JPH1150215A - Production of high strength and high electric conductivity copper alloy and copper alloy wire rod - Google Patents

Production of high strength and high electric conductivity copper alloy and copper alloy wire rod

Info

Publication number
JPH1150215A
JPH1150215A JP21086197A JP21086197A JPH1150215A JP H1150215 A JPH1150215 A JP H1150215A JP 21086197 A JP21086197 A JP 21086197A JP 21086197 A JP21086197 A JP 21086197A JP H1150215 A JPH1150215 A JP H1150215A
Authority
JP
Japan
Prior art keywords
copper alloy
copper
strength
silver
electric conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21086197A
Other languages
Japanese (ja)
Inventor
Masateru Ichikawa
雅照 市川
Tsukasa Kono
宰 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP21086197A priority Critical patent/JPH1150215A/en
Publication of JPH1150215A publication Critical patent/JPH1150215A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a copper alloy and a copper alloy wire rod realizing high strength and high electric conductivity and having excellent cold workability by casting an ingot of a copper alloy having a compsn. contg. specified ratios of oxygen and silver, and the balance copper with inevitable impurities and thereafter executing cooling at a cooling rate in a specified range. SOLUTION: The oxygen concn. of the copper alloy is regulated to 0.1 to 0.45 wt.%, and the silver concn. is regulated to 0.05 to 5 wt.%. In this way, copper in which cuprous oxide particles crystallized out at the time of solidification are finely dispersed at high density and dispersedly strengthened can be obtd. Furthermore, it is added with silver to form a Cu-Ag solid solution, which is subjected to solid solution strengthening, by which a copper alloy furthermore having higher strength can be obtd. Then, the cooling rate after casting is regulated to 3 to 100 deg.C/sec, preferably to the range of 10 to 30 deg.C/sec. In this way, the coarsening of the oxide particles is suppressed to increase its strength owing to the dispersion of the fine oxide particles. This copper alloy is subjected to wire drawing, by which the copper alloy wire rod having high strength and high electric conductivity can be obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、高い強度と導電
率を必要とする電線用導体に好適な銅合金と銅合金線材
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a copper alloy and a copper alloy wire suitable for a conductor for electric wires requiring high strength and electrical conductivity.

【0002】[0002]

【従来の技術】従来より各種電線の導体材料として、純
銅や銅希薄合金等が使用されているが、近年電線の高性
能化,高機能化のために、より高い強度と導電率を併せ
持つことが要求されるようになっている。一般に純銅や
銅合金等の高強度化の方法としては、線材化の工程で
高い加工率を与えて加工硬化させる方法、合金元素を
添加する方法、酸化物を微細に分散させる方法、等が
ある。の方法には、微細な金属粉末と微細な酸化物粉
末とを混合して焼結させる粉末冶金法や、マトリクス中
に固溶させた添加元素を熱処理による酸化させる内部酸
化法等がある。
2. Description of the Related Art Conventionally, pure copper and diluted copper alloys have been used as conductor materials for various electric wires. In recent years, in order to improve the performance and function of electric wires, they have to have higher strength and electrical conductivity. Is required. In general, methods for increasing the strength of pure copper, copper alloys, and the like include a method of giving a high working rate in the process of forming a wire and work hardening, a method of adding an alloy element, a method of finely dispersing an oxide, and the like. . Examples of the method include a powder metallurgy method in which fine metal powder and fine oxide powder are mixed and sintered, and an internal oxidation method in which an additive element dissolved in a matrix is oxidized by heat treatment.

【0003】[0003]

【発明が解決しようとする課題】の方法は、線材を線
径が小さくなるまで加工することを要する。最終的な線
径をそれほど小さくできないとすれば、初期線径を大き
くすることが必要になる。いずれにしても、適用できる
電線サイズに大きな制限が加えられるという難点があ
る。の方法は、合金元素の添加による強度と導電率
は、一方が向上すれば他方が低下するというトレードオ
フの関係にあり、両立が難しい。また、析出強化を利用
する場合、溶体化と時効の2段階の熱処理工程が必要に
なるため、コストがかさむ。の方法は、いずれも工程
が複雑である上、一度に作ることができる量に制限があ
るという難点を有する。
The method described above requires processing the wire rod until the wire diameter becomes small. If the final wire diameter cannot be so reduced, it is necessary to increase the initial wire diameter. In any case, there is a drawback that the applicable wire size is greatly restricted. In the method (1), there is a trade-off relationship between strength and conductivity due to the addition of an alloy element, in which one improves and the other decreases, and it is difficult to achieve both. In addition, when precipitation strengthening is used, a two-step heat treatment step of solution treatment and aging is required, so that the cost is increased. The above methods have the disadvantage that the steps are complicated and the amount that can be produced at one time is limited.

【0004】この発明は、上記問題を解決すべくなされ
たもので、微細な亜酸化銅粒子を高密度に分散させて高
強度と高導電率特性を実現すると共に、優れた冷間加工
性を有する高強度高導電率銅合金及び銅合金線材の製造
方法を提供することを目的とする。
The present invention has been made to solve the above problems, and realizes high strength and high electrical conductivity by dispersing fine cuprous oxide particles at a high density, and has excellent cold workability. An object of the present invention is to provide a method for producing a high-strength high-conductivity copper alloy and a copper alloy wire having the same.

【0005】[0005]

【課題を解決するための手段】この発明に係る高強度高
導電率銅合金は、0.1乃至0.45重量%の酸素及び
0.05乃至5重量%の銀を含有し、残部が銅及び不可
避的不純物からなる銅合金の鋳塊を、鋳込み後3乃至1
00℃/secの冷却速度で冷却することにより作製す
ることを特徴とする。この発明に係る高強度高導電率銅
合金線材の製造方法は、0.1乃至0.45重量%の酸
素及び0.05乃至5重量%の銀を含有し、残部が銅及
び不可避的不純物からなる銅合金の鋳塊を、鋳込み後3
乃至100℃/secの冷却速度で冷却することにより
作製した後、これを伸線加工することを特徴とする。
The high-strength and high-conductivity copper alloy according to the present invention contains 0.1 to 0.45% by weight of oxygen and 0.05 to 5% by weight of silver, with the balance being copper. And an ingot of copper alloy consisting of unavoidable impurities, 3 to 1 after casting
It is manufactured by cooling at a cooling rate of 00 ° C./sec. The method for producing a high-strength and high-conductivity copper alloy wire according to the present invention comprises 0.1 to 0.45% by weight of oxygen and 0.05 to 5% by weight of silver, and the balance consists of copper and unavoidable impurities. Ingot of copper alloy
After being manufactured by cooling at a cooling rate of from 100 ° C./sec to 100 ° C./sec, the wire is drawn.

【0006】本発明者等が、銅中の酸素濃度及び鋳造条
件について検討した結果、酸素濃度を0.1乃至0.4
5重量%の範囲に設定することにより、凝固時に晶出す
る酸化物(亜酸化銅)粒子が微細且つ高密度に分散し
て、分散強化された銅が得られることが明らかになっ
た。更に、銅(Cu)中に銀(Ag)を添加して、Cu
−Ag固溶体とし、固溶強化させることにより、一層強
度の高い銅合金が得られることが明らかになった。酸素
濃度が0.1重量%より低いと、酸化物粒子の分散密度
が低く、強度の増加が十分でない。逆に酸素濃度が0.
45重量%を越えると、粗大な酸化物が晶出するように
なり、これは材料の延性を低下させて、冷間加工が困難
になる。一方、鋳込み直後の冷却速度が3℃/secよ
り遅いと、酸化物粒子が粗大化して、分散強化の効果が
得られない。また、100℃/secまでの冷却速度で
効果が得られることも確認されている。好ましくは、冷
却速度を10乃至30℃/secに設定することによ
り、酸化物粒子の粗大化を抑制して、微細酸化物粒子分
散による高強度化が図られる。銀の濃度は、0.05重
量%より低いと、銀による固溶化作用が十分に得られ
ず、また5重量%を越えると加工性が低下して線材とし
ての伸線加工が困難になる。
The present inventors have studied the oxygen concentration in copper and the casting conditions, and found that the oxygen concentration was 0.1 to 0.4.
By setting the content in the range of 5% by weight, it has been clarified that oxide (copper oxide) particles crystallized during solidification are finely and densely dispersed to obtain dispersion-strengthened copper. Furthermore, silver (Ag) is added to copper (Cu), and Cu (Cu) is added.
It has been clarified that a copper alloy having higher strength can be obtained by forming a solid solution of -Ag and strengthening the solid solution. When the oxygen concentration is lower than 0.1% by weight, the dispersion density of the oxide particles is low, and the strength is not sufficiently increased. Conversely, when the oxygen concentration is 0.
Above 45% by weight, coarse oxides crystallize, which reduces the ductility of the material and makes cold working difficult. On the other hand, if the cooling rate immediately after casting is lower than 3 ° C./sec, the oxide particles become coarse and the effect of dispersion strengthening cannot be obtained. It has also been confirmed that the effect can be obtained at a cooling rate of 100 ° C./sec. Preferably, by setting the cooling rate to 10 to 30 ° C./sec, coarsening of the oxide particles is suppressed, and high strength is achieved by fine oxide particle dispersion. If the concentration of silver is lower than 0.05% by weight, a sufficient solution effect by silver cannot be obtained, and if it exceeds 5% by weight, the processability is lowered and the wire drawing as a wire becomes difficult.

【0007】[0007]

【発明の実施の形態】以下、この発明の実施例を説明す
る。原料である無酸素銅をアルミナ製ルツボを用いて、
大気中で約1200℃の温度で溶解した後、24mmφ
の鉄製鋳型に鋳込み、約3kgのインゴットを作った。
溶解時に同時に、Cu−O及び粒状銀(Ag)を添加し
て、酸素濃度及びAg濃度を種々変化させたサンプルを
作った。ただし、通常のタフピッチ銅レベルの酸素濃度
を得るサンプル(比較例1)ついては、カーボン製ルツ
ボを用い、Cu−O添加を行っていない。また鋳込み直
後の冷却速度を種々異ならせたサンプルを作った。冷却
速度は鋳型を冷却(或いは加熱)することにより、コン
トロールした。具体的に冷却速度は、鋳型に熱電対を取
り付け、温度の時間変化を記録することにより、求め
た。なお実施例の場合、バッチ処理の溶解炉を用いてお
り、この場合ルツボは空冷により3乃至100℃/se
cの冷却速度を得ることができるが、真空溶解炉を用い
た連続鋳造の場合は、液体N2或いはCO2を用いたガス
吹き付けにより冷却すれば上述の範囲の冷却速度を得る
ことが可能である。
Embodiments of the present invention will be described below. Using an alumina crucible, oxygen-free copper as a raw material,
After melting at a temperature of about 1200 ° C in the atmosphere, 24mmφ
Into an ingot of about 3 kg.
Simultaneously with the dissolution, Cu-O and granular silver (Ag) were added to prepare samples in which the oxygen concentration and the Ag concentration were variously changed. However, for a sample (Comparative Example 1) that obtains an oxygen concentration at a normal tough pitch copper level, a carbon crucible was used, and no Cu-O was added. In addition, samples were prepared with various cooling rates immediately after casting. The cooling rate was controlled by cooling (or heating) the mold. Specifically, the cooling rate was determined by attaching a thermocouple to the mold and recording the time change of the temperature. In the case of the embodiment, a melting furnace for batch processing is used. In this case, the crucible is air-cooled at 3 to 100 ° C./sec.
Although a cooling rate of c can be obtained, in the case of continuous casting using a vacuum melting furnace, a cooling rate in the above range can be obtained by cooling by gas spraying using liquid N 2 or CO 2. is there.

【0008】その後、各インゴットに対して室温でスェ
ージングと伸線加工を行い、6.4mmφまで加工した
後、500℃,1時間の焼鈍をした。この焼鈍は、熱間
加工工程でも代用できるが、酸化物の粗大化を防止する
ため、800℃以下とすることが好ましい。焼鈍後の各
サンプルについて、室温で更に加工率90%の伸線加工
を行った。
Thereafter, each ingot was swaged and drawn at room temperature, processed to 6.4 mmφ, and then annealed at 500 ° C. for 1 hour. This annealing can be used in the hot working step, but is preferably 800 ° C. or lower in order to prevent the oxide from becoming coarse. For each sample after annealing, wire drawing was further performed at room temperature at a processing rate of 90%.

【0009】各サンプルについて、引張強度及び導電率
を評価した。その結果を下記表1に示す。冷間加工性の
評価は、加工率90%の伸線加工で断線しなかったもの
を○、加工率90%の途中で断線はしたが、断線回数が
2回以下で伸線可能と判定されたものを△、加工率90
%の伸線加工が不可能なものを×とした。
Each sample was evaluated for tensile strength and electrical conductivity. The results are shown in Table 1 below. The cold workability was evaluated as follows: た indicates that the wire was not broken by wire drawing with a working ratio of 90%, and the wire was broken in the middle of the working ratio of 90%. △, processing rate 90
When the wire drawing process of% was impossible, it was evaluated as x.

【0010】[0010]

【表1】 [Table 1]

【0011】表1から、酸素及びAgを適量含有する実
施例1〜3は、酸素含有量がタフピッチ銅レベルでAg
を含まない比較例1に比べて、引張強度が高く、導電率
低下も5%以下に抑えられている。比較例2は、酸素濃
度が比較例1よりは高いが実施例1〜5に比べて低く、
0.07重量%であり、またAgを含まないため引張強
度が実施例1〜3に比べて低い。比較例3及び4は、酸
素濃度が高過ぎるため、延性が低下しており、加工率9
0%の伸線加工は不可能であった。酸素とAgを僅かに
添加した比較例5は、Ag添加のない比較例1〜4に比
べると引張強度が高いが、まだ十分ではない。Ag濃度
が高すぎる比較例6は、加工性が悪く、加工率90%の
伸線加工は不可能であった。
From Table 1, it can be seen that Examples 1 to 3 containing an appropriate amount of oxygen and Ag had an oxygen content of Ag at the tough pitch copper level.
In comparison with Comparative Example 1 containing no, the tensile strength was high and the decrease in conductivity was suppressed to 5% or less. Comparative Example 2 has a higher oxygen concentration than Comparative Example 1, but lower than Examples 1 to 5,
0.07% by weight and does not contain Ag, so that the tensile strength is lower than those of Examples 1 to 3. In Comparative Examples 3 and 4, the ductility was reduced because the oxygen concentration was too high, and the processing rate was 9%.
0% wire drawing was not possible. Comparative Example 5 in which oxygen and Ag were slightly added had higher tensile strength than Comparative Examples 1 to 4 in which Ag was not added, but was still insufficient. In Comparative Example 6 in which the Ag concentration was too high, workability was poor, and wire drawing at a work ratio of 90% was impossible.

【0012】[0012]

【発明の効果】以上述べたようにこの発明によれば、
0.1乃至0.45重量%の酸素及び0.05乃至5重
量%の銀を含有し、残部が銅及び不可避的不純物からな
る銅の鋳塊を、鋳込み後3乃至100℃/secの冷却
速度で冷却することにより作製した後、これを伸線加工
することにより、高強度高導電率の銅合金線材を得るこ
とができる。
As described above, according to the present invention,
A copper ingot containing 0.1 to 0.45% by weight of oxygen and 0.05 to 5% by weight of silver, the balance being copper and unavoidable impurities, is cooled at 3 to 100 ° C./sec after casting. After being manufactured by cooling at a high speed, a copper alloy wire having high strength and high conductivity can be obtained by wire drawing.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 661 C22F 1/00 661A 681 681 685 685Z 692 692A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification symbol FI C22F 1/00 661 C22F 1/00 661A 681 681 685 685Z 692 692A

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 0.1乃至0.45重量%の酸素及び
0.05乃至5重量%の銀を含有し、残部が銅及び不可
避的不純物からなる銅合金鋳塊を、鋳込み後3乃至10
0℃/secの冷却速度で冷却することにより作製する
ことを特徴とする高強度高導電率銅合金。
1. A copper alloy ingot containing 0.1 to 0.45% by weight of oxygen and 0.05 to 5% by weight of silver and the balance of copper and unavoidable impurities is cast from 3 to 10% after casting.
A high-strength, high-conductivity copper alloy produced by cooling at a cooling rate of 0 ° C./sec.
【請求項2】 0.1乃至0.45重量%の酸素及び
0.05乃至5重量%の銀を含有し、残部が銅及び不可
避的不純物からなる銅合金鋳塊を、鋳込み後3乃至10
0℃/secの冷却速度で冷却することにより作製した
後、これを伸線加工することを特徴とする高強度高導電
率銅合金線材の製造方法。
2. A copper alloy ingot containing 0.1 to 0.45% by weight of oxygen and 0.05 to 5% by weight of silver, with the balance being copper and unavoidable impurities, is cast from 3 to 10% after casting.
A method for producing a high-strength and high-conductivity copper alloy wire, wherein the wire is formed by cooling at a cooling rate of 0 ° C./sec and then drawn.
JP21086197A 1997-08-05 1997-08-05 Production of high strength and high electric conductivity copper alloy and copper alloy wire rod Pending JPH1150215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21086197A JPH1150215A (en) 1997-08-05 1997-08-05 Production of high strength and high electric conductivity copper alloy and copper alloy wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21086197A JPH1150215A (en) 1997-08-05 1997-08-05 Production of high strength and high electric conductivity copper alloy and copper alloy wire rod

Publications (1)

Publication Number Publication Date
JPH1150215A true JPH1150215A (en) 1999-02-23

Family

ID=16596324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21086197A Pending JPH1150215A (en) 1997-08-05 1997-08-05 Production of high strength and high electric conductivity copper alloy and copper alloy wire rod

Country Status (1)

Country Link
JP (1) JPH1150215A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5250123B1 (en) * 2012-02-17 2013-07-31 株式会社日立製作所 Method for manufacturing rotor coil for variable speed generator motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5250123B1 (en) * 2012-02-17 2013-07-31 株式会社日立製作所 Method for manufacturing rotor coil for variable speed generator motor

Similar Documents

Publication Publication Date Title
JP4674483B2 (en) Copper material manufacturing method and copper material
WO2011125554A1 (en) Cu-ni-si-co copper alloy for electronic material and process for producing same
CN106676334B (en) High-strength high-conductivity aluminium-scandium alloy and its preparation method and application
JP3383615B2 (en) Copper alloy for electronic materials and manufacturing method thereof
JP2009167450A (en) Copper alloy and producing method therefor
JPH0718354A (en) Copper alloy for electronic appliance and its production
JP3324228B2 (en) Copper wire for ultrafine wire and method of manufacturing the same
JP3325639B2 (en) Manufacturing method of high strength and high conductivity copper alloy
JP2956696B1 (en) High strength and high conductivity copper alloy and its processing method
JP3325641B2 (en) Method for producing high-strength high-conductivity copper alloy
JPH1150215A (en) Production of high strength and high electric conductivity copper alloy and copper alloy wire rod
JPH1150214A (en) Production of high strength and high electric conductivity copper and copper wire rod
JP3325640B2 (en) Method for producing high-strength high-conductivity copper alloy
JP2646430B2 (en) High conductivity and high heat resistant copper alloy and method for producing the same
JP2001049367A (en) High strength, high conductivity and high heat resistance copper base alloy and its production
KR19990048844A (en) Copper (Cu) -nickel (Ni) -manganese (Mn) -tin (Sn) -silicon (Si) alloys for high-strength wire and plate and its manufacturing method
JP3407527B2 (en) Copper alloy materials for electronic equipment
JP3325638B2 (en) Method for producing high-strength high-conductivity copper alloy
JPH10152736A (en) Copper alloy material and its production
JP3718036B2 (en) Extra fine copper wire and method for producing the same
US3107998A (en) Copper-zirconium-arsenic alloys
JP2628235B2 (en) Method for producing high heat-resistant aluminum alloy wire for conductive use
JP2618560B2 (en) Production method of copper alloy
JPH0285330A (en) Copper alloy having good press bendability and its manufacture
JPH1053824A (en) Copper alloy for contact material, and its production