JPH01305806A - Production of superfine particle of metal sulfide, metal selenide, or their mixed crystal - Google Patents

Production of superfine particle of metal sulfide, metal selenide, or their mixed crystal

Info

Publication number
JPH01305806A
JPH01305806A JP13581488A JP13581488A JPH01305806A JP H01305806 A JPH01305806 A JP H01305806A JP 13581488 A JP13581488 A JP 13581488A JP 13581488 A JP13581488 A JP 13581488A JP H01305806 A JPH01305806 A JP H01305806A
Authority
JP
Japan
Prior art keywords
metal
colloid
ultrafine particles
water
selenide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13581488A
Other languages
Japanese (ja)
Other versions
JP2636001B2 (en
Inventor
Seishiro Ito
征司郎 伊藤
Akira Itsubo
明 伊坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP13581488A priority Critical patent/JP2636001B2/en
Publication of JPH01305806A publication Critical patent/JPH01305806A/en
Application granted granted Critical
Publication of JP2636001B2 publication Critical patent/JP2636001B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/20Methods for preparing sulfides or polysulfides, in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values

Abstract

PURPOSE:To obtain the title superfine particles by preparing the colloid of the sulfide, selenide, or their mixed crystal of a specified metal, adding an ionic surfactant to flocculate the colloid, and then extracting the superfine particles with an org. solvent difficultly soluble in water. CONSTITUTION:An aq. soln. of the ion of Cd, Zn, Pb, Ga, In, Ge, Sn, or Cu and an aq. soln. contg. a compd. supplying the ion of S and/or Se and held at 2-12pH are mixed to prepare the colloid of the metal sulfide, metal selenide, or their mixed crystal having <=150Angstrom particle radius. The colloid is then added with an ionic surfactant, and flocculated. An org. solvent difficultly soluble in water is added to transfer the superfine particles into the org. solvent. Water is then separated, and the org. solvent in the obtained transparent organocolloid is removed to obtain the superfine particles of the metal sulfide, metal selenide, or their mixed crystal having <=150Angstrom particle diameter.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は金属硫化物、金属セレン化物またはこれらの混
晶体の超微粒子の製造法に関し、さらに詳しくは、光エ
ネルギーの変換、貯蔵に関する光化学反応の触媒または
光増感剤、電子写真感光体、非線形光学材料、圧電材料
等の光電子機能材料として有用な金属硫化物、金属セレ
ン化物またはこれらの混晶体の超微粒子の製造法に関す
る。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing ultrafine particles of metal sulfides, metal selenides, or mixed crystals thereof, and more specifically relates to photochemical reactions related to conversion and storage of light energy. The present invention relates to a method for producing ultrafine particles of metal sulfides, metal selenides, or mixed crystals thereof useful as catalysts or photosensitizers, electrophotographic photoreceptors, nonlinear optical materials, piezoelectric materials, and other optoelectronic functional materials.

(従来の技術) CdS、CdSe等の金属硫化物や金属セレン化物は、
従来より無機顔料、電子写真感光体等として使用されて
いる。無機顔料等においては、その隠蔽力が重視されて
おり、一般に無機顔料のIt!′Wl力は顔料粒子の粒
子径が可視光線の波長の1/2、すなわち0.2〜0.
3μmの時最大となり、それより大きくても小さくても
隠蔽力は小さくなるといわれている。これは、0.3μ
mより粒子径が大きくなると表面積が小さくなり粒子表
面で反射される光の総量が少なくなるためであり、また
、0.2μmより粒子径が小さくなると光の透過率が増
加するためである。このような観点より従来から0.2
〜0.3μmあるいはそれ以上の粒子径を有する金属硫
化物、金属セレン化物等が研究開発され、工業的に利用
されてきた。
(Prior art) Metal sulfides and metal selenides such as CdS and CdSe are
It has been used as an inorganic pigment, electrophotographic photoreceptor, etc. For inorganic pigments, emphasis is placed on their hiding power, and in general, inorganic pigments' It! 'Wl force is determined when the particle diameter of the pigment particles is 1/2 of the wavelength of visible light, that is, 0.2 to 0.
It is said that the hiding power is maximum at 3 μm, and that the hiding power decreases no matter whether it is larger or smaller than that. This is 0.3μ
This is because when the particle size becomes larger than m, the surface area becomes smaller and the total amount of light reflected on the particle surface decreases, and when the particle size becomes smaller than 0.2 μm, the light transmittance increases. From this point of view, conventionally 0.2
Metal sulfides, metal selenides, etc. having a particle size of ~0.3 μm or more have been researched and developed and have been used industrially.

このような大きさの金属硫化物や金属セレン化物を製造
するには、大別して乾式法と湿式法の2つの方法が知ら
れている0例えばCdSの製造法について述べると、乾
式法としては、酸化カドミウムとイ才つの混合物を加熱
するか、または硫化水素中でカドミウムを加熱する方法
があり、湿式法としては、硫酸カドミウム、塩化カドミ
ウム等の水溶液に硫化水素ガスを反応させつつ沈殿させ
る方法がある。特開昭59−192256号公報、特開
昭60−133455号公報等には、特に電子写真感光
体用のCdS粉末の製造法が開示されている。
There are two known methods for producing metal sulfides and metal selenides of such size: dry method and wet method. There are two methods: heating a mixture of cadmium oxide and cadmium, or heating cadmium in hydrogen sulfide.A wet method involves reacting hydrogen sulfide gas with an aqueous solution of cadmium sulfate, cadmium chloride, etc. and precipitating it. be. JP-A-59-192256, JP-A-60-133455, etc. disclose methods for producing CdS powder particularly for use in electrophotographic photoreceptors.

(解決しようとする課題) しかしながら、光エネルギーの変換、貯蔵に関する光化
学反応の触媒または光増感剤、電子写真感光体、非線形
光学材料、圧電材料等の光電子機能材料として用いるよ
うに光機能を発現させることを目的とする場合には、粒
子径をいっそう小さくして透明度を付与することが必要
となってくる。粒子径を小さ(することは透明性向上に
役立つばかりでなく、いわゆる量子効果を発現させるこ
とにもなり有用である。
(Problem to be solved) However, it is necessary to express optical functions so that it can be used as a catalyst or photosensitizer for photochemical reactions related to the conversion and storage of light energy, as an optoelectronic functional material for electrophotographic photoreceptors, nonlinear optical materials, piezoelectric materials, etc. If the purpose is to improve transparency, it is necessary to further reduce the particle size to impart transparency. Reducing the particle size not only helps improve transparency, but also brings about the so-called quantum effect, which is useful.

金属結晶やイオン結晶は粒径、すなわちそれらを構成す
る原子、イオンの数によって物性が異なる。特に、これ
らの結晶は金属結合力やクーロン力等の長距離作用力で
形成され、結晶中の価電子や伝導電子は結晶格子全体と
相互作用するので、結晶粒径がバルクから超微粒子へと
極めて小さくなると物性も著しく変化し、量子効果を発
現する。
Metal crystals and ionic crystals have different physical properties depending on their particle size, that is, the number of atoms and ions that make up the crystal. In particular, these crystals are formed by long-range acting forces such as metal bonding forces and Coulomb forces, and the valence and conduction electrons in the crystal interact with the entire crystal lattice, so the crystal grain size changes from bulk to ultrafine. When they become extremely small, their physical properties change significantly and quantum effects occur.

将来のオプトエレクトロニクス用デバイスにおいて重要
性を増すと考えられている非線形光学効果材料において
も量子サイズ効果と次元効果が重要であり、金属硫化物
等の超微粒子の重要性が指摘されている(花材、応用物
理、1旦(10)。
Quantum size effects and dimensional effects are also important in nonlinear optical effect materials, which are expected to become increasingly important in future optoelectronic devices, and the importance of ultrafine particles such as metal sulfides has been pointed out (Flower et al. Materials, Applied Physics, 1dan (10).

1348−1352 (1987))。1348-1352 (1987)).

金属硫化物や金属セレン化物のこのような超微粒子は従
来の製造法では製造することができない、つまり、従来
法においては同相反応、沈殿反応を伴うため、粒子の形
や径をコントロールしにくいという欠点を有しているの
である0例えば、上述の湿式法では反応系のCdイオン
濃度が高くなるにつれて沈殿粒子の形状が不安定化し、
凝集体が発生し、粒径分布の幅が広くなり、さらに著し
い場合にはフレークと称される直径10〜30μm程度
の平板状凝集体が生成することがある。
Such ultrafine particles of metal sulfides and metal selenides cannot be produced using conventional manufacturing methods; in other words, conventional methods involve in-phase reactions and precipitation reactions, making it difficult to control the shape and diameter of the particles. For example, in the wet method described above, as the Cd ion concentration in the reaction system increases, the shape of the precipitated particles becomes unstable.
Agglomerates are generated and the width of the particle size distribution becomes wide, and in more severe cases, tabular aggregates called flakes with a diameter of about 10 to 30 μm may be formed.

これら従来法も種々改良の試みがなされてはいるが、現
在工業的に製造できるCdS等の粒径は1.0μm以上
であり、200Å以下の超微粒子の製造は困難である。
Although various attempts have been made to improve these conventional methods, the particle size of CdS and the like that can currently be produced industrially is 1.0 μm or more, and it is difficult to produce ultrafine particles of 200 Å or less.

そこで、本発明は光電子機能発現に何月な、粒子半径が
150Å以下の、各種有機系バインダー、ポリマー中へ
の分散性が良好であるような金属硫化物、セレン化物ま
たはこれらの混晶体の超微粒子を製造する方法を提供す
ることを目的とする6 本発明者らは、上述の目的を達成するために鋭意技術的
検討を行なった結果、コロイド状の超微粒子を調製し、
その後、コロイド溶液中から超微粒子を取り出す方法を
見出した。
Therefore, the present invention aims to use superimposed metal sulfides, selenides, or mixed crystals thereof, which have a particle radius of 150 Å or less, have good dispersibility in various organic binders, and polymers, and have a particle radius of 150 Å or less to express optoelectronic functions. Aim to provide a method for manufacturing fine particles 6 As a result of intensive technical studies to achieve the above-mentioned object, the present inventors prepared colloidal ultrafine particles,
Afterwards, he discovered a method for extracting ultrafine particles from colloidal solutions.

一般にコロイド溶液中から微粒子を取り出すことは困難
をともない、まして工業的規模で超微粒子の状態を保持
したままで取り出すことは、通常の方法では不可能に近
いといえる。
Generally, it is difficult to extract fine particles from a colloidal solution, and even more so, it is nearly impossible to extract them while maintaining the ultrafine particle state on an industrial scale using normal methods.

また、例えコロイド粒子を取り出すことができたとして
も、超微粒子であるため、表面エネルギーが異常に大き
く、最終的に乾燥凝集等の問題を伴い、沈殿時の粒子径
を保持した状態で取り出すことは非常に困難である。
Furthermore, even if colloidal particles can be extracted, since they are ultrafine particles, their surface energy is abnormally large, resulting in problems such as drying and agglomeration, and it is difficult to extract them while maintaining the particle size at the time of precipitation. is extremely difficult.

本発明者らは、さらにこのような問題点をも克服し、本
発明に至った。
The present inventors have further overcome such problems and have arrived at the present invention.

(課題を解決するための手段) すなわち本発明は、 fl)(a)Cd、Zn、Pb、Ga、In。(Means for solving problems) That is, the present invention fl) (a) Cd, Zn, Pb, Ga, In.

Ge、SnまたはCuのイオンを単独または2種以上含
有する水溶液、および (b)Sおよび/またはSeのイオンを供給する化合物
を含有し、pHが2〜12に調整されている水溶液 を混合・撹拌し、粒子半径が150Å以下の金属硫化物
、金属セレン化物またはこれらの混晶体のコロイドを調
整し、 (2)該コロイドにイオン性界面活性剤を加えて一旦、
・疑集させ、 (3)凝集物に水に難溶の有機溶媒を加えて超微粒子を
有機溶媒中に分散移行させた後、水を分離して透明なオ
ルガノコロイドを調製し、 (4)さらに該オルガノコロイド中の何機溶媒を除去す
ることを特徴とする、粒子半径が150Å以下の金属硫
化物、金属セレン化物またはこれらの混晶体の超微粒子
の製造法を提供するものである。
Mixing an aqueous solution containing one or more of Ge, Sn or Cu ions, and (b) an aqueous solution containing a compound that supplies S and/or Se ions and whose pH is adjusted to 2 to 12. Stir to prepare a colloid of metal sulfide, metal selenide, or a mixed crystal thereof with a particle radius of 150 Å or less, (2) add an ionic surfactant to the colloid, and then
(3) Add an organic solvent that is poorly soluble in water to the aggregate to disperse and transfer the ultrafine particles into the organic solvent, and then separate the water to prepare a transparent organocolloid. (4) Furthermore, the present invention provides a method for producing ultrafine particles of metal sulfides, metal selenides, or mixed crystals thereof with a particle radius of 150 Å or less, which is characterized by removing some solvent in the organocolloid.

本発明における金属硫化物、金属セレン化物またはこれ
らの混晶体とは、次に示すような化合物である。
The metal sulfides, metal selenides, or mixed crystals thereof in the present invention are the following compounds.

すなわち、Cd、Zn、Pb、Ga、In、Ge、Sn
、Cu等とSおよび/またはSeとの化合物であり、例
えば、CdS、ZnS、PbS、GaS、InS、Ge
S、SnS、CuS、CdSe、Zn5e、Pb5e、
GaSe、InSe、GeSe、5nSe、Cu S 
e等、これらの混晶体として、例えばccisxse+
−x、Z n S x S e + −x I O< 
x < 1 )等が挙げられる。
That is, Cd, Zn, Pb, Ga, In, Ge, Sn
, Cu, etc., and S and/or Se, for example, CdS, ZnS, PbS, GaS, InS, Ge
S, SnS, CuS, CdSe, Zn5e, Pb5e,
GaSe, InSe, GeSe, 5nSe, CuS
As these mixed crystals, such as ccisxse+
−x, Z n S x S e + −x IO<
x < 1), etc.

本発明の方法は、上記のように tl)〜(4)の4つ
のプロセスからなるので、各プロセスについて順次述べ
る。
The method of the present invention consists of four processes, tl) to (4), as described above, and each process will be described in turn.

先ず、 (1)のプロセスは、 (a)Cd、Zn、Pb、Ga、In、Ge。First, the process (1) is (a) Cd, Zn, Pb, Ga, In, Ge.

SnまたはCuのイオンを単独または2種以上含有する
水溶液、および (b)sおよび/またはSeのイオンを供給する化合物
を含有し、pHが2〜12に、J!1整されている水溶
液 を混合・撹拌し、粒子半径が150Å以下の金属硫化物
、金属セレン化物またはこれらの混晶体のコロイドを調
整するプロセスである。
J! This is a process of mixing and stirring a uniform aqueous solution to prepare a colloid of metal sulfide, metal selenide, or a mixed crystal thereof with a particle radius of 150 Å or less.

上記の(a)における金属イオンは、これらの金属の塩
化物、硫酸塩、硝酸塩、過塩素酸塩等の無ti酸の塩、
酢酸塩等の有機酸の塩を原料として供給される。具体的
には、例えばCdCff 、、Cd (No3)、、C
d (CI2041.、Cd50 、、Cd (CH3
Coo )2 、Zn (cgo、12、Pb (NO
3)2.Pb (CH3COOh等が挙げられる。
The metal ions in (a) above include non-tionic acid salts of these metals such as chlorides, sulfates, nitrates, and perchlorates;
It is supplied using organic acid salts such as acetates as raw materials. Specifically, for example, CdCff, , Cd (No3), , C
d (CI2041., Cd50,, Cd (CH3
Coo )2, Zn (cgo, 12, Pb (NO
3)2. Examples include Pb (CH3COOh, etc.).

金属イオン濃度は、好ましくはio−’〜15not/
j2であり、さらに好ましくは10−3〜1.0mol
/12である。
The metal ion concentration is preferably io-' to 15not/
j2, more preferably 10-3 to 1.0 mol
/12.

上記(b’lにおUるSまたはSeを供給する化合物と
しては、例えば(NHnlz S、 Na z S、N
aH3、(C2H,1,NH5,H2S、(N H4)
 2  S e 、  N a z  S e 、  
N a HS e、(CzHsl+ Nt(Se、H2
Seが挙げられる。
Examples of compounds that supply S or Se in the above (b'l) include (NHnlz S, Na z S, N
aH3, (C2H, 1, NH5, H2S, (NH4)
2 S e , N az S e ,
N a HS e, (CzHsl+ Nt(Se, H2
Examples include Se.

H2S、HzSeのような常温で気体状の化合物を使用
する場合には、あらかしめ気体を水に溶解させるか、ま
たは溶解させつつ使用する。
When using a compound that is gaseous at room temperature, such as H2S or HzSe, the tempering gas is dissolved in water or used while being dissolved.

(b)におけるSおよび/またはSeのイオン濃度は、
好ましくは10−4〜lomol/J2であり、さらに
好ましくは10−3〜1mol/βである。
The ion concentration of S and/or Se in (b) is
Preferably it is 10-4 to lomol/J2, more preferably 10-3 to 1 mol/β.

(b)のt8液は、NaO[(等の塩基または塩酸等の
酸によりp)(を2〜12に調整しておく。
In the t8 solution (b), NaO[(p)(p) is adjusted to 2 to 12 with a base such as NaO[(p)] or an acid such as hydrochloric acid.

また、(b)の溶液には、コロイド安定剤、すなわち粒
子成長抑制剤を添加しておいてもよい。
Further, a colloid stabilizer, that is, a particle growth inhibitor may be added to the solution (b).

そのような粒子成長抑制剤としては、カルボン酸型、硫
酸エステル型、スルホン酸型等の陰イオン性高分子界面
活性剤または非イオン性高分子界面活性剤が用いられる
。具体的には、例えばアクリル酸とスチレン、エチレン
、イソブチレン等の共重合体、それらの部分ケン化物、
塩、アミド、エステル等、無水マレイン酸・スチレン共
重合体系である。粒子成長抑制剤の濃度は、SまたはS
e化合物の種類や量、後に用いる界面活性剤の量等によ
って異なるので、適宜決定されるが、好ましくは0.5
重量%以下である。
As such a particle growth inhibitor, an anionic polymeric surfactant or a nonionic polymeric surfactant such as a carboxylic acid type, sulfuric acid ester type, or sulfonic acid type is used. Specifically, for example, copolymers of acrylic acid and styrene, ethylene, isobutylene, etc., partially saponified products thereof,
Salt, amide, ester, etc., maleic anhydride/styrene copolymer system. The concentration of particle growth inhibitor is S or S
e It varies depending on the type and amount of the compound, the amount of surfactant used later, etc., so it is determined appropriately, but it is preferably 0.5
% by weight or less.

次に、(a)および(b)の溶液を激しく混合し、撹拌
して粒子半径が150Å以下のコロイドを調製する。こ
のとき、 (a)と(b)の溶液の混合比は、1:2〜
1:50(容量比)である。
Next, the solutions (a) and (b) are vigorously mixed and stirred to prepare a colloid with a particle radius of 150 Å or less. At this time, the mixing ratio of solutions (a) and (b) is 1:2 to
The ratio is 1:50 (capacity ratio).

混合は、(a)の溶液を(b)の溶液中に少量ずつ滴下
するのが好ましい、また、このときの温度は、30℃以
下が好ましい。
The mixing is preferably carried out by dropping the solution (a) into the solution (b) little by little, and the temperature at this time is preferably 30°C or lower.

次に、 (2)のプロセスは、 filのプロセスで調
製したコロイドにイオン性界面活性剤を加えて一旦凝集
させるプロセスである。
Next, the process (2) is a process in which an ionic surfactant is added to the colloid prepared in the fil process and the colloid is once coagulated.

ここでイオン性界面活性剤の添加は、 (1)で調製し
た超微粒状のコロイド粒子を凝集させ、次の(3)のプ
ロセスにおける有機溶媒中への移行を容易にし、安定し
たオルガノコロイドを得るためである。
Here, the addition of the ionic surfactant aggregates the ultrafine colloid particles prepared in (1), facilitates their transfer into the organic solvent in the next process (3), and forms a stable organocolloid. It's to get it.

イオン性界面活性剤としては、水に可溶であれば低分子
系、高分子系の何れも使用可能である。
As the ionic surfactant, both low-molecular and high-molecular types can be used as long as they are soluble in water.

低分子系の陰イオン性界面活性剤としては、例えばドデ
シルベンゼンスルホン酸ナトリウム、ラウリン酸、パル
ミチン酸、ミリスチン酸、ステアリン酸等が好ましく、
高分子系の陰イオン性界面活性剤としては、上述した陰
イオン性高分子界面活性剤が好ましい。
Preferred examples of the low molecular weight anionic surfactant include sodium dodecylbenzenesulfonate, lauric acid, palmitic acid, myristic acid, and stearic acid.
As the polymeric anionic surfactant, the above-mentioned anionic polymeric surfactant is preferred.

また、陽イオン性界面活性剤としては、例えば、アミン
塩、アンモニウム塩系の界面活性剤が好ましい。
Further, as the cationic surfactant, for example, amine salt or ammonium salt type surfactants are preferable.

界面活性剤の添加により、電荷を帯びた超微粒状のコロ
イド粒子の電荷は中和され、親水性の表面は疎水性に転
換される。したがって、コロイド粒子が正電荷を帯びて
いる場合には陰イオン性の、負電荷を帯びている場合に
は陽イオン性の界面活性剤が用いられる。通常、界面活
性剤は濃度10−’〜l O−’mol / I;!、
の水溶液として用いられる。界面活性剤の添加量はコロ
イド粒子の量によって異なるが、10−2〜5重量%が
好ましい。界面活性剤の添加量が少なすぎると、コロイ
ド粒子の電荷が中和されず、多すぎると界面活性剤の疎
水基同志の配向吸着が生じ、コロイド粒子が電荷を帯び
ることになり、次のプロセスにおいて有機溶媒中への移
行が困難となるので、界面活性剤の添加量は超微粒状の
コロイド粒子が完全に凝集する点を終点とすべきである
By adding a surfactant, the charge of the charged ultrafine colloidal particles is neutralized and the hydrophilic surface is converted to hydrophobic. Therefore, an anionic surfactant is used when the colloid particles are positively charged, and a cationic surfactant is used when the colloid particles are negatively charged. Typically, the surfactant has a concentration of 10-' to l O-'mol/I;! ,
It is used as an aqueous solution. The amount of surfactant added varies depending on the amount of colloidal particles, but is preferably 10-2 to 5% by weight. If the amount of surfactant added is too small, the charge on the colloidal particles will not be neutralized, and if it is too large, oriented adsorption of the hydrophobic groups of the surfactant will occur, causing the colloidal particles to be charged, which will hinder the next process. Since it becomes difficult for the surfactant to migrate into the organic solvent, the amount of surfactant added should be set to the point at which the ultrafine colloidal particles are completely agglomerated.

次に、 (3)のプロセスは(2)のプロセスで得られ
た凝集物に、水に難溶の有機溶媒を加えることにより超
微粒子を有機溶媒中に移行させた後、水を分離して透明
なオルガノコロイドを調製するプロセスである。
Next, in the process (3), an organic solvent that is hardly soluble in water is added to the aggregate obtained in the process (2) to transfer the ultrafine particles into the organic solvent, and then the water is separated. It is a process to prepare transparent organocolloids.

使用する有機溶媒は、 (2)のプロセスで用いた界面
活性剤の種類により適宜決定されるが、例えば、トルエ
ン、キシレン、シクロヘキサン、ベンゼン、ヘキサン、
四塩化炭素、クロロホルム、ペンタン、シクロヘキサノ
ン、エチルメチルケトン、フェニルメタノール、シクロ
ヘキサノール、ブタノール、トリクロロエチレン等が使
用可能である。
The organic solvent to be used is appropriately determined depending on the type of surfactant used in the process (2), but examples include toluene, xylene, cyclohexane, benzene, hexane,
Carbon tetrachloride, chloroform, pentane, cyclohexanone, ethylmethylketone, phenylmethanol, cyclohexanol, butanol, trichloroethylene, etc. can be used.

有機溶媒の使用量は、反応液の全容量の0.2倍から2
倍が好ましい。
The amount of organic solvent used is 0.2 to 2 times the total volume of the reaction solution.
Double is preferred.

(2)で得られた凝集物を含有する水溶液を上述の有機
溶媒を加えて撹拌することにより、超微粒子が有機溶媒
中に移行する。その後、通常の分液操作等の手段により
、水を分離すると、透明なオルガノコロイドが得られる
By adding the above-mentioned organic solvent to the aqueous solution containing the aggregate obtained in (2) and stirring, the ultrafine particles are transferred into the organic solvent. Thereafter, water is separated by means such as a normal liquid separation operation to obtain a transparent organocolloid.

次に、 (4)のプロセスは、 (3)のプロセスで得
られたオルガノコロイド中の有機溶媒を除去するプロセ
スである。
Next, the process (4) is a process of removing the organic solvent in the organocolloid obtained in the process (3).

ここでは、有機溶媒を完全に除去して粉末状の超微粒子
としても、一部除去、すなわち濃縮してペースト状とし
てもよい。
Here, the organic solvent may be completely removed to form ultrafine particles in the form of a powder, or a portion may be removed, that is, concentrated to form a paste.

有機溶媒の濃縮または分離は、通常の手段、例えば、加
熱下にもしくは非加熱下に減圧蒸留等の手段を用いて容
易に行なうことができるにの蒸留中にあっても、イオン
性界面活性剤の脱着による超微粒子の凝集が生じる恐れ
はない。
Concentration or separation of the organic solvent can be easily carried out using conventional means, such as vacuum distillation with or without heating. There is no risk of agglomeration of ultrafine particles due to desorption.

上述した本発明の方法により、その粒子半径が150Å
以下、好ましくは、100Å以下、さらに好ましくは5
0Å以下である金属硫化物、金属セレン化物またはこれ
らの混晶体の超微粒子が得られる。
By the method of the present invention described above, the particle radius is 150 Å.
Below, preferably 100 Å or less, more preferably 5
Ultrafine particles of metal sulfides, metal selenides, or mixed crystals thereof having a particle size of 0 Å or less can be obtained.

かくして得られた超微粒子は、超微粒子であるため透明
度が高く、また、有機バインダー、ポリマー等への分散
は極めて良好であるので、光機能材料として使用するこ
とができる。
The ultrafine particles thus obtained have high transparency because they are ultrafine particles, and are extremely well dispersed in organic binders, polymers, etc., so they can be used as optical functional materials.

(実施例) 以下、実施例により本発明を説明する。(Example) The present invention will be explained below with reference to Examples.

実施例1 (a) 8.9x 10−’mat /QのCd504
水溶液60 m lを。
Example 1 (a) Cd504 of 8.9x 10-'mat/Q
60 ml of aqueous solution.

(b)粒子成長抑制剤として無水マレイン酸・スヂレン
共重合体を0.07i量%含有した、4、 5x 10
”3mol /12の(NH−)、S水溶液(pH3)
250mlに、注@深く撹拌しツツ、少量ずつ滴下した
。このとき、水溶液の温度は23℃であった。
(b) 4, 5x 10 containing 0.07i mass% of maleic anhydride/styrene copolymer as a particle growth inhibitor
"3 mol/12 (NH-), S aqueous solution (pH 3)
The mixture was added dropwise little by little to 250 ml while stirring deeply. At this time, the temperature of the aqueous solution was 23°C.

このコロイドに、陰イオン性界面活性剤として2×lO
〜”mol / Qのドデシルベンゼンスルホン酸ナト
リウム水滴液を180m1加えて、CC15コロイドを
凝集させた。
This colloid was added with 2×1O as an anionic surfactant.
180 ml of sodium dodecylbenzenesulfonate aqueous solution of ~"mol/Q was added to aggregate the CC15 colloid.

次いで、この凝集物を含有する水溶液に、キシレン30
0m1を加えて激しく振り混ぜ、CdS超微粒子をキシ
レン相に移行させた後、分液操作により水を除去した。
Next, 30% xylene was added to the aqueous solution containing this aggregate.
After adding 0 ml of the mixture and shaking it vigorously to transfer the CdS ultrafine particles to the xylene phase, water was removed by a liquid separation operation.

かくしてCdSの超微粒子はキシレン中に完全に分散し
、透明なオルガノコロイドが得られたにのオルガノコロ
イドを水浴で50℃に加熱して、30mmHgでキシレ
ンを減圧留去して濃縮し、ペースト状のCdS超微粒子
を得た。また、完全にキシレンを除去することにより粉
末状のCdS超微粒子を得た。生成したこのCdSの粒
子半径は、透過型電子顕微鏡にて測定したところ28人
であった。
In this way, the ultrafine particles of CdS were completely dispersed in xylene, and a transparent organocolloid was obtained. The organocolloid was heated to 50°C in a water bath, and the xylene was distilled off under reduced pressure at 30 mmHg to concentrate it and form a paste. CdS ultrafine particles were obtained. Further, by completely removing xylene, powdered CdS ultrafine particles were obtained. The particle radius of the generated CdS was 28 when measured using a transmission electron microscope.

実施例2 (a) 4.5 X 10−’mol /I2のZn(
CffO4)z水溶液45m1を、 (b) 2 X 10−3mol / (2のN a 
HS水ン容液(pH8)1800mlに、注意深く撹拌
しつつ、少量ずつ滴下した。このとき、水溶液の温度は
20°Cであった。
Example 2 (a) Zn(
45 ml of CffO4)z aqueous solution, (b) 2 X 10-3 mol / (N a of 2
The mixture was added dropwise little by little to 1800 ml of HS water solution (pH 8) with careful stirring. At this time, the temperature of the aqueous solution was 20°C.

このコロイドに、陰イオン性界面活性剤として2、 5
X l O″3mol /f2のラウリン酸ナトリウム
水溶ン夜を750m1加えて、ZnSコロイドを(疑集
させた。
This colloid contains 2, 5 as anionic surfactants.
750 ml of an aqueous solution of sodium laurate of 3 mol/f2 was added to collect the ZnS colloid.

次いで、この凝集物を含有する水溶液に、トルエン12
00m1を加えて激しく振り混ぜ、ZnS超微粒子をト
ルエン相に移行させた後、分液操作により水を除去した
Next, 12 toluene was added to the aqueous solution containing this aggregate.
00ml was added and vigorously shaken to transfer the ZnS ultrafine particles to the toluene phase, and then water was removed by a liquid separation operation.

かくしてZnSの超微粒子はトルエン中に完全に分散し
、透明なオルガノコロイドが得られた。
In this way, the ZnS ultrafine particles were completely dispersed in toluene, and a transparent organocolloid was obtained.

このオルガノコロイドを水浴で50℃に加熱して、90
mmHgで1〜ルエンな減圧留去して粉末状のZnS超
微粒子を得た。生成したこのZnSの粒子半径は、透過
型電子顕微鏡にて測定したところ30人であった6 (発明の効果) 本発明によれば、金属の硫化物、金属のせレン化物また
はこれらの混晶体の超微粒子を得ることができる。
This organocolloid was heated to 50°C in a water bath and heated to 90°C.
Powdered ZnS ultrafine particles were obtained by distillation under reduced pressure of 1 to 1 mmHg. The particle radius of the generated ZnS was measured using a transmission electron microscope and was found to be 30. Ultrafine particles can be obtained.

本発明により得られたこれらの超微粒子は、光エネルギ
ーの変換、貯蔵に関する光化学反応の触媒または光増悪
剤、電子写真感光体、非線形光学材料、圧電材料等の光
電子機能材料として有用である。
These ultrafine particles obtained according to the present invention are useful as catalysts or photo-enhancing agents for photochemical reactions related to the conversion and storage of light energy, and optoelectronic functional materials for electrophotographic photoreceptors, nonlinear optical materials, piezoelectric materials, and the like.

Claims (1)

【特許請求の範囲】 (a)Cd、Zn、Pb、Ga、In、Ge、Snまた
はCuのイオンを単独または2種以上含有する水溶液、
および (b)Sおよび/またはSeのイオンを供給する化合物
を含有し、pHが2〜12に調整されている水溶液 を混合・撹拌し、粒子半径が150Å以下の金属硫化物
、金属セレン化物またはこれらの混晶体のコロイドを調
整し、 該コロイドにイオン性界面活性剤を加えて一旦凝集させ
、 凝集物に水に難溶の有機溶媒を加えて超微粒子を有機溶
媒中に分散移行させた後、水を分離して透明なオルガノ
コロイドを調製し、 さらに該オルガノコロイド中の有機溶媒を除去すること
を特徴とする、粒子半径が150Å以下の金属硫化物、
金属セレン化物またはこれらの混晶体の超微粒子の製造
法。
[Scope of Claims] (a) An aqueous solution containing one or more of Cd, Zn, Pb, Ga, In, Ge, Sn or Cu ions;
and (b) an aqueous solution containing a compound that supplies S and/or Se ions and whose pH is adjusted to 2 to 12 is mixed and stirred, and a metal sulfide, metal selenide or After preparing a colloid of these mixed crystals, adding an ionic surfactant to the colloid and causing it to aggregate, add an organic solvent that is sparingly soluble in water to the aggregate to disperse and transfer the ultrafine particles into the organic solvent. , a metal sulfide with a particle radius of 150 Å or less, characterized in that water is separated to prepare a transparent organocolloid, and the organic solvent in the organocolloid is further removed;
A method for producing ultrafine particles of metal selenides or mixed crystals thereof.
JP13581488A 1988-06-03 1988-06-03 Method for producing ultrafine particles of metal sulfide, metal selenide or a mixed crystal thereof Expired - Lifetime JP2636001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13581488A JP2636001B2 (en) 1988-06-03 1988-06-03 Method for producing ultrafine particles of metal sulfide, metal selenide or a mixed crystal thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13581488A JP2636001B2 (en) 1988-06-03 1988-06-03 Method for producing ultrafine particles of metal sulfide, metal selenide or a mixed crystal thereof

Publications (2)

Publication Number Publication Date
JPH01305806A true JPH01305806A (en) 1989-12-11
JP2636001B2 JP2636001B2 (en) 1997-07-30

Family

ID=15160434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13581488A Expired - Lifetime JP2636001B2 (en) 1988-06-03 1988-06-03 Method for producing ultrafine particles of metal sulfide, metal selenide or a mixed crystal thereof

Country Status (1)

Country Link
JP (1) JP2636001B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089522A (en) * 2001-09-12 2003-03-28 Mitsui Chemicals Inc Ultrafine particle of composite modified metal chalcogenide
WO2004073021A2 (en) * 2003-01-31 2004-08-26 Arizona Board Of Regents, Acting For And On Behalf Of, Arizona State University Preparation of metal chalcogenides from reactions of metal compounds and chalcogen
JP2006160542A (en) * 2004-12-03 2006-06-22 Tosoh Corp Iron sulfide particle-containing solution, its production method, and heavy metal treatment agent as well as treatment method using the same
CN100406389C (en) * 2005-12-12 2008-07-30 华东理工大学 Preparation method of star shaped copper sulfide
CN101823702A (en) * 2010-05-14 2010-09-08 中国科学院上海技术物理研究所 Preparation method of Cu2CdSnSe4 nano crystals
JP2011016707A (en) * 2009-06-12 2011-01-27 Dowa Holdings Co Ltd Chalcogen compound powder, chalcogen compound paste, and methods for manufacturing them

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089522A (en) * 2001-09-12 2003-03-28 Mitsui Chemicals Inc Ultrafine particle of composite modified metal chalcogenide
JP4634670B2 (en) * 2001-09-12 2011-02-16 三井化学株式会社 Composite modified metal chalcogenide ultrafine particles
WO2004073021A2 (en) * 2003-01-31 2004-08-26 Arizona Board Of Regents, Acting For And On Behalf Of, Arizona State University Preparation of metal chalcogenides from reactions of metal compounds and chalcogen
WO2004073021A3 (en) * 2003-01-31 2005-01-13 Univ Arizona Preparation of metal chalcogenides from reactions of metal compounds and chalcogen
JP2006160542A (en) * 2004-12-03 2006-06-22 Tosoh Corp Iron sulfide particle-containing solution, its production method, and heavy metal treatment agent as well as treatment method using the same
CN100406389C (en) * 2005-12-12 2008-07-30 华东理工大学 Preparation method of star shaped copper sulfide
JP2011016707A (en) * 2009-06-12 2011-01-27 Dowa Holdings Co Ltd Chalcogen compound powder, chalcogen compound paste, and methods for manufacturing them
CN101823702A (en) * 2010-05-14 2010-09-08 中国科学院上海技术物理研究所 Preparation method of Cu2CdSnSe4 nano crystals

Also Published As

Publication number Publication date
JP2636001B2 (en) 1997-07-30

Similar Documents

Publication Publication Date Title
Yang et al. Growth of CdS nanorods in nonionic amphiphilic triblock copolymer systems
Wong et al. Influence of organic capping ligands on the growth kinetics of ZnO nanoparticles
Curri et al. Synthesis and characterization of CdS nanoclusters in a quaternary microemulsion: the role of the cosurfactant
US20080247932A1 (en) Method for making colloidal nanocrystals
JP2002121549A (en) Ultrafine semiconductor particle
CN100360423C (en) Process for synthesizing spinel zine stannate nano rod
JP2003064278A (en) Core-shell semiconductor nano-particle
Zhang et al. ZnO/PS core–shell hybrid microspheres prepared with miniemulsion polymerization
GB2188313A (en) Solid solution of sno2 containing sb
EP1773921B1 (en) Synthesis of nanoparticles in non-aqueous polymer solutions and product
Romero-Ibarra et al. Hierarchically nanostructured barium sulfate fibers
JPH01305806A (en) Production of superfine particle of metal sulfide, metal selenide, or their mixed crystal
JPH02296726A (en) Ultraviolet ray absorptive granular material
JP3683076B2 (en) Surface-modified semiconductor ultrafine particle-containing resin material and method for producing the same
Zhang et al. pH-Dependent shape changes of water-soluble CdS nanoparticles
JPH08269359A (en) Hydrophobic metatitanic acid fine particle and its production
CN108971513A (en) A kind of nano copper particle and its inexpensive environmentally protective preparation method
JP4794494B2 (en) Method for producing tin oxide sol
JP2002020740A (en) Semiconductive crystal ultrafine particle having ligand with hyperbranched structure
CN1626446A (en) Method for preparing Nano zinc oxide material in controllable size
JP4634670B2 (en) Composite modified metal chalcogenide ultrafine particles
Fu et al. Single-crystal ZnO cup based on hydrothermal decomposition route
CN114958333B (en) High-fluorescence-intensity hydrophobic perovskite nanocrystalline and preparation method and application thereof
Khan CdS nanoparticles with a thermoresponsive polymer: synthesis and properties
JPH10226779A (en) Reactive reagent comprising semiconductor ultramicroparticle

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12