG. 5 shows a measurement sequence of cooling start temperatures.

測定対象材は、厚部板厚17.5m、薄部板厚12.5
日、板長20rI@、板巾3800mでアシ、許容値1
0℃で通板速度全決定している。第5図の直線aは板長
方向に一様な機械的性質金得るための冷却終了目標温度
、曲sbはこの発明により冷却制御した場合の実測列、
曲#NOは、冷却制御しない場合の測定列である。
The material to be measured is a thick part with a thickness of 17.5m and a thin part with a thickness of 12.5m.
Day, board length 20rI@, board width 3800m, reed, tolerance 1
The threading speed is fully determined at 0°C. The straight line a in FIG. 5 is the target temperature at which cooling ends to obtain uniform mechanical properties in the lengthwise direction of the plate, and the curve sb is the actual measurement line when cooling is controlled according to the present invention.
Song #NO is a measurement sequence when cooling control is not performed.

下記の第1表は、第5図に示す列の鋼板の機械的性質の
結果である。
Table 1 below gives the results of the mechanical properties of the steel plates in the row shown in FIG.

第1表 尚、板厚が長手方向に連続的に変化する鋼板は。Table 1 In addition, steel plates whose thickness changes continuously in the longitudinal direction.

等があるが、いずれも前述(8式のt (xl)’に変
更するだけで、実施列のテーパー厚鋼板と同じ手順で通
板速度が求まり、所望の温度にまで冷却することができ
る。
etc., but in any case, by simply changing to t (xl)' in the above-mentioned formula (8), the sheet threading speed can be determined in the same procedure as for the tapered thick steel sheet in the practical row, and the sheet can be cooled to the desired temperature.

〔発明の効果〕〔Effect of the invention〕

この発明では板厚が長手方向に連続的に変化する鋼板の
強制水冷却において鋼板長手方向複数分割点の冷却開始
温度を冷却設備通板速度の影響を考慮して予測する事に
より冷却開始温度の予測精度の向上ひいては冷却終了温
度精度を向上させることができ、その結果鋼板長手方向
各部は目標温度にまで冷却され、均一な所望の機械的性
質全得る事ができるという効果を奏する。
In this invention, in forced water cooling of a steel plate whose thickness changes continuously in the longitudinal direction, the cooling start temperature at multiple division points in the longitudinal direction of the steel plate is predicted by taking into account the influence of the cooling equipment threading speed. Improvement in prediction accuracy and, in turn, the accuracy of the cooling end temperature can be improved, and as a result, each portion in the longitudinal direction of the steel plate is cooled to the target temperature, resulting in the effect that all desired mechanical properties can be uniformly obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は冷却開始温度と冷却設備通板速度の関係を示す
図、第2図はこの発明を実施する圧延、冷却設備の列を
示す設備構成図、第3図はこの発明による冷却制御の手
順を示すフローチャート、第4図は鋼板内任意位置の冷
却開始と冷却終了における鋼板の位置を示す図、第5図
は冷却終了温度の測定列を示す図、第6図は従来の通仮
速度制(2)の考え方を示す模式図、第7図は鋼板の長
千方向各邪の冷却状態を示す図である。 代理人 弁理士  秋  沢  政  元利’a  9
1 端 沖5図 76図
Fig. 1 is a diagram showing the relationship between cooling start temperature and cooling equipment strip passing speed, Fig. 2 is an equipment configuration diagram showing a row of rolling and cooling equipment in which the present invention is implemented, and Fig. 3 is a diagram showing the cooling control according to the present invention. A flowchart showing the procedure, Figure 4 is a diagram showing the position of the steel plate at the start and end of cooling at an arbitrary position within the steel plate, Figure 5 is a diagram showing the measurement sequence of the cooling end temperature, and Figure 6 is the conventional passing speed. FIG. 7 is a schematic diagram showing the concept of control (2), and is a diagram showing the cooling state of the steel plate in each longitudinal direction. Agent Patent Attorney Masa Akizawa Mototoshi'a 9
1 Hataoki 5 figure 76 figure

Claims (2)

【特許請求の範囲】[Claims] (1)熱間圧延された鋼板を所定の温度に強制冷却する
のに、冷却開始温度、冷却終了温度、冷却水の水量、冷
却ゾーン長さ、および冷却時の通板速度を予め設定して
冷却する工程において、冷却設備に装入する前に鋼板長
手方向複数分割点の温度を実測して、その実測値に基づ
いて各分割点の最適冷却条件を演算して、通板する鋼板
の板厚に応じて冷却時の通板速度を修正することを特徴
とする板厚が長手方向に連続して変化する熱鋼板の冷却
方法。
(1) To forcefully cool a hot rolled steel plate to a predetermined temperature, the cooling start temperature, cooling end temperature, amount of cooling water, cooling zone length, and sheet threading speed during cooling are set in advance. In the cooling process, the temperature at multiple division points in the longitudinal direction of the steel sheet is actually measured before loading it into the cooling equipment, and the optimum cooling conditions for each division point are calculated based on the measured values to determine the temperature of the steel sheet to be threaded. A method for cooling a hot steel plate whose thickness changes continuously in the longitudinal direction, characterized by modifying the threading speed during cooling according to the thickness.
(2)冷却時の通板速度を決定するのに、まず冷却設備
に装入する前の鋼板温度を測定して、板厚差による板内
空冷冷却速度差を考慮して鋼板長手方向複数分割点の冷
却開始温度を予測し通板速度を求め、次にこの通板速度
より予測位置の冷却開始時間を計算して冷却開始温度を
求め、この冷却開始温度と先の予測値との差が許容値以
下となるよう収束計算をして通板速度を決定する特許請
求の範囲第1項の板厚が長手方向に連続して変化する熱
鋼板の冷却方法。
(2) To determine the threading speed during cooling, first measure the temperature of the steel plate before loading it into the cooling equipment, and then divide the steel plate into multiple sections in the longitudinal direction, taking into account the difference in air cooling rate within the plate due to the difference in plate thickness. Predict the cooling start temperature at a point and find the sheet threading speed. Next, calculate the cooling start time at the predicted position from this sheet threading speed to find the cooling start temperature. The difference between this cooling start temperature and the previous predicted value is calculated. A method for cooling a hot steel plate whose thickness changes continuously in the longitudinal direction as claimed in claim 1, wherein the threading speed is determined by performing a convergence calculation so as to be less than or equal to a permissible value.
JP61005191A 1986-01-14 1986-01-14 Cooling method for hot steel slab whose thickness continuously varies in its longitudinal direction Pending JPS62166013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61005191A JPS62166013A (en) 1986-01-14 1986-01-14 Cooling method for hot steel slab whose thickness continuously varies in its longitudinal direction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61005191A JPS62166013A (en) 1986-01-14 1986-01-14 Cooling method for hot steel slab whose thickness continuously varies in its longitudinal direction

Publications (1)

Publication Number Publication Date
JPS62166013A true JPS62166013A (en) 1987-07-22

Family

ID=11604327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61005191A Pending JPS62166013A (en) 1986-01-14 1986-01-14 Cooling method for hot steel slab whose thickness continuously varies in its longitudinal direction

Country Status (1)

Country Link
JP (1) JPS62166013A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102397875A (en) * 2010-09-16 2012-04-04 鞍钢股份有限公司 Production method of longitudinal variable-thickness steel plate
WO2013108419A1 (en) 2012-01-18 2013-07-25 Jfeスチール株式会社 Process for producing tapered plate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5138308A (en) * 1974-09-30 1976-03-31 Toray Industries MUKISEIKEITAIHYOMENNIFUTSUSOKEIFUIRUMUOSETSUCHAKUSURU HOHO
JPS6087914A (en) * 1983-10-19 1985-05-17 Nippon Steel Corp On-line cooling method of hot steel plate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5138308A (en) * 1974-09-30 1976-03-31 Toray Industries MUKISEIKEITAIHYOMENNIFUTSUSOKEIFUIRUMUOSETSUCHAKUSURU HOHO
JPS6087914A (en) * 1983-10-19 1985-05-17 Nippon Steel Corp On-line cooling method of hot steel plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102397875A (en) * 2010-09-16 2012-04-04 鞍钢股份有限公司 Production method of longitudinal variable-thickness steel plate
WO2013108419A1 (en) 2012-01-18 2013-07-25 Jfeスチール株式会社 Process for producing tapered plate

Similar Documents

Publication Publication Date Title
EP0228284B1 (en) Method of cooling hot-rolled steel plate
JPH0534093B2 (en)
JP2006281300A (en) Cooling control method, device, and computer program
JPS62166013A (en) Cooling method for hot steel slab whose thickness continuously varies in its longitudinal direction
JP2004034122A (en) Winding temperature controller
JP3423500B2 (en) Hot rolled steel sheet winding temperature control apparatus and method
JPH02179825A (en) Controller for cooling hot-rolled steel sheet
JPS61253112A (en) Control method for cooling steel plate
JP2006272395A (en) Method and apparatus for controlling cooling and computer program
JPS62166014A (en) Cooling method for hot steel plate with different thickness
JP3518504B2 (en) How to set cooling conditions for steel sheets
JPH1088236A (en) Apparatus for controlling heating furnace
JP4258341B2 (en) Manufacturing method of high-strength steel sheet with excellent material uniformity in the longitudinal direction of the steel sheet
JPH01162508A (en) Cooling control method for steel material
JPS62112732A (en) Cooling method for hot rolled steel sheet
JPS63317208A (en) Control device for cooling hot rolled steel strip
JP3558842B2 (en) Apparatus and method for cooling thick steel plate
JPS5831370B2 (en) Ondo Seigiyohou
JPH0857523A (en) Controlled cooling method
JPS58221235A (en) Cooling method of steel plate
JPS61266524A (en) Method for controlling cooling of steel product
JP2617667B2 (en) Method of controlling winding temperature of hot-rolled steel strip
JPH02112813A (en) Temperature control method for rolling and cooling of wire rod, bar or the like
JPS58119405A (en) Production of steel plate by direct rolling
JP2617666B2 (en) Method of controlling winding temperature of hot-rolled steel strip