JPH1143556A - Resin material containing surface-modified semiconductor ultrafine particle and its production - Google Patents

Resin material containing surface-modified semiconductor ultrafine particle and its production

Info

Publication number
JPH1143556A
JPH1143556A JP20328097A JP20328097A JPH1143556A JP H1143556 A JPH1143556 A JP H1143556A JP 20328097 A JP20328097 A JP 20328097A JP 20328097 A JP20328097 A JP 20328097A JP H1143556 A JPH1143556 A JP H1143556A
Authority
JP
Japan
Prior art keywords
ultrafine particles
compound
semiconductor ultrafine
semiconductor
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20328097A
Other languages
Japanese (ja)
Other versions
JP3683076B2 (en
Inventor
Takashi Kawaseki
孝志 河関
Koichi Mizuma
浩一 水間
Toyoji Hayashi
豊治 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP20328097A priority Critical patent/JP3683076B2/en
Publication of JPH1143556A publication Critical patent/JPH1143556A/en
Application granted granted Critical
Publication of JP3683076B2 publication Critical patent/JP3683076B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject material enabling not only to control the diameters of particles in a production process but also to disperse the particles in a high concentration and useful as an optical material, a sensor material, etc., by reacting surface-modified semiconductor ultrafine particles having functional groups on the surfaces with a resin. SOLUTION: This resin material is obtained by reacting a compound (a thiol compound having an amino group) having two or more functional groups (amino group, etc.), or a compound having two or more functional groups and a compound having one kind of functional group (thiophenol, etc.), with semiconductor ultrafine particles (silicon ultrafine particles, oxide semiconductor ultrafine particles or 12-16 group ultrafine particles having particle diameters of 1-100 nm, etc.), and subsequently reacting the produced surface-modified semiconductor ultrafine particles with a resin having functional groups (e.g. an amino styrenic resin produced by aminating polystyrene).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光学材料、屈折率調
整材料、特に光−光変換素子や光−電子変換素子、位相
共役波発生、光双安定現象を利用する非線形光学分野や
超格子素子等の電子材料、発光材料、センサー材料、波
長カットフィルターなどの光学分野、磁気記録や光記録
などの材料として利用される記録関連分野、触媒関連分
野、表面加工関連分野等に使用される半導体超微粒子に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical material, a refractive index adjusting material, in particular, a light-to-light conversion element, a light-to-electron conversion element, a nonlinear optical field utilizing a phase conjugate wave generation, an optical bistable phenomenon, and a superlattice element. Semiconductor materials used in electronic fields such as electronic materials, light emitting materials, sensor materials, optical fields such as wavelength cut filters, recording related fields used as materials such as magnetic recording and optical recording, catalyst related fields, surface processing related fields, etc. Regarding fine particles.

【0002】[0002]

【従来の技術】非線形光学材料として用いる場合などの
ように、半導体超微粒子と光の相互作用を強めるために
電子とホールがお互い束縛しあって運動する励起子状態
を作り出し、いわゆる量子閉じ込め効果を利用するため
には、励起子状態を安定化させる必要がある。そのため
には、半導体超微粒子の粒子径を揃え、粒子間の凝集、
凝結を防止し安定化させ、ボーア半径程度に小さくする
ことが必要になる。しかしその際には、半導体超微粒子
の粒子径が著しく小さいため、半導体超微粒子の凝集に
よる粗大粒子の生成が起こり易く、粒子径の制御が困難
である。また実用上からは、簡単な方法で量産し、安定
な状態で単離できることが望ましい。
2. Description of the Related Art In order to enhance the interaction between semiconductor ultrafine particles and light, an exciton state in which electrons and holes are bound to each other and move is created, as in the case of using as a non-linear optical material. In order to utilize it, it is necessary to stabilize the exciton state. For that purpose, the particle diameter of the semiconductor ultrafine particles is made uniform, aggregation between particles,
It is necessary to prevent and stabilize coagulation and to reduce the diameter to about the Bohr radius. However, in this case, since the particle diameter of the semiconductor ultrafine particles is extremely small, coarse particles are likely to be generated due to aggregation of the semiconductor ultrafine particles, and it is difficult to control the particle diameter. From a practical point of view, it is desirable that mass production can be carried out by a simple method and isolation can be performed in a stable state.

【0003】半導体超微粒子の粒子径を揃え、安定化す
るための解決法としては、半導体微粒子表面をポリマー
でコートするという技術について報告されている。例え
ば、あらかじめ半導体微粒子表面をヒドロキシプロピル
セルロースで処理し、その処理した半導体微粒子の懸濁
溶液にスチレンを添加し、高剪断攪拌による懸濁重合を
行い、ポリマーにコートされた半導体微粒子を得る、と
いう方法や(高分子論文集、第40巻、697−702
ページ、1983年)、硫化カドミウムなどの金属硫化
物や酸化亜鉛などの金属酸化物の存在下、メチルメタク
リレートを溶解した水溶液中で亜硫酸水の添加によりメ
チルメタクリレートの重合を実施し、生成するポリメチ
ルメタクリレートでカプセル化するという方法(高分子
論文集、第34巻、413〜420ページ、1977
年)などが公知である。これら先行する技術は粒子の前
処理などの工程数が増え、複雑であるという難点があっ
た。また前者の方法の如き、通常よく用いられるラテッ
クス製造方法はミクロン程度以下の粒子径の有効な制御
が困難であった。また後者の方法によれば、溶出金属イ
オンと亜硫酸イオンとのレドックス反応で生じた亜硫酸
ラジカルが開始剤となり、生成ポリマーの粒子への付着
は生成ポリマー末端基と粒子表面の静電引力による事が
知られているが、粒子表面電荷とポリマー末端電荷の組
み合わせが条件に合う必要があるなどの欠点を有してい
た。
As a solution for uniforming and stabilizing the particle diameter of semiconductor ultrafine particles, a technique of coating the surface of semiconductor fine particles with a polymer has been reported. For example, treating the surface of the semiconductor fine particles in advance with hydroxypropylcellulose, adding styrene to a suspension solution of the processed semiconductor fine particles, performing suspension polymerization by high shear stirring, to obtain semiconductor fine particles coated with the polymer. Methods and (Polymer Transactions, Vol. 40, 697-702)
1983), in the presence of metal sulfides such as cadmium sulfide and metal oxides such as zinc oxide, the polymerization of methyl methacrylate is carried out by the addition of sulfite water in an aqueous solution in which methyl methacrylate is dissolved to form polymethyl. Encapsulation with methacrylate (Polymer Transactions, Vol. 34, pp. 413-420, 1977)
Year) are known. These prior arts have the drawback that the number of steps such as pretreatment of particles is increased and they are complicated. In addition, in the case of the latex production method which is usually used, such as the former method, it is difficult to effectively control the particle diameter of about micron or less. According to the latter method, the sulfite radical generated by the redox reaction between the eluted metal ion and the sulfite ion serves as an initiator, and the adhesion of the produced polymer to the particles is due to the electrostatic attraction between the produced polymer terminal group and the particle surface. Although it is known, it has a drawback that the combination of the particle surface charge and the polymer terminal charge needs to meet the conditions.

【0004】簡単な方法で量産し、安定な状態で単離す
るために、半導体超微粒子表面をチオール化合物で覆
い、表面を修飾する方法(特開平07−081936)
が提案されている。この方法で製造された表面が修飾さ
れた半導体超微粒子は、半導体超微粒子表面が1つの官
能基を有する化合物であるペンタフルオロチオフェノー
ルで覆われているため、固体粉末として単離することが
でき、取り出した後の溶媒への再分散性の問題を解決し
ている。
In order to mass-produce by a simple method and isolate in a stable state, a method of covering the surface of a semiconductor ultrafine particle with a thiol compound and modifying the surface (Japanese Patent Application Laid-Open No. 07-081936).
Has been proposed. The semiconductor ultrafine particles having a modified surface produced by this method can be isolated as a solid powder because the surface of the semiconductor ultrafine particles is covered with pentafluorothiophenol, which is a compound having one functional group. This solves the problem of redispersibility in the solvent after removal.

【0005】さらに、デバイスとして用いる場合、半導
体超微粒子を媒体である樹脂等へ分散させて用いること
が多い。半導体超微粒子をポリスチレンやスチレンーア
クリロニトリル共重合体等のスチロール系樹脂、ポリメ
チルメタクリル酸やポリアクリル酸等のアクリル酸系樹
脂、エポキシ樹脂等に分散させるためには、これらの樹
脂を溶媒に溶かしたものに半導体超微粒子を混ぜること
により行う方法(特開平05−287082)や、真空
中で高分子の原料モノマーと半導体超微粒子原料を基板
上に蒸発させ、その際原料モノマーを重合させ高分子膜
中に半導体超微粒子を分散させる方法(特開平03−1
40335)等の分散方法が報告されているが、前者の
場合、用いる樹脂と分散させる半導体超微粒子の特性や
量によっては、乾燥中、若しくは乾燥後に、樹脂と半導
体超微粒子が分離することにより半導体超微粒子が凝
集、又は析出し、その結果、樹脂全体が濁りを生じ、半
導体超微粒子が均一に分散した材料を得ることが困難で
ある。また後者の場合では半導体超微粒子の粒子径制
御、粒子径分布、粒子の凝集の制御が困難である。
Furthermore, when used as a device, semiconductor ultrafine particles are often used by dispersing them in a medium such as a resin. In order to disperse semiconductor ultrafine particles in styrene-based resins such as polystyrene and styrene-acrylonitrile copolymer, acrylic-based resins such as polymethylmethacrylic acid and polyacrylic acid, and epoxy resins, these resins are dissolved in a solvent. (U.S. Pat. No. 5,287,082) or a method of evaporating a polymer raw material monomer and a semiconductor ultrafine particle material on a substrate in a vacuum and polymerizing the raw material monomer at the time. Method for dispersing semiconductor ultrafine particles in a film (Japanese Unexamined Patent Application Publication No.
In the former case, depending on the characteristics and amount of the resin used and the semiconductor ultrafine particles to be dispersed, the resin is separated from the semiconductor ultrafine particles during or after drying. The ultrafine particles aggregate or precipitate, and as a result, the entire resin becomes turbid, and it is difficult to obtain a material in which semiconductor ultrafine particles are uniformly dispersed. In the latter case, it is difficult to control the particle diameter of the semiconductor ultrafine particles, the particle diameter distribution, and the control of particle aggregation.

【0006】以上に述べてきたように従来の技術では、
半導体超微粒子の粒子径を制御し、取り出すことは可能
となっているが、半導体超微粒子を樹脂中に分散させる
際に、半導体超微粒子それ自体に反応性を持たせ、媒体
である樹脂と反応させることによる化学的手法を用いて
分散させる手法は報告されていない。
As described above, in the prior art,
Although it is possible to control the particle size of the semiconductor ultrafine particles and take them out, when the semiconductor ultrafine particles are dispersed in the resin, the semiconductor ultrafine particles themselves have reactivity and react with the resin as a medium. There is no report on a method of dispersing by using a chemical method by causing the dispersion.

【0007】[0007]

【発明が解決しようとする課題】本発明は、以上のよう
な事情に基づいてなされたものであって、表面に官能基
を有する表面修飾半導体超微粒子と樹脂とを反応させた
表面修飾半導体超微粒子含有樹脂材料及びその製造方法
を提供することを課題とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and is directed to a surface-modified semiconductor ultra-fine particle obtained by reacting a surface-modified semiconductor ultra-fine particle having a functional group on the surface with a resin. It is an object to provide a resin material containing fine particles and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】本発明は、表面修飾半導
体超微粒子含有樹脂材料の製造を鋭意検討した結果、半
導体超微粒子を合成する際に2種類以上の官能基を有す
る化合物、または2種類以上の官能基を有する化合物及
び1種類の官能基を有する化合物との混合物を反応系中
に存在させ、半導体超微粒子と反応させ、表面修飾半導
体超微粒子を製造し、次いで表面修飾半導体超微粒子の
表面に存在し、かつ半導体超微粒子と未反応である官能
基と反応が可能である官能基を有する樹脂とを反応させ
ることにより、表面修飾半導体超微粒子含有樹脂材料を
製造できることを見いだし本発明を完成させた。
According to the present invention, as a result of intensive studies on the production of a resin material containing surface-modified semiconductor ultrafine particles, a compound having two or more functional groups or two A mixture of the compound having the above functional group and the compound having one kind of functional group is present in the reaction system, and is reacted with the semiconductor ultrafine particles to produce surface-modified semiconductor ultrafine particles. The present invention has been found to be able to produce a resin material containing surface-modified semiconductor ultrafine particles by reacting a resin having a functional group capable of reacting with a functional group which is present on the surface and which has not reacted with the semiconductor ultrafine particles. Completed.

【0009】すなわち、本発明は、 (1) 表面に官能基を有する表面修飾半導体超微粒子
と樹脂とを反応させて得られる表面修飾半導体超微粒子
含有樹脂材料。 (2) 2種類以上の官能基を有する化合物、または2
種類以上の官能基を有する化合物及び1種類の官能基を
有する化合物と、半導体超微粒子とを反応させて表面修
飾半導体超微粒子を製造し、次いで、該表面修飾半導体
超微粒子と、官能基を有する樹脂とを反応させることを
特徴とする表面修飾半導体超微粒子含有樹脂材料の製造
方法。 (3) (2)に記載の方法により製造された表面修飾
半導体超微粒子含有樹脂材料。 を提供するものである。
That is, the present invention provides: (1) A resin material containing surface-modified semiconductor ultrafine particles obtained by reacting a resin with surface-modified semiconductor ultrafine particles having a functional group on the surface. (2) a compound having two or more types of functional groups, or 2
A compound having one or more types of functional groups and a compound having one type of functional group are reacted with semiconductor ultrafine particles to produce surface-modified semiconductor ultrafine particles, and then, the surface-modified semiconductor ultrafine particles and having a functional group A method for producing a resin material containing surface-modified semiconductor ultrafine particles, characterized by reacting with a resin. (3) A resin material containing ultrafine surface-modified semiconductor particles produced by the method according to (2). Is provided.

【0010】[0010]

【発明の実施の形態】以下、本発明を説明する。本発明
に用いられる半導体超微粒子の種類としては、シリコン
超微粒子、TiO2やZnO、CdO、PbO等の酸化
物半導体超微粒子、CdS、CdSe、ZnSe、Cd
Te、ZnS、HgS、HgSe等の12族−16族半
導体超微粒子、PbS、PbSe等の14族−16族半
導体超微粒子等が挙げられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below. Examples of the type of semiconductor ultrafine particles used in the present invention include silicon ultrafine particles, oxide semiconductor ultrafine particles such as TiO 2 , ZnO, CdO, and PbO, CdS, CdSe, ZnSe, and Cd.
Examples include ultrafine particles of a Group 12-16 semiconductor such as Te, ZnS, HgS, and HgSe, and ultrafine particles of a Group 14-16 semiconductor such as PbS and PbSe.

【0011】詳細に説明するためにまず、12−16族
元素化合物半導体超微粒子を取り上げ、表面修飾半導体
超微粒子を製造する方法を説明する。本発明における周
期律表における12族元素化合物としては、過塩素酸カ
ドミウム、硝酸亜鉛等であり、用いる溶媒に溶解するも
のであれば特に制限はなく、結晶水を含むものであって
もよい。本発明によって得られる表面修飾半導体超微粒
子は粒子径が1〜100nmの範囲内にあるものであれ
ばよい。
First, a method of producing ultrafine particles of a surface-modified semiconductor will be described with reference to ultrafine particles of a compound semiconductor of a group 12-16 element semiconductor. The group 12 element compound in the periodic table of the present invention is cadmium perchlorate, zinc nitrate, or the like, and is not particularly limited as long as it is soluble in the solvent used, and may include water of crystallization. The surface-modified semiconductor ultrafine particles obtained according to the present invention may have a particle diameter in the range of 1 to 100 nm.

【0012】本発明における官能基としては、アミノ
基、チオール基、カルボキシル基、カルボニル基、ハロ
ゲン、スルホ基、ビニル基、エポキシ基等、さらにはそ
れらの誘導体がある。本発明における2種類以上の官能
基を有する化合物とは、樹脂との反応が可能な官能基を
有し、かつその官能基を半導体超微粒子の表面上に存在
させるために、半導体超微粒子と反応することが可能な
16族元素を含む官能基を有する化合物であればよい。
例えば、アミノ基を有するチオール化合物、アミノ基を
有するカルボキシル化合物、チオール基を有するカルボ
キシ化合物、水酸基を有するチオール化合物等である。
The functional group in the present invention includes an amino group, a thiol group, a carboxyl group, a carbonyl group, a halogen, a sulfo group, a vinyl group, an epoxy group, and derivatives thereof. The compound having two or more kinds of functional groups in the present invention has a functional group capable of reacting with a resin, and reacts with the semiconductor ultrafine particles in order to make the functional group exist on the surface of the semiconductor ultrafine particles. Any compound having a functional group containing a Group 16 element that can be used may be used.
For example, there are a thiol compound having an amino group, a carboxyl compound having an amino group, a carboxy compound having a thiol group, a thiol compound having a hydroxyl group, and the like.

【0013】アミノ基を有するチオール化合物の例とし
ては、4−アミノチオフェノール、2−アミノチオフェ
ノール、2−アミノエタンチオール、6−チオグアニン
−5−アミノ−1,3,4−チアジアゾール−2−チオ
ール等があり、それぞれを単独で用いてもよいし、混合
して用いてもよい。
Examples of thiol compounds having an amino group include 4-aminothiophenol, 2-aminothiophenol, 2-aminoethanethiol, 6-thioguanine-5-amino-1,3,4-thiadiazole-2- There are thiols and the like, each of which may be used alone or in combination.

【0014】水酸基を有するチオール化合物としては、
2−メルカプトフェノール、3−メルカプト−1,2−
プロパンジオール、1−メルカプト−2−プロパノー
ル、2−メルカプトエタノール等があり、それぞれを単
独で用いてもよいし、混合して用いてもよい。
The thiol compound having a hydroxyl group includes
2-mercaptophenol, 3-mercapto-1,2-
There are propanediol, 1-mercapto-2-propanol, 2-mercaptoethanol and the like, and each of them may be used alone or in combination.

【0015】カルボキシル基を有するチオール化合物と
しては、2−メルカプトプロピオン酸、3−メルカプト
プロピオン酸、メルカプトコハク酸、3−メルカプト−
1,2,4−トリアゾール、メルカプト酢酸、メルカプ
ト酢酸ナトリウム等があり、それぞれを単独で用いても
よいし、混合して用いてもよい。
Examples of thiol compounds having a carboxyl group include 2-mercaptopropionic acid, 3-mercaptopropionic acid, mercaptosuccinic acid and 3-mercapto-
There are 1,2,4-triazole, mercaptoacetic acid, sodium mercaptoacetate, etc., and each of them may be used alone or in combination.

【0016】本発明における1種類の官能基を有する化
合物とは、上記の2種類以上の官能基を有する化合物と
ともに使用し、半導体超微粒子と反応することが可能な
16族元素を含む化合物であり、表面修飾半導体超微粒
子上に存在させる樹脂と反応が可能である官能基の量を
調整するために必要に応じて使用することができる。例
えば2種類以上の官能基を有する化合物としてアミノチ
オフェノール、1種類の官能基を有する化合物としてチ
オフェノールの組み合わせがある。2種類以上の官能基
を含む化合物と、1種類の官能基を有する化合物の添加
比を変えることで、2種類以上の官能基を有する化合物
によって導入される樹脂と反応が可能である官能基の存
在量を制御し、これにより表面修飾半導体超微粒子と樹
脂との反応部位を制御することが可能となる。
The compound having one kind of functional group in the present invention is a compound containing a group 16 element which can be used together with the above-mentioned compound having two or more kinds of functional groups and which can react with semiconductor ultrafine particles. It can be used as needed to adjust the amount of functional groups capable of reacting with the resin present on the surface-modified semiconductor ultrafine particles. For example, there is an aminothiophenol as a compound having two or more types of functional groups, and a combination of thiophenol as a compound having one type of functional group. By changing the addition ratio of the compound having two or more kinds of functional groups and the compound having one kind of functional group, the functional group capable of reacting with the resin introduced by the compound having two or more kinds of functional groups is possible. By controlling the abundance, it becomes possible to control the reaction site between the surface-modified semiconductor ultrafine particles and the resin.

【0017】表面修飾半導体超微粒子を製造する反応場
である溶液を調製するための溶媒としては、第12族元
素化合物、2種類以上の官能基を有する化合物、1種類
の官能基を有する化合物が溶解するものであれば特に制
限はなく、例えば、水、アセトン、アセトニトリル、ジ
メチルホルムアミド、メタノール、エタノール、クロロ
ホルム、テトラヒドロフラン、メチルエチルケトンな
ど、あるいはこれらの混合溶媒が用いられ得る。
As a solvent for preparing a solution which is a reaction field for producing the surface-modified semiconductor ultrafine particles, a Group 12 element compound, a compound having two or more kinds of functional groups, and a compound having one kind of functional group are used. There is no particular limitation as long as it dissolves, and for example, water, acetone, acetonitrile, dimethylformamide, methanol, ethanol, chloroform, tetrahydrofuran, methyl ethyl ketone, or a mixed solvent thereof can be used.

【0018】12族元素化合物としては、このような液
相中で1mol/l以下、好ましくは10-6〜10-1
ol/lの濃度の溶液にすることが望ましい。多すぎる
と粒子径の制御が困難になるからである。第16族元素
化合物は、硫化水素やセレン化水素などの水素化物ガス
や硫化水素ナトリウムなどを使用することができ、これ
らを上記の溶媒中に溶解させた溶液を用いることもあ
る。
The group 12 element compound is preferably 1 mol / l or less, preferably 10 -6 to 10 -1 m in such a liquid phase.
It is desirable that the solution has a concentration of ol / l. If the amount is too large, it becomes difficult to control the particle diameter. As the Group 16 element compound, a hydride gas such as hydrogen sulfide or hydrogen selenide, sodium hydrogen sulfide, or the like can be used, and a solution in which these are dissolved in the above solvent may be used.

【0019】上記、第12族元素化合物、2種類以上の
官能基を有する化合物、1種類の官能基を含む化合物、
溶媒からなる溶液を攪拌しながら、第16族元素化合物
又は第16族元素化合物を含有する溶液を徐々に添加し
てゆく。前者の添加方法を用いて半導体超微粒子を製造
する際には、反応効率を上げる点、半導体超微粒子の粒
子径を制御する点から、溶液との接触効率を良くするた
めにバブリングさせることが好ましい。
The Group 12 element compound, a compound having two or more kinds of functional groups, a compound containing one kind of functional group,
While stirring the solution comprising the solvent, the Group 16 element compound or a solution containing the Group 16 element compound is gradually added. When producing semiconductor ultrafine particles using the former addition method, it is preferable to perform bubbling in order to improve the contact efficiency with the solution in terms of increasing the reaction efficiency and controlling the particle size of the semiconductor ultrafine particles. .

【0020】第16族元素化合物が水素化物ガスの場
合、ヘリウムや窒素等の不活性ガスで、また硫化水素ナ
トリウム等の固体の場合は溶媒に溶解し、希釈すること
によって、生成する半導体超微粒子の粒子径をさらにコ
ントロールすることができる。反応ガス濃度としては、
体積で100%〜0.0001%の濃度が好ましく、流
量としては反応を定常的に進行させるに充分な量であれ
ばよい。得られた半導体超微粒子を含むコロイド溶液
を、エバポレーションや減圧蒸留などの方法によりコロ
イド溶液を濃縮し、生成した半導体超微粒子を沈殿させ
て取り出し、精製、乾燥することにより、表面修飾半導
体超微粒子が得られる。
When the Group 16 element compound is a hydride gas, it is an inert gas such as helium or nitrogen, and when it is a solid such as sodium hydrogen sulfide, it is dissolved and diluted in a solvent to produce ultrafine semiconductor particles. Can be further controlled. As the reaction gas concentration,
The concentration is preferably 100% to 0.0001% by volume, and the flow rate may be an amount sufficient to allow the reaction to proceed steadily. The obtained colloid solution containing semiconductor ultrafine particles is concentrated by a method such as evaporation or distillation under reduced pressure, and the resulting semiconductor ultrafine particles are precipitated, taken out, purified, and dried to obtain surface-modified semiconductor ultrafine particles. Is obtained.

【0021】次に表面修飾半導体超微粒子含有樹脂材料
を製造する方法を説明する。本発明に用いることのでき
る樹脂としては、表面修飾半導体超微粒子の表面に存在
し、かつ半導体超微粒子と未反応である官能基と反応が
可能である官能基を有する樹脂、例えば、ポリスチレン
をアミノ化、クロロメチル化、スルホン化した、さらに
はそれらの誘導体であるスチロール系樹脂、ポリメチル
メタクリレート、ポリエチルアクリレート、ポリアクリ
ルレート、ポリエチルアクリレート、ポリブチルアクリ
レート、ポリアクリルアミド等のアクリル系樹脂、ビニ
ルアルコール系樹脂、エポキシ系樹脂等が挙げられる。
Next, a method for producing a resin material containing surface-modified semiconductor ultrafine particles will be described. Examples of the resin that can be used in the present invention include a resin having a functional group present on the surface of the surface-modified semiconductor ultrafine particles and capable of reacting with a functional group that has not reacted with the semiconductor ultrafine particles, such as polystyrene. , Chloromethylated, sulfonated, and styrene-based resins that are derivatives thereof, acrylic resins such as polymethyl methacrylate, polyethyl acrylate, polyacrylate, polyethyl acrylate, polybutyl acrylate, and polyacrylamide; vinyl Alcohol-based resins, epoxy-based resins, and the like are included.

【0022】目的とする表面修飾半導体超微粒子含有樹
脂材料を製造するためには、表面修飾半導体超微粒子
と、上記の樹脂の双方が溶解する溶媒に溶解し、必要に
応じて、触媒を添加し、加熱することにより、反応を進
行させ、目的とする表面修飾半導体超微粒子含有樹脂材
料を製造することができる。
In order to produce the desired resin material containing surface-modified semiconductor ultrafine particles, the resin is dissolved in a solvent in which both the surface-modified semiconductor ultrafine particles and the above resin are dissolved, and a catalyst is added as necessary. By heating, the reaction is allowed to proceed, and the desired surface-modified semiconductor ultrafine particle-containing resin material can be produced.

【0023】用いる触媒としてはナトリウムメトキシ
ド、ナトリウムエトキシド、カリウムtert−ブトキ
シド、ナトリウムtert−ブトキシド等が挙げられ、
表面修飾半導体超微粒子の表面に存在し、かつ半導体超
微粒子と未反応である官能基と樹脂中の官能基の組み合
わせによって必要に応じて用いることができる。反応温
度は溶媒の融点から沸点の間であればよい。
The catalyst to be used includes sodium methoxide, sodium ethoxide, potassium tert-butoxide, sodium tert-butoxide and the like.
Depending on the combination of a functional group present on the surface of the surface-modified semiconductor ultrafine particles and not reacted with the semiconductor ultrafine particles and a functional group in the resin, it can be used as needed. The reaction temperature may be between the melting point and the boiling point of the solvent.

【0024】詳細に説明するために次に、酸化物半導体
超微粒子を取り上げる。酸化物半導体超微粒子としては
TiO2やZnO、CdO、PbO等の酸化物半導体超
微粒子が挙げられる。本発明によって得られる半導体超
微粒子は粒子径が1〜100nmの範囲内にあるもので
あればよい。
Next, the oxide semiconductor ultrafine particles will be described in detail. Examples of the oxide semiconductor ultrafine particles include oxide semiconductor ultrafine particles such as TiO 2 , ZnO, CdO, and PbO. The semiconductor ultrafine particles obtained by the present invention may have any particle diameter in the range of 1 to 100 nm.

【0025】酸化物半導体の原料化合物としては、用い
る溶媒に可溶な化合物であり、例えば、酢酸塩などの有
機酸塩類、硝酸塩類、過塩素酸塩類、アルコキシド類、
ハロゲン化物類などが用いられる。好ましくは、過塩素
酸カドミウム、硝酸亜鉛、酢酸亜鉛等であり、用いる溶
媒に溶解するものであれば特に制限はなく、結晶水を含
むものであってもよい。
The starting compound for the oxide semiconductor is a compound soluble in the solvent used, for example, organic acid salts such as acetates, nitrates, perchlorates, alkoxides, and the like.
Halides and the like are used. Preferably, it is cadmium perchlorate, zinc nitrate, zinc acetate, or the like. There is no particular limitation as long as it is soluble in the solvent used, and it may contain water of crystallization.

【0026】酸化物半導体の原料化合物は、このような
液相中で1mol/l以下、好ましくは10-6〜10-1
mol/lの濃度の溶液にすることが望ましい。多すぎ
ると粒子径の制御が困難になるからである。酸化するた
めの酸素としては、空気中の酸素を反応系に供給しても
よいが、溶媒中の溶存酸素でも充分であるし、必要であ
れば、塩基ないしは溶媒に水を使用した場合は水中の水
酸基から、反応により生成する酸素を必要に応じて利用
してもよい。用いられる塩基は、酸化物半導体の原料化
合物から酸化物半導体への反応を促進するものであり、
好ましくは強塩基であることが望ましい。例えば、水酸
化ナトリウム、水酸化カリウムなどが適宜用いられる。
The raw material compound of the oxide semiconductor is 1 mol / l or less, preferably 10 -6 to 10 -1 in such a liquid phase.
It is desirable to use a solution having a concentration of mol / l. If the amount is too large, it becomes difficult to control the particle diameter. As the oxygen for oxidation, oxygen in the air may be supplied to the reaction system, but dissolved oxygen in the solvent is sufficient, and if necessary, water is used when water is used as the base or the solvent. If necessary, oxygen generated by the reaction from the hydroxyl group may be used. The base used promotes the reaction from the starting compound of the oxide semiconductor to the oxide semiconductor,
Preferably, it is a strong base. For example, sodium hydroxide, potassium hydroxide and the like are appropriately used.

【0027】本発明における2種類以上の官能基を有す
る化合物とは、樹脂との反応が可能な官能基を有し、か
つその官能基を半導体超微粒子の表面上に存在させるた
め、酸素元素を含む官能基を有する化合物であればよ
い。例えば、チオール基を有するカルボキシル化合物、
アミノ基を有するカルボキシル化合物、アミノ基を有す
るヒドロキシ化合物等である。
In the present invention, the compound having two or more kinds of functional groups refers to a compound having a functional group capable of reacting with a resin and causing the functional group to be present on the surface of the semiconductor ultrafine particles. Any compound having a functional group containing it may be used. For example, a carboxyl compound having a thiol group,
Carboxyl compounds having an amino group; hydroxy compounds having an amino group;

【0028】チオール基を含むカルボキシル化合物とし
ては、2−メルカプトプロピオン酸、3−メルカプトプ
ロピオン酸、メルカプトコハク酸、メルカプト酢酸等が
ある。アミノ基を含むカルボキシル化合物としては、ア
ミノフェニル酢酸、アミノ酢酸、アミノ安息香酸等があ
る。アミノ基を含むヒドロキシ化合物としては、アミノ
プロパノール、アミノフェノール、アミノブタノール、
アミノエタノール等がある。
Examples of the carboxyl compound containing a thiol group include 2-mercaptopropionic acid, 3-mercaptopropionic acid, mercaptosuccinic acid, and mercaptoacetic acid. Examples of the carboxyl compound containing an amino group include aminophenylacetic acid, aminoacetic acid, and aminobenzoic acid. Examples of the hydroxy compound containing an amino group include aminopropanol, aminophenol, aminobutanol,
There are aminoethanol and the like.

【0029】本発明における1種類の官能基を含む化合
物とは、前述の、12−16族元素化合物半導体超微粒
子で説明したのと同じ要領で用いる。溶液を生成するた
めの溶媒としては酸化物半導体元素化合物、2種類以上
の官能基を有する化合物が溶解するものであれば特に制
限はなく、例えば、水、アセトン、アセトニトリル、ジ
メチルホルムアミド、メタノール、エタノール、クロロ
ホルム、テトラヒドロフラン、メチルエチルケトンな
ど、あるいはこれらの混合溶媒が用いられ得る。
The compound having one kind of functional group in the present invention is used in the same manner as described for the ultrafine particles of a compound semiconductor of a group 12-16 element. The solvent for generating the solution is not particularly limited as long as it can dissolve the oxide semiconductor element compound and the compound having two or more kinds of functional groups. For example, water, acetone, acetonitrile, dimethylformamide, methanol, ethanol , Chloroform, tetrahydrofuran, methyl ethyl ketone, etc., or a mixed solvent thereof can be used.

【0030】上記、酸化物半導体の原料化合物、2種類
以上の官能基を有する化合物、1種類の官能基を有する
化合物、必要であれば塩基、溶媒からなる溶液を調製
し、必要に応じて、加熱または還流させ、酸化物半導体
の原料化合物を酸化する。反応温度は溶媒の融点から沸
点の間であり、反応時間は数分から数日である。これに
より表面修飾半導体超微粒子が得られる。
A solution comprising the above-mentioned raw material compound for an oxide semiconductor, a compound having two or more kinds of functional groups, a compound having one kind of functional group, and if necessary, a base and a solvent is prepared. Heating or refluxing oxidizes the raw material compound of the oxide semiconductor. The reaction temperature is between the melting point and the boiling point of the solvent, and the reaction time is several minutes to several days. Thereby, surface-modified semiconductor ultrafine particles are obtained.

【0031】このようにして得られた表面修飾半導体超
微粒子と樹脂とを溶媒にとかし、必要に応じて、触媒を
添加し、加熱することにより表面修飾半導体超微粒子と
樹脂とを反応させ、目的とする表面修飾半導体超微粒子
含有樹脂材料を製造することができる。
The surface-modified ultrafine particles of the semiconductor and the resin thus obtained are dissolved in a solvent, a catalyst is added, if necessary, and the resin is heated to react the resin with the surface-modified ultrafine particles of the resin. A surface-modified semiconductor ultrafine particle-containing resin material can be produced.

【0032】[0032]

【実施例】以下、実施例により本発明を具体的に説明す
るが本発明はこれらのみに限定されるものではない。 実施例1 過塩素酸カドミウム6水和物1.0×10-2mol、チ
オフェノール1.52×10-2mol、アミノチオフェ
ノール1.52×10-2molを溶解したアセトニトリ
ルーメタノール(1:1)混合溶液400mlをフラス
コにいれスターラーチップで溶液を攪拌しながらアルゴ
ンガスで置換した後、組成が5容量%の硫化水素/ヘリ
ウム混合ガスを流量270ml/minで溶液中に2分
間供給することにより反応を進行させた。得られた半導
体超微粒子含んだコロイド溶液を濃縮し、トルエンと混
ぜ、半導体超微粒子を沈殿させた。沈殿物を取り出し、
再度メタノールに溶解させ後トルエンを混合することに
よって半導体超微粒子を沈殿させ未反応物を除去する精
製をおこなった。この操作は5回繰り返しおこなった。
最後に沈殿物を取り出し、乾燥させることにより、目的
とする表面修飾半導体超微粒子を得た。生成したこの表
面修飾半導体超微粒子は、水、メタノール、エタノー
ル、ジメチルホルムアミド等の極性溶媒に可溶であり、
見かけ上散乱のない黄色透明な溶液であった。この溶液
を取り出し透過型電子顕微鏡により観察したところ、粒
子径が約3nmであるCdS半導体超微粒子が確認され
た。
EXAMPLES The present invention will now be described specifically with reference to examples, but the present invention is not limited to these examples. Example 1 Acetonitrile methanol (1.0 × 10 −2 mol, thiophenol 1.52 × 10 −2 mol, aminothiophenol 1.52 × 10 −2 mol) dissolved in cadmium perchlorate hexahydrate (1 × 10 −2 mol) 1) 400 ml of the mixed solution was placed in a flask, and the solution was replaced with argon gas while stirring the solution with a stirrer chip. A mixed gas of hydrogen sulfide / helium having a composition of 5% by volume was supplied into the solution at a flow rate of 270 ml / min for 2 minutes. This allowed the reaction to proceed. The obtained colloid solution containing semiconductor ultrafine particles was concentrated and mixed with toluene to precipitate semiconductor ultrafine particles. Take out the sediment,
By dissolving again in methanol and mixing with toluene, purification was performed to precipitate ultrafine semiconductor particles and remove unreacted substances. This operation was repeated five times.
Finally, the precipitate was taken out and dried to obtain target surface-modified semiconductor ultrafine particles. The generated surface-modified semiconductor ultrafine particles are soluble in polar solvents such as water, methanol, ethanol, and dimethylformamide,
It was a yellow transparent solution with no apparent scattering. When this solution was taken out and observed with a transmission electron microscope, CdS semiconductor ultrafine particles having a particle diameter of about 3 nm were confirmed.

【0033】また得られた表面修飾半導体超微粒子をK
Brと混合し、錠剤にして赤外吸収スペクトルを測定し
たところ、芳香族アミンに特徴的な、C−N伸縮(13
40〜1250cm-1)、芳香族C−H伸縮に重なって
NH3+に起因する幅広い吸収(3000〜2800cm
-1)、残存SH基の伸縮の吸収(2600〜2550c
-1)が観測されるのが特徴的であり、CdS半導体超
微粒子表面にアミノ基の存在が確認された(図1)。続
いて、製造した表面修飾CdS半導体超微粒子0.1g
をジメチルホルムアミド2mlに溶かし、ポリアクリル
酸0.5gを加え、攪拌し乾燥した。その結果ゲル状の
黄色の透明な反応物が確認された。この反応物はメタノ
ール、エタノール、ジメチルホルムアミドにはもはや不
溶であった。反応物をジメチルホルムアミドで洗浄し、
未反応のポリアクリル酸を除去した後、乾燥させ、赤外
吸収スペクトルの測定をおこなった結果、アミド結合の
存在が示唆され、ポリアクリル酸と反応していることが
分かる(図2)。
The obtained surface-modified semiconductor ultrafine particles are
When mixed with Br and made into a tablet, the infrared absorption spectrum of the tablet was measured.
40-1250 cm -1 ), and a broad absorption (3000-2800 cm) caused by NH 3+ overlapping with aromatic CH stretching
-1 ), absorption of expansion and contraction of remaining SH groups (2600 to 2550c)
m -1 ) was observed, and the presence of an amino group was confirmed on the surface of the ultrafine CdS semiconductor particles (FIG. 1). Subsequently, 0.1 g of the manufactured surface-modified CdS semiconductor ultrafine particles
Was dissolved in 2 ml of dimethylformamide, 0.5 g of polyacrylic acid was added, and the mixture was stirred and dried. As a result, a gel-like yellow transparent reaction product was confirmed. The reaction was no longer soluble in methanol, ethanol, dimethylformamide. Washing the reaction with dimethylformamide,
After removing the unreacted polyacrylic acid, drying was performed, and the measurement of the infrared absorption spectrum indicated that an amide bond was present, indicating that the polyacrylic acid was reacted (FIG. 2).

【0034】実施例2 実施例1で製造した表面修飾CdS半導体超微粒子0.
1gをジメチルスルホキシド5mlに溶かし、ポリメチ
ルメタクリレート0.5gを加えた。その後、140℃
で3時間反応させた。反応後、反応物をメタノールに加
えると黄色い沈澱物が得られ、上澄みは無色透明であっ
た。さらに反応物をメタノールとアセトニトリルで再
沈、精製し、乾燥させた。この反応物はアセトニトリ
ル、トルエン、ベンゼン、ジメチルホルムアミド等に可
溶であった。さらに反応物をフィルム化したところ、黄
色透明なフィルムを得ることが出来た。このフィルムの
赤外吸収スペクトルの測定をおこなった結果、アミド結
合の存在が示唆され、ポリメチルメタクリレートと反応
していることが分かる。またこのフィルムを透過型電子
顕微鏡で観察したところ、粒径約3nmのCdS超微粒
子が均一に分散していることが確認された(図3)。ま
たこのフィルムの屈折率を測定したところ、CdS半導
体超微粒子が分散していないポリメチルメタクリレート
と比較して、0.01の増加があった。
Example 2 Ultra-fine particles of the surface-modified CdS semiconductor produced in Example 1.
1 g was dissolved in 5 ml of dimethyl sulfoxide, and 0.5 g of polymethyl methacrylate was added. Then 140 ° C
For 3 hours. After the reaction, the reaction product was added to methanol to obtain a yellow precipitate, and the supernatant was colorless and transparent. Further, the reaction product was reprecipitated with methanol and acetonitrile, purified, and dried. This reaction product was soluble in acetonitrile, toluene, benzene, dimethylformamide and the like. When the reaction product was further formed into a film, a yellow transparent film could be obtained. As a result of measuring the infrared absorption spectrum of this film, the presence of an amide bond was suggested, and it was found that the film reacted with polymethyl methacrylate. When this film was observed with a transmission electron microscope, it was confirmed that ultrafine CdS particles having a particle size of about 3 nm were uniformly dispersed (FIG. 3). Also, when the refractive index of this film was measured, it was increased by 0.01 as compared with polymethyl methacrylate in which ultrafine CdS semiconductor particles were not dispersed.

【0035】比較例1 実施例1で製造した表面修飾CdS半導体超微粒子0.
1gをジメチルホルムアミド5mlに溶かし、ポリメチ
ルメタクリレート0.5gを加えたものを調製した。こ
れをシャーレに展開し乾燥しフィルム化を試みたが、実
施例2で得られた様な黄色透明なフィルムは得られず、
全体的に不透明な黄色のフィルムが得られCdS半導体
超微粒子が凝集していることが推測された。
COMPARATIVE EXAMPLE 1 Ultrafine surface-modified CdS semiconductor particles produced in Example 1.
1 g was dissolved in 5 ml of dimethylformamide, and 0.5 g of polymethyl methacrylate was added. This was spread on a petri dish and dried to form a film. However, a yellow transparent film as obtained in Example 2 was not obtained.
A totally opaque yellow film was obtained, and it was presumed that the CdS semiconductor ultrafine particles were aggregated.

【0036】参考例1 過塩素酸カドミウム6水和物2.5×10-3mol、p
−ヒドロキシチオフェノール7.6×10-3molを溶
解したアセトニトリルーメタノール(1:1)混合溶液
400mlをフラスコにいれスターラーチップで溶液を
攪拌しながらアルゴンガスで置換した後、組成が5容量
%の硫化水素/ヘリウム混合ガスを流量270ml/m
inで溶液中に30秒間供給することにより反応を進行
させた。得られた半導体超微粒子含んだコロイド溶液を
濃縮し、蒸留水と混ぜ、半導体超微粒子を沈殿させた。
沈殿物を再度メタノールに溶解させ後蒸留水を混合する
ことによって半導体超微粒子から未反応物を除去する精
製をおこなった。この操作は5回繰り返しおこなった。
最後に沈殿物を乾燥させることにより、目的とする表面
修飾半導体超微粒子を得た。生成したこの表面修飾半導
体超微粒子は、ジメチルホルムアミド、ジメチルスルホ
キシドに可溶であり、見かけ上散乱のない黄色透明な溶
液であった。また得られた表面修飾半導体超微粒子をK
Brと混合し、錠剤にして赤外吸収スペクトルを測定し
たところ、C−O伸縮(1260cm-1付近)、O−H
面内変角振動(1357cm-1付近)が観測され、2置
換ベンゼンのC−H面外変角の吸収(800cm-1
近)も観測されているのが特徴的であり、CdS半導体
超微粒子表面に水酸基の存在が確認された(図4)。
Reference Example 1 Cadmium perchlorate hexahydrate 2.5 × 10 −3 mol, p
A mixture of 400 ml of acetonitrile methanol (1: 1) in which 7.6 × 10 −3 mol of -hydroxythiophenol was dissolved was placed in a flask, and the solution was replaced with argon gas while stirring the solution with a stirrer chip. Hydrogen sulfide / helium mixed gas at a flow rate of 270 ml / m
The reaction was allowed to proceed by feeding the solution in for 30 seconds. The obtained colloid solution containing ultrafine semiconductor particles was concentrated and mixed with distilled water to precipitate ultrafine semiconductor particles.
The precipitate was dissolved in methanol again, and then purified water was mixed with distilled water to remove unreacted substances from the semiconductor ultrafine particles. This operation was repeated five times.
Finally, the precipitate was dried to obtain target surface-modified semiconductor ultrafine particles. The produced surface-modified semiconductor ultrafine particles were soluble in dimethylformamide and dimethylsulfoxide, and were a yellow transparent solution having no apparent scattering. Further, the obtained surface-modified semiconductor ultrafine particles are
It was mixed with Br and made into a tablet, and the infrared absorption spectrum was measured. As a result, C—O stretching (around 1260 cm −1 ), OH
Characteristically, in-plane bending vibration (around 1357 cm -1 ) and absorption of di-substituted benzene C-H out-of-plane bending (around 800 cm -1 ) are characteristic. The presence of hydroxyl groups was confirmed on the surface (FIG. 4).

【0037】参考例2 過塩素酸カドミウム6水和物の代わりとして、過塩素酸
亜鉛6水和物1.0×10-2molを使用する以外は実
施例1と同様におこなった。 生成したこの半導体超微
粒子は、ジメチルホルムアミド等の極性溶媒に可溶であ
り、見かけ上散乱のない無色透明な溶液であった。この
溶液を取り出し透過型電子顕微鏡により観察したとこ
ろ、粒子径が約3nmであるZnS半導体超微粒子が確
認された。また得られた半導体超微粒子をKBrと混合
し、錠剤にして赤外吸収スペクトルを測定したところ、
芳香族アミンに特徴的な、C−N伸縮、芳香族C−H伸
縮に重なってNH3+に起因する幅広い吸収が観測され
た。2置換ベンゼンのC−H面外変角の吸収も観測され
ているのが特徴的であり、ZnS半導体超微粒子表面に
アミノ基の存在が確認された。
Reference Example 2 The procedure of Example 1 was repeated except that 1.0 × 10 -2 mol of zinc perchlorate hexahydrate was used instead of cadmium perchlorate hexahydrate. The resulting ultrafine semiconductor particles were soluble in a polar solvent such as dimethylformamide, and were a colorless and transparent solution having no apparent scattering. The solution was taken out and observed with a transmission electron microscope. As a result, ultrafine ZnS semiconductor particles having a particle size of about 3 nm were confirmed. Further, the obtained semiconductor ultrafine particles were mixed with KBr, made into tablets, and the infrared absorption spectrum was measured.
Broad absorption due to NH 3+ was observed overlapping with the C—N stretching and aromatic C—H stretching characteristic of the aromatic amine. It is characteristic that absorption of the C-H out-of-plane bending angle of disubstituted benzene is also observed, and the presence of an amino group on the surface of ZnS semiconductor ultrafine particles was confirmed.

【0038】参考例3 メタノール−エタノール混合溶媒(体積比5:7)40
0mlに水酸化ナトリウム3.5×10-3mol、3−
メルカプトプロピオン酸1.0×10-2molを溶解さ
せた。この溶液を還流管をつけたフラスコに入れ、攪拌
し、加熱しながら窒素気流下で溶液温度を70℃に保ち
還流した。ここに硝酸亜鉛6水和物1.0×10-2mo
lをエタノール5mlに溶解した溶液を加え、10時間
窒素気流下で還流を続けた。反応後、溶媒をエバポレー
ターで除去し、粉末を得た。得られた粉末のX線回折ス
ペクトルの結果より得られた粉末が酸化亜鉛であること
が確認された。
Reference Example 3 Methanol-ethanol mixed solvent (volume ratio 5: 7) 40
3.5 × 10 −3 mol of sodium hydroxide,
1.0 × 10 -2 mol of mercaptopropionic acid was dissolved. This solution was placed in a flask equipped with a reflux tube, stirred, and refluxed while maintaining the solution temperature at 70 ° C. under a nitrogen stream while heating. Here, zinc nitrate hexahydrate 1.0 × 10 -2 mo
was dissolved in 5 ml of ethanol, and the mixture was refluxed for 10 hours under a nitrogen stream. After the reaction, the solvent was removed by an evaporator to obtain a powder. From the result of the X-ray diffraction spectrum of the obtained powder, it was confirmed that the obtained powder was zinc oxide.

【0039】実施例3 硝酸亜鉛の代わりに四塩化チタンを使用し、3−メルカ
プトプロピオン酸の代わりにアミノ安息香酸を使用する
以外は参考例3と同様にした。得られた粉末のX線回折
スペクトルの結果より、得られた粉末が酸化チタンであ
ることが確認された。また得られた半導体超微粒子をK
Brと混合し、錠剤にして赤外吸収スペクトルを測定し
たところ、芳香族アミンに特徴的な、C−N伸縮、芳香
族C−H伸縮に重なってNH3+に起因する幅広い吸収が
観測され、2置換ベンゼンのC−H面外変角の吸収も観
測されているのが特徴的であり、TiO2半導体超微粒
子表面にアミノ基の存在が確認された。さらに得られた
粉末0.1gをジメチルホルムアミド2mlに溶かし、
ポリアクリル酸0.5gを加え、攪拌し乾燥した。その
結果ゲル状の白色の反応物が確認された。この反応物は
ジメチルホルムアミドにはもはや不溶であった。反応物
をジメチルホルムアミドで洗浄し、未反応のポリアクリ
ル酸を除去した後、乾燥させ、赤外吸収スペクトルの測
定をおこなった結果、アミド結合の存在が示唆された。
Example 3 The procedure of Reference Example 3 was repeated except that titanium tetrachloride was used in place of zinc nitrate and aminobenzoic acid was used in place of 3-mercaptopropionic acid. From the result of the X-ray diffraction spectrum of the obtained powder, it was confirmed that the obtained powder was titanium oxide. In addition, the obtained ultrafine semiconductor particles are K
When mixed with Br and made into a tablet, the infrared absorption spectrum was measured. As a result, a wide range of absorption due to NH 3+ was observed overlapping with CN stretching and aromatic CH stretching characteristic of aromatic amines. It is characteristic that the absorption of the C-H out-of-plane bending angle of disubstituted benzene is also observed, and the presence of an amino group on the surface of the TiO 2 semiconductor ultrafine particles was confirmed. Further, 0.1 g of the obtained powder was dissolved in 2 ml of dimethylformamide,
0.5 g of polyacrylic acid was added, and the mixture was stirred and dried. As a result, a gel-like white reaction product was confirmed. The reaction was no longer soluble in dimethylformamide. The reaction product was washed with dimethylformamide to remove unreacted polyacrylic acid, dried, and measured for infrared absorption spectrum. As a result, the presence of an amide bond was suggested.

【0040】[0040]

【発明の効果】本発明は、半導体超微粒子をその生成過
程において単に粒子径の制御をするだけではなく、半導
体超微粒子表面に官能基を存在させることにより、半導
体超微粒子と樹脂とを反応させることに成功し、高濃度
かつ均一に分散させることが可能となった。本発明によ
って得られた表面修飾半導体超微粒子含有樹脂材料は、
屈折率調整材料、光学材料、特に光−光変換素子や光−
電子変換素子等に用いられる非線形光学材料や超格子素
子等の電子材料、発光材料、センサー材料などの光学分
野、磁気記録や光記録などの材料として利用される記録
関連分野の他、触媒関連分野にも本発明は貢献すること
ができ、従って、産業上の利用に重要な意義を有する。
According to the present invention, not only the particle diameter is controlled in the production process of the semiconductor ultrafine particles but also the semiconductor ultrafine particles and the resin are reacted by the presence of a functional group on the surface of the semiconductor ultrafine particles. This succeeded in achieving high concentration and uniform dispersion. Surface-modified semiconductor ultrafine particle-containing resin material obtained by the present invention,
Refractive index adjusting materials, optical materials, especially light-light conversion elements and light-
Non-linear optical materials used in electronic conversion elements, electronic materials such as superlattice elements, optical fields such as light-emitting materials and sensor materials, recording-related fields used as materials such as magnetic recording and optical recording, and catalyst-related fields The present invention can also contribute to the present invention, and therefore has important significance for industrial use.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1より得られた表面修飾硫化カドミウム
超微粒子の赤外吸収スペクトル
FIG. 1 is an infrared absorption spectrum of surface-modified cadmium sulfide ultrafine particles obtained from Example 1.

【図2】実施例1より得られた表面修飾硫化カドミウム
超微粒子含有樹脂材料の赤外吸収スペクトル
FIG. 2 is an infrared absorption spectrum of a resin material containing surface-modified cadmium sulfide ultrafine particles obtained from Example 1.

【図3】実施例2より得られた硫化カドミウム粒子の電
子顕微鏡写真
FIG. 3 is an electron micrograph of cadmium sulfide particles obtained from Example 2.

【図4】参考例1より得られた表面修飾硫化カドミウム
の赤外吸収スペクトル
FIG. 4 is an infrared absorption spectrum of surface-modified cadmium sulfide obtained from Reference Example 1.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C08L 101/00 C08L 101/00 G02F 1/35 503 G02F 1/35 503 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C08L 101/00 C08L 101/00 G02F 1/35 503 G02F 1/35 503

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 表面に官能基を有する表面修飾半導体超
微粒子と樹脂とを反応させて得られる表面修飾半導体超
微粒子含有樹脂材料。
1. A resin material containing surface-modified semiconductor ultrafine particles obtained by reacting a resin with surface-modified semiconductor ultrafine particles having a functional group on the surface.
【請求項2】 2種類以上の官能基を有する化合物、ま
たは2種類以上の官能基を有する化合物及び1種類の官
能基を有する化合物と、半導体超微粒子とを反応させて
表面修飾半導体超微粒子を製造し、次いで、該表面修飾
半導体超微粒子と、官能基を有する樹脂とを反応させる
ことを特徴とする表面修飾半導体超微粒子含有樹脂材料
の製造方法。
2. A compound having two or more kinds of functional groups, or a compound having two or more kinds of functional groups and a compound having one kind of functional group, is reacted with semiconductor ultrafine particles to produce surface-modified semiconductor ultrafine particles. A method for producing a resin material containing surface-modified semiconductor ultrafine particles, which comprises producing, and then reacting the surface-modified semiconductor ultrafine particles with a resin having a functional group.
【請求項3】 請求項2に記載の方法により製造された
表面修飾半導体超微粒子含有樹脂材料。
3. A resin material containing surface-modified semiconductor ultrafine particles produced by the method according to claim 2.
JP20328097A 1997-07-29 1997-07-29 Surface-modified semiconductor ultrafine particle-containing resin material and method for producing the same Expired - Fee Related JP3683076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20328097A JP3683076B2 (en) 1997-07-29 1997-07-29 Surface-modified semiconductor ultrafine particle-containing resin material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20328097A JP3683076B2 (en) 1997-07-29 1997-07-29 Surface-modified semiconductor ultrafine particle-containing resin material and method for producing the same

Publications (2)

Publication Number Publication Date
JPH1143556A true JPH1143556A (en) 1999-02-16
JP3683076B2 JP3683076B2 (en) 2005-08-17

Family

ID=16471443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20328097A Expired - Fee Related JP3683076B2 (en) 1997-07-29 1997-07-29 Surface-modified semiconductor ultrafine particle-containing resin material and method for producing the same

Country Status (1)

Country Link
JP (1) JP3683076B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147090A (en) * 2001-11-14 2003-05-21 Mitsubishi Chemicals Corp Molded article of thermoplastic resin composition including nano particles and method of production for the same
JP2003155355A (en) * 2001-11-21 2003-05-27 Mitsubishi Chemicals Corp Resin composition molding containing ultrafine particle
EP1529804A1 (en) * 2003-10-27 2005-05-11 Michigan Molecular Institute Composite materials and chemical sensors made therefrom
JP2006213592A (en) * 2005-01-06 2006-08-17 Hitachi Software Eng Co Ltd Method for modifying surface of semiconductor nanoparticle
JP2008501851A (en) * 2004-06-07 2008-01-24 バッテル メモリアル インスティテュート Synthesis and products of nanoparticles in non-aqueous polymer solutions
US7864425B2 (en) 2005-09-16 2011-01-04 Panasonic Corporation Composite material and optical component using the same
WO2012124693A1 (en) 2011-03-14 2012-09-20 旭化成ケミカルズ株式会社 Organic/inorganic composite, manufacturing method therefor, organic/inorganic composite film, manufacturing method therefor, photonic crystal, coating material, thermoplastic composition, microstructure, optical material, antireflection member, and optical lens
US8388871B2 (en) * 2006-04-07 2013-03-05 Sumitomo Metal Mining Co., Ltd. Translucent conductive film forming coating liquid, translucent conductive film, and dispersive type electroluminescent device
WO2014001404A3 (en) * 2012-06-26 2014-07-03 Nikon Corporation Liquid polymerizable composition comprising mineral nanoparticles and its use to manufacture an optical article
JP2014218400A (en) * 2013-05-08 2014-11-20 富士フイルム株式会社 Aqueous solution composition, metal sulfide thin film, metal sulfide particles, and photoelectric conversion element

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147090A (en) * 2001-11-14 2003-05-21 Mitsubishi Chemicals Corp Molded article of thermoplastic resin composition including nano particles and method of production for the same
JP2003155355A (en) * 2001-11-21 2003-05-27 Mitsubishi Chemicals Corp Resin composition molding containing ultrafine particle
US7998415B2 (en) 2003-10-27 2011-08-16 Michigan Molecular Institute Functionalized particles for composite sensors
EP1529804A1 (en) * 2003-10-27 2005-05-11 Michigan Molecular Institute Composite materials and chemical sensors made therefrom
US7799276B2 (en) 2003-10-27 2010-09-21 Michigan Molecular Institute Functionalized particles for composite sensors
US7998416B2 (en) 2003-10-27 2011-08-16 Michigan Molecular Institute Functionalized particles for composite sensors
JP2008501851A (en) * 2004-06-07 2008-01-24 バッテル メモリアル インスティテュート Synthesis and products of nanoparticles in non-aqueous polymer solutions
JP2006213592A (en) * 2005-01-06 2006-08-17 Hitachi Software Eng Co Ltd Method for modifying surface of semiconductor nanoparticle
US7864425B2 (en) 2005-09-16 2011-01-04 Panasonic Corporation Composite material and optical component using the same
US8388871B2 (en) * 2006-04-07 2013-03-05 Sumitomo Metal Mining Co., Ltd. Translucent conductive film forming coating liquid, translucent conductive film, and dispersive type electroluminescent device
WO2012124693A1 (en) 2011-03-14 2012-09-20 旭化成ケミカルズ株式会社 Organic/inorganic composite, manufacturing method therefor, organic/inorganic composite film, manufacturing method therefor, photonic crystal, coating material, thermoplastic composition, microstructure, optical material, antireflection member, and optical lens
WO2014001404A3 (en) * 2012-06-26 2014-07-03 Nikon Corporation Liquid polymerizable composition comprising mineral nanoparticles and its use to manufacture an optical article
US10934451B2 (en) 2012-06-26 2021-03-02 Nikon Corporation Liquid polymerizable composition comprising mineral nanoparticles and its use to manufacture an optical article
JP2014218400A (en) * 2013-05-08 2014-11-20 富士フイルム株式会社 Aqueous solution composition, metal sulfide thin film, metal sulfide particles, and photoelectric conversion element

Also Published As

Publication number Publication date
JP3683076B2 (en) 2005-08-17

Similar Documents

Publication Publication Date Title
US20040076757A1 (en) Templated monolayer polymerization and replication
JP2008538124A (en) Polymer nanocomposite having surface-modified nanoparticles and preparation method thereof
JPH1143556A (en) Resin material containing surface-modified semiconductor ultrafine particle and its production
JP2005503460A (en) Molded body comprising core-shell particles
JPWO2006006349A1 (en) Method for producing polymer-modified nanoparticles
JP2003064278A (en) Core-shell semiconductor nano-particle
CN101111338A (en) Fine metal particle, process for producing the same, composition containing the same, and use thereof
EP2373449B1 (en) Aqueous dispersions of silver particles
JP2007069270A (en) Inorganic nanoparticle with high dispersibility
CN104250329B (en) A kind of polymer nanocomposite composite optical material and preparation method thereof
WO2001063345A9 (en) Photochemically controlled photonic crystal diffraction
EP2204249A1 (en) Aqueous dispersions of metallic particles
Nakamura et al. Preparation of monodispersed Cu nanoparticles by microwave-assisted alcohol reduction
JP2008501851A (en) Synthesis and products of nanoparticles in non-aqueous polymer solutions
JPH0950057A (en) Semiconductor superfine particle-containing polymer particle
JP2007519786A (en) Use of statistical copolymers
JP4863428B2 (en) Metal particle array sheet
JPH10226779A (en) Reactive reagent comprising semiconductor ultramicroparticle
JP4634670B2 (en) Composite modified metal chalcogenide ultrafine particles
US5998089A (en) Photosensitive resin composition comprising fullerene
JP3408568B2 (en) Composite particles comprising semiconductor particles and conductive polymer, method for producing the composite particles, molded article of a composition containing the composite particles, and method for producing the molded article
JPH1160581A (en) Reaction reagent of gold ultrafine particle
JPH01305806A (en) Production of superfine particle of metal sulfide, metal selenide, or their mixed crystal
TW201509516A (en) Surface-modified metal colloids and their production
JP2916155B2 (en) Method for producing ultrafine particle / polymer composite composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050524

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080603

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090603

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100603

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100603

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110603

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120603

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120603

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130603

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130603

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees