JPH1145873A - Plasma-ashing method - Google Patents

Plasma-ashing method

Info

Publication number
JPH1145873A
JPH1145873A JP14000398A JP14000398A JPH1145873A JP H1145873 A JPH1145873 A JP H1145873A JP 14000398 A JP14000398 A JP 14000398A JP 14000398 A JP14000398 A JP 14000398A JP H1145873 A JPH1145873 A JP H1145873A
Authority
JP
Japan
Prior art keywords
substrate
plasma
resist film
ashing
processing chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14000398A
Other languages
Japanese (ja)
Other versions
JP3218348B2 (en
Inventor
Masashi Kikuchi
正志 菊池
Tokuo Watabe
篤雄 渡部
Toshinari Takada
俊成 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP14000398A priority Critical patent/JP3218348B2/en
Publication of JPH1145873A publication Critical patent/JPH1145873A/en
Application granted granted Critical
Publication of JP3218348B2 publication Critical patent/JP3218348B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain the ashing of a resist film whose surface layer is hardened and converted, and to attain the ashing of the resist film without giving damages to a substrate. SOLUTION: A substrate 1 to which a resist film is applied is provided in a evacuated processing chamber 4, and a vacuum air discharge outlet and a reactive gas inlet port equipped with a heating means for heating the substrate and a plasma-generating device 9 are provided in the vacuum-processing chamber. This is a method for removing the resist film of the substrate by operating the ashing of the resist film by plasma. A front electrode 13 is provided on the front face of the substrate so as to be faced with an interval in which plasma can be generated, and a rear electrode 16 is provided on the back face of the substrate so as to be faced with an interval in which plasma does not generate. Then, one of the electrodes is connected with a high-frequency power source, the other electrode is connected with ground, the etching of the surface layer of the resist film is carried out, both the electrodes are grounded, the generator is operated, and the ashing of the resist film on the substrate is attained by plasma.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体の基板に塗
布されたレジスト膜を、プラズマを利用してアッシング
(灰化)することにより除去するプラズマアッシング方
法に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a plasma ashing method for removing a resist film applied to a semiconductor substrate by ashing (ashing) using plasma.

【0002】[0002]

【従来の技術】微細な集積回路を加工するために、半導
体の基板の表面に回路パターンを形成したレジスト膜を
設け、該レジスト膜を介してその下層の絶縁膜、半導体
膜或いは金属膜をエッチングすることが行われている。
2. Description of the Related Art In order to process a fine integrated circuit, a resist film having a circuit pattern formed thereon is provided on a surface of a semiconductor substrate, and an insulating film, a semiconductor film or a metal film thereunder is etched through the resist film. That is being done.

【0003】該レジスト膜は、エッチング処理が終了し
たのち基板表面から除去されるが、その除去方法には過
酸化水素、有機溶剤などの化学薬品を使用する湿式処理
方法と、酸素プラズマを主とする反応性ガスのプラズマ
を用いてレジスト膜をアッシング(灰化)する乾式処理
方法とがある。
[0003] The resist film is removed from the substrate surface after the etching process is completed. The removal method mainly includes a wet processing method using a chemical such as hydrogen peroxide and an organic solvent, and an oxygen plasma. There is a dry processing method in which the resist film is ashed (ashed) by using plasma of a reactive gas to be applied.

【0004】該湿式処理方法に使用される薬品には人体
に有害なものが多く、除去作業の安全性の維持や廃液の
公害防止に注意を払う必要があって煩わしい。しかも使
用される薬品は多少は不純物を含むので、これが半導体
回路のパターンの欠損や汚染の原因となり、超LSIの
微細な加工には適しない。
Many of the chemicals used in the wet processing method are harmful to the human body, and it is troublesome to pay attention to maintaining the safety of the removing operation and preventing pollution of the waste liquid. In addition, the chemicals used contain some impurities, which cause defects or contamination of the pattern of the semiconductor circuit, and are not suitable for fine processing of VLSI.

【0005】これに対し乾式処理方法は、基板に塗布さ
れたCXYZのレジスト膜に、反応性ガスのプラズマ
中に生じたラジカル、主として酸素ラジカルを反応さ
せ、該レジスト膜をCO2及びH2Oへ分解・気化するこ
とによって除去するので、湿式処理方法のような人体へ
の有害物の発生がなく、不純物を含まないので基板の微
細加工に適している。
On the other hand, in the dry processing method, radicals generated in the plasma of the reactive gas, mainly oxygen radicals, are reacted with the C X H Y N Z resist film applied to the substrate, and the resist film is CO 2 Since it is removed by decomposition and vaporization into H 2 O and H 2 O, there is no generation of harmful substances to the human body as in a wet processing method, and it is suitable for fine processing of a substrate because it contains no impurities.

【0006】該乾式処理方法に使用される装置の概略は
図1の如くであり、レジスト膜が塗布された基板(1)
を、放電管で構成した反応性ガスの導入口(2)と真空排
気口(3)を備えた真空処理室(4)内の加熱手段(5)の上方
に置き、該導入口(2)に接続した反応性ガス源(6)から導
入される酸素ガス或いはこれに少量CF4、N2、もしく
はH2を混入した反応性ガスを、マイクロ波電源(7)に接
続したプラズマ発生部(8)からなるプラズマ発生装置(9)
によりプラズマ化し、酸素ラジカルその他の反応性ガス
のラジカルを加熱された基板(1)上のレジスト膜と反応
させ、該レジスト膜を分解・気化して該真空排気口(3)
から真空ポンプ(11)により排出することにより除去す
る。
The apparatus used in the dry processing method is schematically shown in FIG. 1, and a substrate (1) coated with a resist film is used.
Is placed above a heating means (5) in a vacuum processing chamber (4) provided with a reactive gas inlet (2) constituted by a discharge tube and a vacuum exhaust port (3), and the inlet (2) Oxygen gas introduced from a reactive gas source (6) connected thereto or a reactive gas containing a small amount of CF 4 , N 2 , or H 2 mixed therein with a plasma generator (7) connected to a microwave power supply (7) Plasma generator (9) consisting of (8)
By the plasma, oxygen radicals and other reactive gas radicals are reacted with the resist film on the heated substrate (1), the resist film is decomposed and vaporized, and the vacuum exhaust port (3)
And is removed by discharging with a vacuum pump (11).

【0007】[0007]

【発明が解決しようとする課題】前記図1の装置は 反
応ガスが真空処理室の上方から基板の表面を沿って流
れ、該真空処理室の下方に設けた真空排気口から排出さ
れるのでダウンストリーム型アッシング装置と称され、
この装置は荷電粒子が基板に衝突することがなく、基板
に形成された回路パターンを損傷することがない点で有
利である。しかし乍ら、近時は、基板に塗布されたレジ
スト膜をマスクとして利用し、該基板の表面に局部的に
不純物をイオン注入することが回路の微細化に伴い頻繁
に行われるようになってきており、この場合、図2に見
られるように、マスクとして利用したレジスト膜(10)は
イオンビームの照射を受けてその表層部分(10a)が硬化
変質し、該レジスト膜(10)をアッシングして除去するこ
とが困難になる欠点がある。
In the apparatus shown in FIG. 1, the reactant gas flows from above the vacuum processing chamber along the surface of the substrate and is discharged from a vacuum exhaust port provided below the vacuum processing chamber, so that the apparatus is down. It is called a stream type ashing device,
This device is advantageous in that charged particles do not collide with the substrate and do not damage circuit patterns formed on the substrate. In recent years, however, the use of a resist film applied to a substrate as a mask and local ion implantation of impurities on the surface of the substrate has been frequently performed with miniaturization of circuits. In this case, as can be seen in FIG. 2, the resist film (10) used as a mask is irradiated with an ion beam and its surface layer (10a) is cured and deteriorated, and the resist film (10) is ashed. There is a drawback that it is difficult to remove it.

【0008】本発明は、表層の硬化変質したレジスト膜
をアッシングにより除去する方法を提供することを第1
の目的とし、その第2の目的は基板にダメージを与える
ことなくレジスト膜をアッシングにより除去することに
ある。
It is a first object of the present invention to provide a method for removing a hardened and deteriorated resist film on a surface layer by ashing.
The second purpose is to remove the resist film by ashing without damaging the substrate.

【0009】[0009]

【課題を解決するための手段】本発明では、真空処理室
内にレジスト膜が塗布された基板を設け、該真空処理室
に、真空排気口と、該基板を加熱する加熱手段及びプラ
ズマ発生装置を備えた反応性ガスの導入口とを設け、該
基板のレジスト膜を該プラズマによりアッシングして除
去する方法に於いて、該基板の前面にプラズマが発生し
得る間隔を存して対向した前方電極を設けると共に該基
板の背面にプラズマが発生しない狭い間隔を存して対向
する後方電極を設け、両電極の一方を高周波電源に接続
すると共に他方をアースに接続してレジスト膜の表層を
エッチングする工程を終えたのち、両電極をアースに接
続すると共にプラズマ発生装置を作動させて該反応性ガ
スのプラズマにより基板上のレジスト膜をアッシングす
ることにより、上記の目的を達成するようにした。該前
方電極を高周波電源に接続すると共に該後方電極をアー
スに接続してレジスト膜の表層をエッチングする工程を
終えたのち、両電極をアースに接続すると共にプラズマ
発生装置を作動させて該反応性ガスのプラズマにより基
板上のレジスト膜をアッシングすることにより、基板に
ダメージを与えずにアッシングできる。該基板の前面に
対向して設けられる前方電極を多数の透孔を有する平板
状の電極で構成することにより、該透孔を介して前記導
入口から導入される反応性ガスの活性なラジカルが基板
表面へ均一に到達し得、レジスト膜が均一にアッシング
を受けて除去される。また該基板とその背後の後方電極
との間隔は、プラズマが発生しない例えば1mmの狭い
間隔に設定される。
According to the present invention, a substrate coated with a resist film is provided in a vacuum processing chamber, and a vacuum exhaust port, heating means for heating the substrate, and a plasma generator are provided in the vacuum processing chamber. A reactive gas introduction port provided therein, wherein the resist film on the substrate is removed by ashing with the plasma, and the front electrode is opposed to the front surface of the substrate at an interval where plasma can be generated. And a rear electrode opposed to the back surface of the substrate at a small interval where no plasma is generated, and one of the two electrodes is connected to a high-frequency power source and the other is connected to ground to etch the surface layer of the resist film. After completion of the process, both electrodes are connected to the ground, and the plasma generator is operated to ashing the resist film on the substrate with the plasma of the reactive gas, thereby forming an upper electrode. And so as to achieve the purpose of. After the step of connecting the front electrode to a high-frequency power source and connecting the rear electrode to ground and etching the surface layer of the resist film is completed, both electrodes are connected to ground and the plasma generator is operated to activate the reactive gas. Ashing a resist film on a substrate by gas plasma can perform ashing without damaging the substrate. By forming the front electrode provided to face the front surface of the substrate with a plate-like electrode having a large number of holes, active radicals of the reactive gas introduced from the inlet through the holes are formed. The resist film can uniformly reach the substrate surface, and the resist film is uniformly removed by ashing. The distance between the substrate and the rear electrode behind the substrate is set to a narrow distance of, for example, 1 mm at which no plasma is generated.

【0010】[0010]

【作用】基板の表面に塗布されたレジスト膜の表層がイ
オンビームの照射を受けて硬化変質している場合、該基
板を真空処理室内に置き、導入口から排気口へと反応性
ガスを流し、該基板の背面に対向した後方電極に高周波
電源を接続し、該基板の前面の前方電極をアースする。
基板と後方電極の間隔はその間にプラズマが発生しない
程狭く設定されているので、基板はほぼ後方電極と同電
位になり、しかも高周波電源からの高い高周波電位が加
わって負電位となるので、該基板とアース電位の前方電
極との間でプラズマ放電が発生する。該プラズマ中のイ
オンは基板の電位に引かれて移動し、該基板の前面に衝
突する。該基板の表面に塗布されたレジスト膜はイオン
の衝突によりスパッタされ、該レジスト膜の硬化変質し
た表層の部分を物理的に剥離除去することができる。
When the surface layer of the resist film applied on the surface of the substrate is cured and deteriorated by the irradiation of the ion beam, the substrate is placed in a vacuum processing chamber, and a reactive gas is supplied from the inlet to the exhaust port. A high-frequency power source is connected to a rear electrode facing the rear surface of the substrate, and the front electrode on the front surface of the substrate is grounded.
Since the distance between the substrate and the rear electrode is set so narrow that no plasma is generated between the substrate and the substrate, the substrate has almost the same potential as the rear electrode. Plasma discharge occurs between the substrate and the front electrode at ground potential. The ions in the plasma move due to the potential of the substrate and collide with the front surface of the substrate. The resist film applied to the surface of the substrate is sputtered by ion bombardment, and the hardened and deteriorated surface layer of the resist film can be physically peeled off.

【0011】該表層の硬化変質した部分の除去が終わる
と、加熱手段により基板を加熱し、後方電極の接続を高
周波電源からアースに切換えると共にプラズマ発生装置
を作動させる。これによって導入口から真空処理室へ導
入される反応性ガスがプラズマで励起され、発生する反
応性ガスのラジカルが基板に残るレジスト膜と化学反応
し、該残りのレジスト膜はアッシングされて基板面から
高速で除去され、その分解・気化成分が排気口から排除
される。
When the hardened and deteriorated portion of the surface layer has been removed, the substrate is heated by the heating means, the connection of the rear electrode is switched from the high frequency power source to the ground, and the plasma generator is operated. As a result, the reactive gas introduced from the inlet into the vacuum processing chamber is excited by plasma, and the radicals of the generated reactive gas chemically react with the resist film remaining on the substrate, and the remaining resist film is ashed to the substrate surface. At high speed, and its decomposition and vaporization components are removed from the exhaust port.

【0012】該基板の表面のダメージが心配される場
合、高周波電源を前方電極に接続し、後方電極をアース
する。この場合、該前方電極が負電位となり、基板はア
ース電位となるので、その間に発生するプラズマ中のイ
オンは基板の表面にダメージを与えぬように緩く衝突
し、基板のレジスト膜は緩くスパッタされる。該レジス
ト膜の表面の硬化変質した部分がスパッタにより剥離し
終わると、基板を加熱手段により加熱し、前方電極の接
続を高周波電源からアースに切換ると共にプラズマ発生
装置を作動させ、真空処理室に導入される反応性ガスの
ラジカルにより残りのレジスト膜を高速でアッシングし
て除去する。
When the surface of the substrate is likely to be damaged, a high frequency power supply is connected to the front electrode and the rear electrode is grounded. In this case, the front electrode is at a negative potential, and the substrate is at the ground potential, so that ions in the plasma generated during the collision gently collide so as not to damage the surface of the substrate, and the resist film of the substrate is sputtered loosely. You. When the hardened and deteriorated portion of the surface of the resist film is peeled off by sputtering, the substrate is heated by a heating means, the connection of the front electrode is switched from the high frequency power supply to the ground, and the plasma generator is operated, and the vacuum processing chamber is opened. The remaining resist film is ashed at high speed and removed by the radicals of the introduced reactive gas.

【0013】反応性ガスのラジカルは前方電極の透孔を
介して基板の前面へと流れ、レジスト膜全体を均一にア
ッシングする。
The radicals of the reactive gas flow to the front surface of the substrate through the through holes of the front electrode, and uniformly ashing the entire resist film.

【0014】該後方電極と基板の背面との狭い間隔はそ
の間でプラズマが発生しないような例えば1mmの間隔
で設定される。
The narrow distance between the rear electrode and the rear surface of the substrate is set to, for example, 1 mm so that no plasma is generated therebetween.

【0015】[0015]

【発明の実施の形態】本発明の実施例を図2に基づき説
明する。同図に於いて、符号(1)乃至(9)及び(11)は図1
の同一符号で示したものと同一のものを指称し、基板
(1)の表面には、図1の場合と同様にレジスト膜(10)が
塗布され、イオンビームの照射を受けて該レジスト膜(1
0)の表層(10a)に硬化変質した層が形成されていること
も図1の場合と同様である。
An embodiment of the present invention will be described with reference to FIG. In the figure, reference numerals (1) to (9) and (11) denote FIG.
Nominate the same thing as shown by the same reference
A resist film (10) is applied to the surface of (1) in the same manner as in FIG.
A hardened and deteriorated layer is formed on the surface layer (10a) of (0) as in the case of FIG.

【0016】図3に示す本発明の実施例は、図1の構成
に加え、基板(1)の前面にプラズマが発生し得る間隔(1
4)を存して対向した前方電極(13)を設けると共に該基板
(1)の背面にプラズマが発生しない狭い間隔(15)を存し
て対向した後方電極(16)を設け、これらの電極(13)(16)
を200W、13.56MHzの高周波電源(17)とアース(18)と
に選択的に接続するように構成される。両電極(13)(16)
は例えば20mmの間隔で設けられ、真空処理室(4)内
は例えば数Torr乃至10-2Torrに調節される。
The embodiment of the present invention shown in FIG. 3 has, in addition to the configuration of FIG. 1, an interval (1) at which plasma can be generated on the front surface of the substrate (1).
4) providing a front electrode (13) opposed to the substrate and
On the back of (1), a rear electrode (16) opposed to the electrode with a small interval (15) where plasma is not generated is provided, and these electrodes (13) (16)
Is selectively connected to a 200 W, 13.56 MHz high frequency power supply (17) and a ground (18). Both electrodes (13) (16)
Are provided at intervals of, for example, 20 mm, and the inside of the vacuum processing chamber (4) is adjusted to, for example, several Torr to 10 -2 Torr.

【0017】この場合、該前方電極(13)は図4に見られ
るように、多数の透孔(19)を開口形成した平板状電極で
構成され、各透孔(19)のうち中央部のものを直径28m
mの大径の透孔(19a)に形成し、残りのものを直径1m
mの小径の透孔(19b)に形成した。該小径の透孔(19b)は
1mmの間隔を存して約1000個形成した。また該狭
い間隔(15)、例えば1mmの間隔を保持するために、後
方電極(16)を挿通して前方へ1mm突出した状態で停止
出来る図5のようなピン(20)を複数本設け、該ピン(20)
の上に基板(1)を載せるようにした。
In this case, as shown in FIG. 4, the front electrode (13) is composed of a plate-like electrode having a large number of through holes (19) formed therein. Thing 28m in diameter
m with a large diameter through hole (19a) and the remaining one is 1m in diameter.
It was formed in a small diameter through hole (19b). About 1,000 small-diameter through holes (19b) were formed at intervals of 1 mm. Also, in order to maintain the narrow interval (15), for example, an interval of 1 mm, a plurality of pins (20) as shown in FIG. 5 that can be stopped by being inserted into the rear electrode (16) and protruding 1 mm forward are provided, The pin (20)
The substrate (1) was placed on the substrate.

【0018】ガス源(6)から真空処理室(4)内に送られる
反応性ガスは、酸素ガス、N2ガス、CF4ガス、H2
ス、或いは酸素ガスに少量のCF4、N2、もしくはH2
を混入したもの、或いはN2ガスとH2ガスの混合ガスが
使用される。
The reactive gas sent from the gas source (6) into the vacuum processing chamber (4) is oxygen gas, N 2 gas, CF 4 gas, H 2 gas, or a small amount of CF 4 , N 2 gas in oxygen gas. Or H 2
Or a mixed gas of N 2 gas and H 2 gas is used.

【0019】図3の装置により硬化変質した表層(10a)
を有するレジスト膜(10)をアッシングにより基板(1)か
ら除去する場合の作動を説明すると次の通りである。
Surface layer (10a) hardened and deteriorated by the apparatus shown in FIG.
The operation for removing the resist film (10) having the above from the substrate (1) by ashing will be described as follows.

【0020】該基板(1)の表面のダメージが余り問題に
ならないときは、真空処理室(4)内を例えば10-1Torr
とし、ガス源(6)から排気口(3)へ反応性ガスを例えば5
000SCCMの割合で流し、前方電極(13)をアース(18)に
接続すると共に後方電極(16)を高周波電源(17)に接続す
る。該基板(1)は後方電極(16)との間隔(15)が狭いので
後方電極(16)と同電位の負電位となり、前方電極(13)と
の間隔(14)に反応性ガスのプラズマが発生し、該プラズ
マ中のイオンが基板(1)の表面のレジスト膜(10)をエッ
チングする。該レジスト膜(10)の硬化変質した表層(10
a)がエッチングにより剥離され終わると、基板(1)を加
熱手段(5)により例えば200℃に加熱し、後方電極(1
6)をアース(18)に接続すると共にプラズマ発生装置(9)
のマイクロ波電源(7)を入れてプラズマ発生部(8)に反応
性ガスのプラズマを発生させる。これによって発生した
該反応性ガスのラジカル主として酸素ラジカルが、基板
(1)上に残るレジスト膜(10)と化学反応し、該レジスト
膜(10)はアッシングされて基板(1)から急速に除去され
る。
When the damage on the surface of the substrate (1) is not a serious problem, the inside of the vacuum processing chamber (4) is kept at, for example, 10 -1 Torr.
And a reactive gas, for example, 5 from the gas source (6) to the exhaust port (3).
Flow at a rate of 000 SCCM, and connect the front electrode (13) to the ground (18) and connect the rear electrode (16) to the high frequency power supply (17). Since the distance between the substrate (1) and the rear electrode (16) (15) is narrow, the substrate (1) has the same negative potential as the rear electrode (16), and the reactive gas plasma is applied to the distance (14) from the front electrode (13). Are generated, and ions in the plasma etch the resist film (10) on the surface of the substrate (1). The cured and deteriorated surface layer of the resist film (10) (10
When the a) is removed by etching, the substrate (1) is heated to, for example, 200 ° C. by the heating means (5), and the rear electrode (1) is heated.
6) is connected to the earth (18) and the plasma generator (9)
The microwave power supply (7) is turned on to generate a plasma of a reactive gas in the plasma generating section (8). Oxygen radicals, mainly the radicals of the reactive gas generated by this,
(1) It chemically reacts with the resist film (10) remaining on the resist film, and the resist film (10) is ashed and rapidly removed from the substrate (1).

【0021】該基板(1)がダメージを受け易いものであ
る場合、スイッチ(55)を切換えて前方電極(13)を高周波
電源(17)に接続し、後方電極(16)をアース(18)に接続す
る。これによって間隔(14)に反応性ガスのプラズマが発
生するが、そのプラズマ中のイオンは前方電極(13)が負
電位であるために、ほぼアース電位の基板(1)にはイオ
ンが強い衝撃で突入することがなく、緩く衝突するので
基板(1)にダメージを与えずにソフトにレジスト膜(10)
をエッチング出来る。このエッチングでレジスト膜(10)
の硬化変質した表層(10a)が剥離され終わると、前方電
極(13)をアース(18)に接続し、基板(1)を加熱し、プラ
ズマ発生装置(9)を作動させ、基板(1)に残るレジスト膜
(10)がアッシングにより急速に除去される。
When the substrate (1) is easily damaged, the switch (55) is switched to connect the front electrode (13) to the high frequency power supply (17) and to connect the rear electrode (16) to the ground (18). Connect to As a result, a plasma of the reactive gas is generated in the interval (14), and the ions in the plasma are strongly impacted on the substrate (1) almost at the ground potential because the front electrode (13) has a negative potential. The resist film (10) is soft without damaging the substrate (1) because it collides loosely without entering
Can be etched. With this etching, resist film (10)
When the hardened and deteriorated surface layer (10a) is peeled off, the front electrode (13) is connected to the ground (18), the substrate (1) is heated, the plasma generator (9) is operated, and the substrate (1) Remaining resist film
(10) is rapidly removed by ashing.

【0022】レジスト膜(10)は基板(1)の前面に塗布さ
れるが、実際には図6のように多少基板(1)の背面にも
まわり込んで付着することが多く、この背面のレジスト
膜の除去は従来のアッシング装置では困難であったが、
該基板(1)と狭い間隔(15)存して後方電極(16)を設ける
ことにより、酸素ラジカル等の反応性ラジカルが該間隔
(15)に進入し、該背面のレジスト膜をアッシングにより
除去することが出来る。
The resist film (10) is applied to the front surface of the substrate (1). However, in practice, as shown in FIG. Although removal of the resist film was difficult with a conventional ashing device,
By providing the rear electrode (16) at a small distance (15) from the substrate (1), reactive radicals such as oxygen radicals
(15), the resist film on the rear surface can be removed by ashing.

【0023】本発明の更に具体的な実施例を、図7乃至
図9に基づき説明すると、これらの図面に於いて符号(4
7)は枠状の機体を示し、該機体(47)の上方に真空処理室
(4)が取り付けられる。該真空処理室(4)の側方にはプラ
ズマ発生装置(9)が設けられ、該プラズマ発生装置(9)の
内部を通って該真空処理室(4)内へと反応性ガス源(6)か
ら連通する反応性ガス導入管(41)の導入口(2)が設けら
れる。更に、該真空処理室(4)の側方でプラズマ発生装
置(9)から約90°旋回した位置に、バルブ(48)を介し
て該真空処理室(4)内へ基板(1)を搬出入するトランスフ
ァー室(49)が設けられ、該トランスファー室(49)には更
にカセット室(21)が連続して設けられる。該カセット室
(21)内にはその外部から導入した2組の昇降杆(22)によ
り夫々個別に昇降される2台のテーブルが設けられ、各
テーブル上に側方から出し入れ自在に複数枚の基板を収
容する図10のような棚状のカセットケース(23a)(23b)
が載せられる。
A more specific embodiment of the present invention will be described with reference to FIGS. 7 to 9.
7) shows a frame-shaped body, and a vacuum processing chamber is provided above the body (47).
(4) is attached. A plasma generator (9) is provided beside the vacuum processing chamber (4), and a reactive gas source (6) passes through the inside of the plasma generator (9) into the vacuum processing chamber (4). ) Is provided with an inlet (2) of a reactive gas inlet pipe (41) communicating therewith. Further, the substrate (1) is unloaded into the vacuum processing chamber (4) via the valve (48) at a position turned about 90 ° from the plasma generator (9) beside the vacuum processing chamber (4). A transfer room (49) is provided therein, and a cassette room (21) is further provided in the transfer room (49). The cassette room
(21) is provided with two tables which are individually raised and lowered by two sets of lifting rods (22) introduced from the outside, and accommodates a plurality of substrates on each table so that they can be taken in and out from the side. The shelf-shaped cassette case (23a) (23b) as shown in FIG.
Is placed.

【0024】一方のカセットケース(23a)にはアッシン
グされる基板が収められ、該基板はテーブルの下降と該
トランスファー室(49)内に設けた例えば図11のような
フロッグアーム状の搬送装置(24)によって、該カセット
ケース(23a)の下段のものから該搬送装置(24)の旋回と
伸縮でバルブ(48)を介して真空処理室(4)内の定位置に
送られる。真空処理室(4)内に於いて、該基板にアッシ
ング処理を施す間、該バルブ(49)は閉じられ、搬送装置
(24)はトランスファー室(49)内で待機する。アッシング
処理が終わると、再び搬送装置(24)が開かれたバルブ(1
9)を介して真空処理室(4)内へ進出し、アッシング処理
された基板を載せてトランスファー室(49)内へ戻り、該
搬送装置(24)上の基板は他のカセットケース(23b)内へ
該搬送装置(24)の伸長により運び込まれ、該カセットケ
ース(23b)の上昇により所定の位置に収容される。処理
済みの基板が他のカセットケース(23b)に収められる
と、もう一方のカセットケース(23a)から次の基板を真
空処理室(4)へと運び出すことを繰り返して順次に基板
のアッシング処理が行われる。
A substrate to be ashed is stored in one cassette case (23a), and the substrate is lowered and a frog arm-shaped transfer device (for example, as shown in FIG. 11) provided in the transfer chamber (49). According to 24), the cassette case (23a) is sent to the fixed position in the vacuum processing chamber (4) via the valve (48) by the rotation and expansion and contraction of the transfer device (24). In the vacuum processing chamber (4), the valve (49) is closed during the ashing process on the substrate, and the transfer device is
(24) waits in the transfer room (49). When the ashing process is completed, the transfer device (24) is opened again with the valve (1) opened.
9), enters the vacuum processing chamber (4), returns the ashed substrate to the transfer chamber (49), and transfers the substrate on the transfer device (24) to another cassette case (23b). The cassette device (24b) is carried into the inside by extension of the transport device (24), and is housed at a predetermined position by raising the cassette case (23b). When the processed substrate is stored in another cassette case (23b), the next substrate is transported from the other cassette case (23a) to the vacuum processing chamber (4), and the substrate ashing process is sequentially performed. Done.

【0025】該真空処理室(4)の下方にスロットルバル
ブ(25)を備えた真空排気管(50)が接続され、該真空処理
室(4)内を真空ポンプ(11)で真空に排気するが、該真空
排気管(50)の途中を分岐してカセット室(21)に接続し、
該カセット室(21)内も真空に排気されるようにした。
A vacuum exhaust pipe (50) having a throttle valve (25) is connected below the vacuum processing chamber (4), and the inside of the vacuum processing chamber (4) is evacuated by a vacuum pump (11). However, the middle of the vacuum exhaust pipe (50) is branched and connected to the cassette chamber (21),
The inside of the cassette chamber (21) was also evacuated to a vacuum.

【0026】図7及び図8に於いて、符号(26)はマイク
ロ波発振装置を示し、これにより発生したマイクロ波が
導波管(27)を介してプラズマ発生装置(9)に導入され
る。
In FIGS. 7 and 8, reference numeral (26) indicates a microwave oscillating device, and the generated microwave is introduced into the plasma generating device (9) through the waveguide (27). .

【0027】該プラズマ発生装置(9)の詳細は、図12
及び図13の如くであり、反応性ガス源(6)に連なる反
応性ガス導入管(41)の中間部の石英チューブ(41a)と交
叉するように前記導波管(27)が設けられ、該交叉部に於
いて反応性ガスがマイクロ波により励起されてプラズマ
を発生し、励起された反応性元素のラジカルが真空処理
室(4)に送り込まれる。該プラズマ発生装置(9)のケーシ
ング(9a)には、冷却水が循環する通路(28)が設けられて
プラズマ放電によるケーシングの高温化を防止するよう
にした。該ケーシング(9a)の石英製チューブ(41a)の端
部と対向する位置に、石英窓(29)を介して水銀ランプ(3
0)を設け、プラズマ放電の開始時に該水銀ランプ(30)を
点灯して石英製チューブ(41a)内の反応性ガスの光イオ
ン化を行い、マイクロ波放電の開始を迅速に行えるよう
にした。またマイクロ波の導波管(27)内の端部に、該ケ
ーシング(9a)を介して外部へ延びる調節ねじ(31)の旋回
により進退するスライドブロック(32)を設け、その進退
によりプラズマ放電のマッチングを行うようにした。
The details of the plasma generator (9) are shown in FIG.
13, and the waveguide (27) is provided so as to intersect with the quartz tube (41a) in the middle of the reactive gas introduction pipe (41) connected to the reactive gas source (6), At the intersection, the reactive gas is excited by the microwave to generate plasma, and radicals of the excited reactive element are sent to the vacuum processing chamber (4). The casing (9a) of the plasma generator (9) is provided with a passage (28) through which cooling water circulates to prevent the casing from becoming hot due to plasma discharge. A mercury lamp (3) is placed on the casing (9a) at a position facing the end of the quartz tube (41a) through a quartz window (29).
0), the mercury lamp (30) was turned on at the start of the plasma discharge to perform photoionization of the reactive gas in the quartz tube (41a), so that the microwave discharge could be started quickly. A slide block (32) is provided at the end of the microwave waveguide (27) at the end of the microwave (27) so as to advance and retreat by turning an adjustment screw (31) extending to the outside through the casing (9a). Was made to match.

【0028】真空処理室(4)内の詳細は、図14に示す
如くであり、上下方向の円筒形の空室で形成され、その
側部上方に、基板(1)をトランスファー室(49)との間で
出し入れするための開口(33)と、該開口(33)から90°
旋回した位置に反応性ガス導入管(41)の端部とが開口形
成される。そして、該真空処理室(4)の開口(33)よりも
少し下方に、複数本のポリテトラフルオロエチレン製の
絶縁材のサポート(34)により該真空処理室(4)の底面に
支えられた円形状の凹部(35a)を有するAl2O3製のホルダ
(35)を設け、該凹部(35a)内に円板状のシーズ型ヒータ
からなる加熱手段(5)を収めるようにした。該加熱手段
(5)の上面はAl2O3製の絶縁板(36)で覆われ、該加熱手段
(5)の上面の周縁はSiO2製のリング(37)で覆われるよう
にした。また円板状の加熱手段(5)及びホルダ(35)にこ
れらを上下に挿通する透孔(38)を120°の間隔を存し
て3個設け、該ホルダ(35)の背後から昇降装置(39)によ
り上下に移動する3本の石英製のピン(40)が前記各透孔
(38)に夫々挿通される。そして真空処理室(4)内へ開口
(33)を介して搬送装置(24)によって基板(1)が搬入され
ると、加熱手段(5)を挿通して上昇する各ピン(40)で該
搬送装置(24)から持ち上げるようにして支え、該搬送装
置(24)が該開口(33)から退去したのち各ピン(40)が降下
して加熱手段(5)の上面から1〜2mmの上方に基板(1)
を位置させ、該基板(1)のレジスト膜のエッチング、ア
ッシング及びアッシングのための加熱が行われる。該基
板(1)のアッシングが終わると、各ピン(40)により再び
加熱手段(5)の上方へ基板(1)が持ち上げられ、該加熱手
段(5)と基板(1)との間に搬送装置(24)が進入すると、各
ピン(40)が降下し、その降下途中に於いて基板(1)は搬
送装置(24)に保持され、真空処理室(4)の開口(33)から
運び出される。
The details of the inside of the vacuum processing chamber (4) are as shown in FIG. 14, which is formed by a vertical cylindrical chamber, and the substrate (1) is provided above the side thereof with the transfer chamber (49). And an opening (33) for taking in and out between the opening (33) and 90 ° from the opening (33).
An opening is formed at the pivoted position with the end of the reactive gas introduction pipe (41). A little below the opening (33) of the vacuum processing chamber (4), it was supported on the bottom surface of the vacuum processing chamber (4) by a plurality of polytetrafluoroethylene insulating material supports (34). Al 2 O 3 holder with circular recess (35a)
(35) was provided, and a heating means (5) composed of a disk-shaped sheathed heater was accommodated in the recess (35a). The heating means
(5) of the upper surface is covered with a made of Al 2 O 3 insulating plate (36), heating means
The periphery of the upper surface of (5) was covered with a ring (37) made of SiO 2 . Further, three through holes (38) for vertically inserting these into the disk-shaped heating means (5) and the holder (35) are provided at intervals of 120 °, and a lifting device is provided from behind the holder (35). The three quartz pins (40), which move up and down by (39), are
(38) is inserted respectively. And opened into the vacuum processing chamber (4)
When the substrate (1) is carried in by the transfer device (24) via (33), the pins (40) that are inserted and raised by the heating means (5) are lifted from the transfer device (24). After the transfer device (24) withdraws from the opening (33), the pins (40) are lowered and the substrate (1) is moved upward by 1 to 2 mm from the upper surface of the heating means (5).
And heating for etching, ashing, and ashing of the resist film on the substrate (1) is performed. When the ashing of the substrate (1) is completed, the substrate (1) is lifted again above the heating means (5) by the pins (40) and transported between the heating means (5) and the substrate (1). When the device (24) enters, each pin (40) descends, and during the descent, the substrate (1) is held by the transfer device (24) and carried out from the opening (33) of the vacuum processing chamber (4). It is.

【0029】該昇降装置(39)は、真空処理室(4)の底面
からその外部へとシール装置(59)を介して延びる昇降杆
(39a)と、該昇降杆(39a)の上端に取り付けられた昇降プ
レート(39b)と、該昇降杆(39b)の下端に取り付けられた
連結プレート(39c)、及び該連結プレート(39c)に螺合す
るねじ軸(39d)を備えており、該真空処理室(4)の外部の
固定のプレート(42)に取り付けたシンクロナスモータ(4
3)の回転がその出力軸(44)及びアイドル歯車(45)を介し
てプレート(42)に支承されたねじ軸(39d)と一体の歯車
(39e)に伝達されると、該ねじ軸(39d)が回転し、連結プ
レート(39c)及び昇降杆(39a)を上昇或いは下降させ、こ
れに伴って昇降プレート(39c)がピン(40)と共に昇降す
る。該ピン(40)はその根部を昇降プレート(39c)の穴(39
f)に挿通させ、ばね(39g)により固定した。
The elevating device (39) is an elevating rod extending from the bottom surface of the vacuum processing chamber (4) to the outside via a sealing device (59).
(39a), an elevating plate (39b) attached to the upper end of the elevating rod (39a), a connecting plate (39c) attached to the lower end of the elevating rod (39b), and the connecting plate (39c). It has a screw shaft (39d) for screwing, and a synchronous motor (4) attached to a fixed plate (42) outside the vacuum processing chamber (4).
The rotation of 3) is a gear integrated with the screw shaft (39d) supported on the plate (42) via its output shaft (44) and idle gear (45).
(39e), the screw shaft (39d) rotates to raise or lower the connecting plate (39c) and the elevating rod (39a), and accordingly the elevating plate (39c) moves the pin (40) It goes up and down with. The pin (40) has its root at the hole (39) of the lifting plate (39c).
f) and fixed with a spring (39 g).

【0030】真空処理室(4)内の開口(33)とガス導入管
(41)の導入口(2)との間に位置して、内方に突出する段
部(46)が設けられ、該段部(46)に、中央部に大径の透孔
(19a)を有し且つその周囲に小径の透孔(19b)を有する円
形平板の前方電極(13)を絶縁材(52)を介して載せ、該真
空処理室(4)内が該前方電極(13)により2室(53)(54)に
区画されるようにした。該前方電極(13)は真空処理室
(4)の外部のスイッチ(55)を介して高周波電源(17)或い
はアース(18)に選択的に接続される。
Opening (33) in vacuum processing chamber (4) and gas inlet pipe
An inwardly protruding step (46) is provided between the inlet (2) of (41) and a large-diameter through hole in the center of the step (46).
(19a) and a circular flat front electrode (13) having a small-diameter through hole (19b) therearound is placed via an insulating material (52), and the inside of the vacuum processing chamber (4) is the front electrode. (13) is divided into two rooms (53) and (54). The front electrode (13) is a vacuum processing chamber.
It is selectively connected to a high frequency power supply (17) or a ground (18) via an external switch (55) of (4).

【0031】また、加熱手段(5)には、真空処理室(4)の
外部の電源からの配線(56)(57)が接続され、その通電に
より該加熱手段(5)が基板(1)の加熱のために発熱する
が、該加熱手段(5)に、これを支える1本のサポート(3
4)内を挿通して真空処理室(4)の外部から導電軸(58)を
導入接続し、該導電軸(58)をスイッチ(55)を介して高周
波電源(17)或いはアース(18)に選択的に接続することに
より該加熱手段(5)が後方電極(16)として作用するよう
にした。
The heating means (5) is connected to wirings (56) and (57) from a power source outside the vacuum processing chamber (4), and the heating means (5) is energized so that the substrate (1) The heating means (5) generates heat due to the heating of the heating means (5).
4) penetrate the inside and introduce and connect the conductive shaft (58) from the outside of the vacuum processing chamber (4), and connect the conductive shaft (58) to the high frequency power supply (17) or the ground (18) via the switch (55). And the heating means (5) acts as a rear electrode (16).

【0032】[0032]

【発明の効果】以上のように、本発明によるときは、ア
ッシングされる基板の前面に、プラズマ発生可能な間隔
を存して前方電極を設けると共に該基板の背面にプラズ
マが発生しない狭い間隔を存して後方電極を設け、両電
極の一方を高周波電源に接続すると共に他方をアースに
接続してレジスト膜の表層をエッチングする工程を終え
たのち、両電極をアースに接続すると共にプラズマ発生
装置を作動させて該反応性ガスのプラズマにより基板上
のレジスト膜をアッシングするので、基板上の硬化変質
した表層を有するレジスト膜をきれいに除去することが
でき、前方電極を高周波電源に接続すると共に上記後方
電極をアースに接続してレジスト膜の表層をエッチング
することにより、基板のダメージを防ぎ乍らアッシング
を行える等の効果がある。
As described above, according to the present invention, the front electrode is provided on the front surface of the substrate to be ashed with a space capable of generating plasma, and the narrow space where plasma is not generated is formed on the back surface of the substrate. After the process of etching the surface layer of the resist film by connecting one of the electrodes to the high-frequency power source and connecting the other to the ground and connecting the other electrode to the ground, a plasma generator is provided. Is operated to ashing the resist film on the substrate with the plasma of the reactive gas, so that the resist film having a hardened and deteriorated surface layer on the substrate can be removed cleanly, and the front electrode is connected to a high-frequency power source and By connecting the back electrode to the ground and etching the surface layer of the resist film, ashing can be performed while preventing damage to the substrate. A.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来のアッシング装置の断面線図FIG. 1 is a sectional view of a conventional ashing device.

【図2】基板に塗布されたレジスト膜の拡大断面図FIG. 2 is an enlarged sectional view of a resist film applied to a substrate.

【図3】本発明の実施例の断面線図FIG. 3 is a sectional view of an embodiment of the present invention.

【図4】図3の前方電極の拡大平面図FIG. 4 is an enlarged plan view of the front electrode of FIG. 3;

【図5】図3の基板の保持状態を示す斜視図FIG. 5 is a perspective view showing a holding state of the substrate of FIG. 3;

【図6】基板全体のレジスト膜の塗布状態を示す拡大断
面図
FIG. 6 is an enlarged sectional view showing a coated state of a resist film on the entire substrate.

【図7】本発明の装置の一部を截断した具体的側面図FIG. 7 is a specific side view in which a part of the device of the present invention is cut.

【図8】図7のVIII−VIII線に沿った截断側面図8 is a sectional side view taken along the line VIII-VIII in FIG. 7;

【図9】第7図のIX−IX線に沿った截断平面図9 is a cut-away plan view along the line IX-IX in FIG. 7;

【図10】カセットケースの斜視図FIG. 10 is a perspective view of a cassette case.

【図11】搬送装置の要部の拡大平面図FIG. 11 is an enlarged plan view of a main part of the transfer device.

【図12】プラズマ発生装置の拡大截断側面図FIG. 12 is an enlarged sectional side view of a plasma generator.

【図13】図12の右側面図FIG. 13 is a right side view of FIG.

【図14】真空処理室の拡大截断側面図FIG. 14 is an enlarged sectional side view of a vacuum processing chamber.

【符号の説明】[Explanation of symbols]

(1)…基板、(2)…反応性ガスの導入口、(3)…排気口、
(4)…真空処理室、(5)…加熱手段、(9)…プラズマ発生
装置、(10)…レジスト膜、(10a)…硬化変質した表層、
(13)…前方電極、(14)…間隔、(15)…狭い間隔、(16)…
後方電極、(17)…高周波電源、(18)…アース、(19)…透
孔、
(1) ... substrate, (2) ... inlet for reactive gas, (3) ... outlet
(4) ... vacuum processing chamber, (5) ... heating means, (9) ... plasma generator, (10) ... resist film, (10a) ... hardened and deteriorated surface layer,
(13) ... front electrode, (14) ... spacing, (15) ... narrow spacing, (16) ...
Rear electrode, (17) high frequency power supply, (18) earth, (19) through hole,

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】真空処理室内にレジスト膜が塗布された基
板を設け、該真空処理室に、真空排気口と、該基板を加
熱する加熱手段及びプラズマ発生装置を備えた反応性ガ
スの導入口とを設け、該基板のレジスト膜を該プラズマ
によりアッシングして除去する方法に於いて、該基板の
前面にプラズマが発生し得る間隔を存して対向した前方
電極を設けると共に該基板の背面にプラズマが発生しな
い狭い間隔を存して対向する後方電極を設け、両電極の
一方を高周波電源に接続すると共に他方をアースに接続
してレジスト膜の表層をエッチングする工程を終えたの
ち、両電極をアースに接続すると共にプラズマ発生装置
を作動させて該反応性ガスのプラズマにより基板上のレ
ジスト膜をアッシングすることを特徴とするプラズマア
ッシング方法。
A substrate coated with a resist film is provided in a vacuum processing chamber, and the vacuum processing chamber has a vacuum exhaust port, a heating means for heating the substrate, and a reactive gas inlet provided with a plasma generator. In the method of removing the resist film of the substrate by ashing with the plasma, a front electrode opposed to the front surface of the substrate at an interval where plasma can be generated is provided, and a front electrode is provided on the rear surface of the substrate. After providing a rear electrode facing at a narrow interval where plasma is not generated, one of the two electrodes is connected to a high-frequency power source and the other is connected to the ground, and after the step of etching the surface layer of the resist film is completed, the both electrodes are A plasma ashing method comprising: connecting a substrate to ground and operating a plasma generator to ashing a resist film on a substrate with plasma of the reactive gas.
【請求項2】上記前方電極を高周波電源に接続すると共
に上記後方電極をアースに接続してレジスト膜をエッチ
ングする工程を終えたのち、両電極をアースに接続する
と共にプラズマ発生装置を作動させて該反応性ガスのプ
ラズマにより基板上のレジスト膜をアッシングすること
を特徴とする請求項1に記載のプラズマアッシング方
法。
2. After the step of connecting the front electrode to a high-frequency power source and connecting the rear electrode to ground and etching the resist film is completed, both electrodes are connected to ground and the plasma generator is operated. 2. The plasma ashing method according to claim 1, wherein the resist film on the substrate is ashed by the plasma of the reactive gas.
【請求項3】上記基板の前面に対向して設けた前方電極
を多数の透孔を有する平板で構成したことを特徴とする
請求項1に記載のプラズマアッシング方法。
3. The plasma ashing method according to claim 1, wherein the front electrode provided to face the front surface of the substrate is a flat plate having a large number of through holes.
JP14000398A 1998-05-21 1998-05-21 Plasma ashing method Expired - Lifetime JP3218348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14000398A JP3218348B2 (en) 1998-05-21 1998-05-21 Plasma ashing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14000398A JP3218348B2 (en) 1998-05-21 1998-05-21 Plasma ashing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1002044A Division JP2838528B2 (en) 1989-01-10 1989-01-10 Plasma ashing device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001122121A Division JP3437557B2 (en) 2001-04-20 2001-04-20 Plasma ashing method

Publications (2)

Publication Number Publication Date
JPH1145873A true JPH1145873A (en) 1999-02-16
JP3218348B2 JP3218348B2 (en) 2001-10-15

Family

ID=15258680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14000398A Expired - Lifetime JP3218348B2 (en) 1998-05-21 1998-05-21 Plasma ashing method

Country Status (1)

Country Link
JP (1) JP3218348B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1091396A2 (en) * 1999-09-29 2001-04-11 Tokyo Electron Limited Plasma processing method
JP2003529928A (en) * 2000-03-30 2003-10-07 ラム リサーチ コーポレーション Enhanced resist stripping in plasma-isolated dielectric etchers.
WO2005015628A1 (en) * 2003-08-12 2005-02-17 Shibaura Mechatronics Corporation Plasma processing device and ashing method
JP2015037166A (en) * 2013-08-16 2015-02-23 株式会社アルバック Resist peeling method, and resist peeling device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1091396A2 (en) * 1999-09-29 2001-04-11 Tokyo Electron Limited Plasma processing method
EP1091396B1 (en) * 1999-09-29 2012-07-25 Tokyo Electron Limited Plasma processing method
JP2003529928A (en) * 2000-03-30 2003-10-07 ラム リサーチ コーポレーション Enhanced resist stripping in plasma-isolated dielectric etchers.
JP4860087B2 (en) * 2000-03-30 2012-01-25 ラム リサーチ コーポレーション Etching method
WO2005015628A1 (en) * 2003-08-12 2005-02-17 Shibaura Mechatronics Corporation Plasma processing device and ashing method
US7491908B2 (en) 2003-08-12 2009-02-17 Shibaura Mechatronics Corporation Plasma processing device and ashing method
CN100466193C (en) * 2003-08-12 2009-03-04 芝浦机械电子装置股份有限公司 Plasma processing device and ashing method
JP2015037166A (en) * 2013-08-16 2015-02-23 株式会社アルバック Resist peeling method, and resist peeling device

Also Published As

Publication number Publication date
JP3218348B2 (en) 2001-10-15

Similar Documents

Publication Publication Date Title
US5226056A (en) Plasma ashing method and apparatus therefor
JP4986566B2 (en) Substrate processing method and substrate processing apparatus
JP4986565B2 (en) Substrate processing method and substrate processing apparatus
JP3391410B2 (en) How to remove resist mask
JPH05121386A (en) Plasma washing method of substrate surface, photo-resist-plasma washing method of wafer and washing device for substrate surface
JP2009532873A (en) Gas injection system with reduced contamination and method of use thereof
WO2004012235A2 (en) Atmospheric pressure plasma processing reactor
JP2003332313A (en) Manufacturing method of semiconductor device
JP3218348B2 (en) Plasma ashing method
JP3437557B2 (en) Plasma ashing method
JP4299638B2 (en) Substrate processing apparatus and substrate processing method
JP2838528B2 (en) Plasma ashing device
JP7308110B2 (en) METHOD AND PLASMA PROCESSING APPARATUS FOR ETCHING SILICON OXIDE FILM
JP4405236B2 (en) Substrate processing method and substrate processing apparatus
JP4377285B2 (en) Substrate processing method and substrate processing apparatus
JP2009117597A (en) Substrate processing device and substrate processing method
JP2785027B2 (en) Plasma ashing method
KR20210035073A (en) Plasma treatment method and plasma treatment apparatus
JP2785028B2 (en) Plasma ashing device
JPH08241886A (en) Plasma processing method
JP7296277B2 (en) Etching method, device manufacturing method, and plasma processing apparatus
JP2003124193A (en) Microwave plasma processor and microwave plasma processing method
JPH06104224A (en) Resist removal apparatus and its application method
US20020124962A1 (en) Atmospheric pressure plasma etching reactor
JPS59172237A (en) Plasma processor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000905

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010612

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070810

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8