JPH08269359A - Hydrophobic metatitanic acid fine particle and its production - Google Patents

Hydrophobic metatitanic acid fine particle and its production

Info

Publication number
JPH08269359A
JPH08269359A JP7491195A JP7491195A JPH08269359A JP H08269359 A JPH08269359 A JP H08269359A JP 7491195 A JP7491195 A JP 7491195A JP 7491195 A JP7491195 A JP 7491195A JP H08269359 A JPH08269359 A JP H08269359A
Authority
JP
Japan
Prior art keywords
metatitanic acid
fine particles
hydrophobic
alkoxysilane
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7491195A
Other languages
Japanese (ja)
Other versions
JP3462610B2 (en
Inventor
Toshihiro Yoshinaga
俊宏 好永
Masayasu Morishita
正育 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Titan Kogyo KK
Original Assignee
Titan Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Titan Kogyo KK filed Critical Titan Kogyo KK
Priority to JP07491195A priority Critical patent/JP3462610B2/en
Publication of JPH08269359A publication Critical patent/JPH08269359A/en
Application granted granted Critical
Publication of JP3462610B2 publication Critical patent/JP3462610B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To obtain the subject fine particles having specified physical properties, excellent in dispersibility, useful for coating materials, etc., by deflocculating metatitanic acid followed by treatment with a specified amount of an alkoxysilane, and then neutralized, filtrated, washed, and dried at specified temperatures. CONSTITUTION: Metatitanic acid synthesized by the hydrolysis involved in sulfuric acid method is deflocculated, and treated with 10-100wt.%, based on the metatitanic acid, of an alkoxysilane of the formula RnSiR'm (R is a hydrocarbon; R' is an alkoxy; (n) and (m) are each 1-3; (n+m)=4); the resultant metatitanic acid is neutralized with an alkali, followed by filtration and washing, and then dried at 100-190 deg.C, thus obtaining the objective hydrophobic metatitanic acid fine particles 0.01-0.1Lμm in diameter, 100-300m<2> /g in specific surface area, 20-70% in hydrophobicization degree and >=70% in the light transmittance at a wavelength of 550nm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、疎水性及び分散性に優
れ、塗料、プラスチック、繊維などの紫外線吸収剤や、
電子写真用トナーの帯電調整剤、流動化剤に用いられる
メタチタン酸微粒子に関する。
TECHNICAL FIELD The present invention has an excellent hydrophobicity and dispersibility, and an ultraviolet absorber such as paint, plastic and fiber.
The present invention relates to fine particles of metatitanic acid used as a charge control agent and a fluidizing agent for electrophotographic toner.

【0002】[0002]

【従来の技術】酸化チタンの超微粒子は紫外線カットの
目的で化粧品、塗料、インキ、プラスチック等に使用さ
れる他、電子写真用トナーの帯電調整剤、流動化剤等に
も広く使用されている。これらの用途には、分散性の向
上や吸湿性の防止のために、表面を疎水化処理された酸
化チタンが使用されている。
2. Description of the Related Art Ultrafine particles of titanium oxide are used in cosmetics, paints, inks, plastics, etc. for the purpose of blocking ultraviolet rays, and are also widely used as a charge control agent and a fluidizing agent for electrophotographic toners. . In these applications, titanium oxide whose surface is hydrophobized is used to improve dispersibility and prevent hygroscopicity.

【0003】従来、ベースとなる微粒子としては、四塩
化チタンやチタンアルコキシドの気相酸化により合成さ
れた酸化チタンや、硫酸法で脱水焼成された酸化チタン
であり、これらに気相中で(特開平1−153529号
公報)あるいは水溶液中で(特開平5−19528号公
報、特開平2−216440号公報)シランカップリン
グ剤の処理を行うものであったが、メタチタン酸を被覆
対象とするものはなかった。又、チタンアルコキシドの
気相酸化により合成された酸化チタンにシランカップリ
ング剤の処理を行ったものは、疎水化度、比表面積が高
く、分散性も良好であるが高価である。一方、四塩化チ
タンの気相酸化により合成された酸化チタンや硫酸法で
脱水焼成された酸化チタンにシランカップリング剤の処
理を行ったものは比較的安価に製造できるが、比表面積
が小さく、分散性も劣るものであった。
Conventionally, as the base fine particles, titanium oxide synthesized by vapor phase oxidation of titanium tetrachloride or titanium alkoxide and titanium oxide dehydrated and baked by the sulfuric acid method have been used. (Kaihei 1-153529) or in an aqueous solution (JP-A-5-19528 and JP-A-2-216440), the treatment with a silane coupling agent was carried out, but metatitanic acid was to be coated. There was no. Further, titanium oxide synthesized by vapor-phase oxidation of titanium alkoxide treated with a silane coupling agent has a high degree of hydrophobicity, a high specific surface area, and good dispersibility, but is expensive. On the other hand, titanium oxide synthesized by vapor-phase oxidation of titanium tetrachloride or titanium oxide dehydrated and baked by the sulfuric acid method and treated with a silane coupling agent can be produced relatively inexpensively, but has a small specific surface area, The dispersibility was also poor.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、疎水
化度、比表面積が高く、分散性の良好な微粒子を比較的
容易にしかも安価に提供するものであり、具体的には、
高価であるチタンアルコキシドを使用せず、又、四塩化
チタンの気相法や硫酸法で得られる従来の酸化チタンよ
り高比表面積で、かつ、分散性の良い微粒子を製造する
ことを課題とした。
DISCLOSURE OF THE INVENTION An object of the present invention is to provide fine particles having a high degree of hydrophobicity and a high specific surface area and good dispersibility relatively easily and at low cost.
It was an object to produce fine particles having high specific surface area and good dispersibility without using expensive titanium alkoxide, and having a higher specific surface area than conventional titanium oxide obtained by a vapor phase method or a sulfuric acid method of titanium tetrachloride. .

【0005】[0005]

【課題を解決するための手段】本発明者らは、疎水化
度、比表面積及び良好な分散性を保持した微粒子を開発
するため鋭意研究を重ねた結果、本発明を完成させたも
のである。
The present inventors have completed the present invention as a result of intensive research to develop fine particles having a hydrophobicity, a specific surface area and good dispersibility. .

【0006】すなわち、本発明は、硫酸法加水分解反応
により合成されたメタチタン酸の塩酸解膠により得られ
た非凝集性スラリーに、水系でアルコキシシランを処理
することを特徴とする疎水性メタチタン酸微粒子を提供
するものである。
That is, the present invention is characterized in that a non-aggregating slurry obtained by deflocculating hydrochloric acid of metatitanic acid synthesized by a sulfuric acid method hydrolysis reaction is treated with an alkoxysilane in an aqueous system to obtain a hydrophobic metatitanic acid. It provides fine particles.

【0007】本発明にかかる疎水性メタチタン酸微粒子
は、基体であるメタチタン酸に対して、アルコキシシラ
ンとして10〜100重量%被覆させ、100〜190
℃にて乾燥することにより得られる。
The hydrophobic metatitanic acid fine particles according to the present invention are coated with metatitanic acid as a base material in an amount of 10 to 100% by weight as an alkoxysilane to form 100 to 190.
Obtained by drying at ° C.

【0008】本発明の基体となるメタチタン酸は、硫酸
法加水分解反応により得られるもので、電子顕微鏡写真
による一次粒径が0.01〜0.1μmのものであれば
良い。
The metatitanic acid, which is the base material of the present invention, is obtained by a hydrolysis reaction by the sulfuric acid method and may have a primary particle size of 0.01 to 0.1 μm as determined by an electron micrograph.

【0009】次に本発明による疎水性メタチタン酸微粒
子を完成させた経過について説明を行う。
Next, the process of completing the hydrophobic metatitanic acid fine particles according to the present invention will be described.

【0010】疎水性微粒子を得るために、メタチタン酸
を乾燥・焼成した粉末を粉砕・分散することで単分散化
をはかり、水系でアルコキシシランを処理する方法を検
討したが、この方法では、特にメタチタン酸の粒径が細
かくなるとメタチタン酸の乾燥・焼成時に強い凝集を起
こした。そのため、疎水化度を高くすることはできた
が、比表面積が小さく、分散性の劣るものであり、従来
からある超微粒子酸化チタンと大差ないものとなった。
そこで、この問題を解決するための検討を続けた結果、
メタチタン酸を塩酸解膠し、非凝集性のスラリーとした
状態でアルコキシシランを添加し被覆処理を行うことに
より、含水物であるメタチタン酸であるにもかかわら
ず、固液分離し、乾燥した粉末は高い疎水化度を有し、
しかも高い比表面積を有しており乾燥後も非凝集性を維
持した分散性の良好な微粒子であることが判明し本発明
を完成するに至った。
In order to obtain the hydrophobic fine particles, a method of treating the alkoxysilane with a water system was investigated by pulverizing and dispersing powder obtained by drying and firing metatitanic acid to obtain monodispersion. In this method, particularly, When the particle size of metatitanic acid became fine, strong aggregation occurred during drying and firing of metatitanic acid. Therefore, the degree of hydrophobicity could be increased, but the specific surface area was small and the dispersibility was poor, which was not much different from the conventional ultrafine particle titanium oxide.
Therefore, as a result of continuing studies to solve this problem,
Powder obtained by solid-liquid separation and decomposing of metatitanic acid by hydrochloric acid deflocculation, and by adding coating with alkoxysilane in the state of non-aggregating slurry, even though it is metatitanic acid which is a water-containing substance. Has a high degree of hydrophobicity,
Moreover, it was found that the fine particles have a high specific surface area and maintain the non-aggregation property even after drying, and thus the present invention has been completed.

【0011】本発明における製造方法の詳細な説明を引
き続き行う。
The detailed description of the manufacturing method of the present invention will be continued.

【0012】原料となるメタチタン酸の粒径の範囲の下
限は、好ましくは0.01μm、さらに好ましくは0.
02μmであり、小さすぎるとアルコキシシランを処理
しても凝集を十分におさえきれない。一方、粒径の上限
は、好ましくは0.07μm、さらに好ましくは0.0
5μmである。大きすぎると解膠速度が非常に遅くなり
実用的ではないからである。
The lower limit of the particle size range of metatitanic acid as a raw material is preferably 0.01 μm, more preferably 0.1.
If it is too small, coagulation cannot be sufficiently suppressed even if the alkoxysilane is treated. On the other hand, the upper limit of the particle size is preferably 0.07 μm, more preferably 0.0
5 μm. This is because if it is too large, the peptization speed becomes very slow and it is not practical.

【0013】メタチタン酸の解膠処理方法として、いく
つかの方法がある。例えば、凝集メタチタン酸のスラリ
ーにアンモニアや苛性アルカリを加え、中和後、ろ過、
水洗して残存している硫酸根を除去し、引き続き塩酸、
硝酸、トリクロル酢酸などの強塩基性一塩基酸を加えて
pH3以下、好ましくはpH0.9〜2.0にする方法
がある。又、脱硫酸根の処理を行うことなく、凝集メタ
チタン酸のスラリーに、硫酸根と反応して不溶性の硫酸
塩を形成すると同時に一塩基酸を形成するような塩、例
えば塩化バリウムを添加する方法等がある。異物質の混
入がなく、又、アルコキシシランを溶解し、反応し易い
状態とするには、前者の方法、特に塩酸を使用して解膠
する方法がより適している。
There are several methods for peptization treatment of metatitanic acid. For example, adding ammonia or caustic to the slurry of agglomerated metatitanic acid, neutralizing, filtering,
Washing with water to remove the remaining sulfate radicals, followed by hydrochloric acid,
There is a method in which a strongly basic monobasic acid such as nitric acid or trichloroacetic acid is added to adjust the pH to 3 or less, preferably 0.9 to 2.0. In addition, a method of adding a salt that reacts with a sulfate group to form an insoluble sulfate salt and at the same time forms a monobasic acid, for example, barium chloride, without treating the desulfated root, There is. The former method, in particular the method of peptizing using hydrochloric acid, is more suitable in order to make the state in which the alkoxysilane is dissolved and easily reacted without mixing of foreign substances.

【0014】アルコキシシランを添加するときは、好ま
しくはpH3.0以下、さらに好ましくはpH2.0以
下で行う。pHを上記値以下にすることによって、メタ
チタン酸の再凝集がさらに上首尾に阻止できる。また、
アルコキシシランを添加するときは、好ましくはpH
0.9以上で行う。pHを上記値以上にすることによっ
て、アルコキシシランの被覆処理を均一に促進できる。
又、撹拌保持した後、加水分解反応を促進する目的で、
アルカリを用いて好ましくはpH4〜9、さらに好まし
くは5〜7になるように中和を行う。又、反応スラリー
の温度を、好ましくは20〜100℃、さらに好ましく
は30〜70℃に加温する。
When the alkoxysilane is added, the pH is preferably 3.0 or less, more preferably pH 2.0 or less. Re-aggregation of metatitanic acid can be further successfully prevented by adjusting the pH to the above value or less. Also,
When adding alkoxysilane, preferably pH
Perform at 0.9 or higher. By setting the pH to the above value or more, the coating treatment of the alkoxysilane can be uniformly promoted.
Also, after the stirring and holding, for the purpose of promoting the hydrolysis reaction,
Neutralization is performed using an alkali so that the pH is preferably 4-9, more preferably 5-7. The temperature of the reaction slurry is preferably heated to 20 to 100 ° C, more preferably 30 to 70 ° C.

【0015】アルコキシシランとしては、 一般式
RnSiR'm R :アルキル基、フェニル基、ビニル基、グリドキシ
基、メルカプト基、メタクリル基を含む炭化水素基 n :1〜3の整数 R':アルコキシ基 m :1〜3の整数 n+m=4 で表されるものであり、例えば、ビニルトリメトキシシ
ラン、プロピルトリメトキシシラン、i−ブチルトリメ
トキシシラン、n−ブチルトリメトキシシラン、n−ヘ
キシルトリメトキシシラン、n−オクチルトリメトキシ
シラン、n−ドデシルトリエトキシシラン、フェニルト
リメトキシシラン、3−グリドキシプロピルトリメトキ
シシラン等を挙げることができ、炭化水素基Rの炭素の
数が2〜10のものが好ましい。炭素数が1のものは分
子鎖長が短いため疎水化度が低く、又、乾燥時に粒子間
が十分に離れないため凝集が起こり分散性が低下する。
一方、炭素数が11以上のものは分子鎖長が長過ぎて分
子鎖が絡み凝集を起こすとともに、比表面積の低下が大
きく好ましくない。又、疎水化度を上げるためには、ポ
リジメチルシロキサン等シリコーンオイルのエマルジョ
ンやチタネート系のカップリング剤も有効であるが、分
子鎖が長いため、同様の理由で好ましくない。
The alkoxysilane has the general formula
RnSiR'm R: a hydrocarbon group including an alkyl group, a phenyl group, a vinyl group, a glydoxy group, a mercapto group, and a methacryl group n: an integer of 1 to 3 R ': an alkoxy group m: an integer of 1 to 3 n + m = 4 For example, vinyltrimethoxysilane, propyltrimethoxysilane, i-butyltrimethoxysilane, n-butyltrimethoxysilane, n-hexyltrimethoxysilane, n-octyltrimethoxysilane, n-dodecyl. Examples thereof include triethoxysilane, phenyltrimethoxysilane, and 3-glydoxypropyltrimethoxysilane, and the hydrocarbon group R preferably has 2 to 10 carbon atoms. When the number of carbon atoms is 1, the degree of hydrophobicity is low because the molecular chain length is short, and the particles are not sufficiently separated from each other during drying, so that aggregation occurs and the dispersibility decreases.
On the other hand, those having 11 or more carbon atoms are not preferable because the molecular chain length is too long and the molecular chains are entangled to cause aggregation, and the specific surface area is decreased. Further, an emulsion of silicone oil such as polydimethylsiloxane or a titanate coupling agent is effective for increasing the hydrophobicity, but it is not preferable for the same reason because the molecular chain is long.

【0016】アルコキシシランの被覆量は、基体のメタ
チタン酸に対して10〜100重量%好ましくは、20
〜80%、さらに好ましくは、25〜50%である。少
な過ぎると疎水化度が低くなり、多過ぎると凝集が起こ
るとともに、比表面積も低下する。なお、アルコキシシ
ランは2種以上を併用して用いることもできる。
The coating amount of alkoxysilane is 10 to 100% by weight with respect to the metatitanic acid of the substrate, preferably 20.
-80%, more preferably 25-50%. If it is too small, the degree of hydrophobicity will be low, and if it is too large, aggregation will occur and the specific surface area will also be reduced. The alkoxysilanes may be used in combination of two or more.

【0017】中和に用いるアルカリとしては、例えば、
水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、
炭酸カリウム、炭酸アンモニウム、アンモニア水、アン
モニアガス等を使用することができる。
The alkali used for neutralization is, for example,
Sodium hydroxide, potassium hydroxide, sodium carbonate,
Potassium carbonate, ammonium carbonate, aqueous ammonia, ammonia gas and the like can be used.

【0018】水洗後の乾燥温度は100℃〜190℃、
好ましくは110℃〜170℃である。低過ぎると乾燥
効率が悪く、疎水化度が低くなる。高過ぎると、炭化水
素基の熱分解が起り、変色と疎水化度の低下が起こる。
The drying temperature after washing with water is 100 ° C to 190 ° C,
It is preferably 110 ° C to 170 ° C. If it is too low, the drying efficiency is poor and the hydrophobicity is low. If it is too high, thermal decomposition of hydrocarbon groups will occur, causing discoloration and a decrease in hydrophobicity.

【0019】[0019]

【実施例】以下に実施例を挙げて本発明をさらに詳細に
説明する。以下の実施例は単に例示のために記すもので
あり、発明の範囲がこれらによって制限されるものでは
ない。
The present invention will be described in more detail with reference to the following examples. The following examples are provided for illustration only and the scope of the invention is not limited thereby.

【0020】[実施例1]粒径が0.03μmのメタチ
タン酸スラリーに撹拌しながら4N水酸化ナトリウム水
溶液を加えpH9.0として1時間撹拌保持後、6N塩
酸にてpH5.5まで中和し、ろ過、水洗を行った。洗
浄済ケーキに水を加え再びスラリーとし、撹拌をしなが
ら6N塩酸を加えpH1.2とし2時間撹拌保持し、解
膠処理を行った。この解膠スラリーからメタチタン酸と
して100g分を分取し、35℃に加温保持し撹拌しな
がら、エチルトリメトキシシラン40g(40重量%)
を添加し30分間撹拌保持後8N水酸化ナトリウム水溶
液を加えpH6.5まで中和し、ろ過、水洗を行った。
Example 1 A 4N sodium hydroxide aqueous solution was added to a metatitanic acid slurry having a particle size of 0.03 μm with stirring to adjust the pH to 9.0, and the mixture was stirred and held for 1 hour, and then neutralized to pH 5.5 with 6N hydrochloric acid. , Filtered and washed with water. Water was added to the washed cake to make a slurry again, and while stirring, 6N hydrochloric acid was added to adjust the pH to 1.2, and the mixture was stirred and held for 2 hours for deflocculation treatment. From this deflocculated slurry, 100 g of metatitanic acid was taken out, and 40 g (40% by weight) of ethyltrimethoxysilane was added while stirring while heating at 35 ° C.
Was added, and the mixture was stirred and held for 30 minutes, 8N aqueous sodium hydroxide solution was added to neutralize the solution to pH 6.5, and the mixture was filtered and washed with water.

【0021】ろ過、水洗済ケーキは150℃で乾燥した
後、エアジェット方式による微粉砕機で微粉砕し、目的
とする疎水性メタチタン酸微粒子を得た。
The cake filtered and washed with water was dried at 150 ° C. and then pulverized with an air jet type pulverizer to obtain the desired fine particles of hydrophobic metatitanic acid.

【0022】[実施例2] 実施例1において、エチル
トリメトキシシランをn−プロピルトリメトキシシラン
としたほかは、同例の場合と同様に処理して、目的とす
る疎水性メタチタン酸微粒子を得た。
Example 2 The same procedure as in Example 1 was carried out except that ethyltrimethoxysilane was changed to n-propyltrimethoxysilane to obtain the desired hydrophobic metatitanic acid fine particles. It was

【0023】[実施例3] 実施例1において、エチル
トリメトキシシランをn−ブチルトリメトキシシランと
し、乾燥温度150℃を170℃としたほかは、同例の
場合と同様に処理して、目的とする疎水性メタチタン酸
微粒子を得た。
Example 3 The same procedure as in Example 1 was performed except that ethyltrimethoxysilane was changed to n-butyltrimethoxysilane and the drying temperature was changed from 150 ° C. to 170 ° C. The hydrophobic metatitanic acid fine particles having

【0024】[実施例4] 実施例1において、エチル
トリメトキシシランをi−ブチルトリメトキシシランと
し、乾燥温度150℃を170℃としたほかは、同例の
場合と同様に処理して、目的とする疎水性メタチタン酸
微粒子を得た。
Example 4 The same procedure as in Example 1 was repeated except that ethyltrimethoxysilane was changed to i-butyltrimethoxysilane and the drying temperature was changed from 170 ° C. to 170 ° C. The hydrophobic metatitanic acid fine particles having

【0025】[実施例5] 実施例1において、エチル
トリメトキシシランをn−ヘキシルトリメトキシシラン
としたほかは、同例の場合と同様に処理して、目的とす
る疎水性メタチタン酸微粒子を得た。
Example 5 The target hydrophobic metatitanic acid fine particles were obtained by the same procedure as in Example 1 except that n-hexyltrimethoxysilane was used instead of ethyltrimethoxysilane in Example 1. It was

【0026】[実施例6] 実施例1において、エチル
トリメトキシシラン40gをn−デシルトリメトキシシ
ラン30g(30重量%)としたほかは、同例の場合と
同様に処理して、目的とする疎水性メタチタン酸微粒子
を得た。
Example 6 The same treatment as in Example 1 was carried out except that 40 g of ethyltrimethoxysilane was changed to 30 g (30% by weight) of n-decyltrimethoxysilane in Example 1 to obtain the object. Hydrophobic metatitanic acid fine particles were obtained.

【0027】[実施例7] 実施例1において、エチル
トリメトキシシラン40gをn−ブチルトリメトキシシ
ラン50g(50重量%)とし、乾燥温度150℃を1
70℃としたほかは、同例の場合と同様に処理して、目
的とする疎水性メタチタン酸微粒子を得た。
Example 7 In Example 1, 40 g of ethyltrimethoxysilane was changed to 50 g (50% by weight) of n-butyltrimethoxysilane and a drying temperature of 150 ° C. was adjusted to 1
The same treatment as in the case of the same example except that the temperature was 70 ° C. was carried out to obtain the desired fine particles of hydrophobic metatitanic acid.

【0028】[実施例8] 実施例1において、粒径が
0.03μmのメタチタン酸の代わりに粒径が0.02
μmのメタチタン酸を用い、エチルトリメトキシシラン
40gをn−ブチルトリメトキシシラン40g(40重
量%)とし乾燥温度150℃を170℃としたほかは、
同例の場合と同様に処理して、目的とする疎水性メタチ
タン酸微粒子を得た。
[Embodiment 8] In Embodiment 1, in place of metatitanic acid having a particle diameter of 0.03 μm, a particle diameter of 0.02 is used.
In addition to using 40 .mu.m of ethyltrimethoxysilane and 40 g (40% by weight) of n-butyltrimethoxysilane as the drying temperature of 150.degree.
The same treatment as in the case of the same example was carried out to obtain the target fine particles of hydrophobic metatitanic acid.

【0029】[実施例9] 実施例1において、粒径が
0.03μmのメタチタン酸の代わりに粒径が0.02
μmのメタチタン酸を用い、エチルトリメトキシシラン
をi−ブチルトリメトキシシランとし、乾燥温度150
℃を170℃としたほかは、同例の場合と同様に処理し
て、目的とする疎水性メタチタン酸微粒子を得た。
Example 9 In Example 1, the particle size was 0.02 instead of metatitanic acid having a particle size of 0.03 μm.
μm metatitanic acid was used, ethyltrimethoxysilane was changed to i-butyltrimethoxysilane, and the drying temperature was 150.
Except that the temperature was 170 ° C., the same treatment as in the case of the same example was carried out to obtain the desired fine particles of hydrophobic metatitanic acid.

【0030】[実施例10] 実施例1において、粒径
が0.03μmのメタチタン酸の代わりに粒径が0.0
4μmのメタチタン酸を用い、エチルトリメトキシシラ
ンをn−ブチルトリメトキシシランとし、乾燥温度15
0℃を170℃としたほかは、同例の場合と同様に処理
して、目的とする疎水性メタチタン酸微粒子を得た。
[Embodiment 10] In Embodiment 1, instead of metatitanic acid having a particle diameter of 0.03 μm, a particle diameter of 0.0
Using 4 μm metatitanic acid, ethyltrimethoxysilane was changed to n-butyltrimethoxysilane, and the drying temperature was 15
Except that 0 ° C. was changed to 170 ° C., the same treatment as in the case of the same example was carried out to obtain the objective fine particles of hydrophobic metatitanic acid.

【0031】[実施例11] 実施例1において、粒径
が0.03μmのメタチタン酸の代わりに粒径が0.0
4μmのメタチタン酸を用い、エチルトリメトキシシラ
ン40gをn−ブチルトリメトキシシラン30g(30
重量%)とし、乾燥温度150℃を170℃としたほか
は、同例の場合と同様に処理して、目的とする疎水性メ
タチタン酸微粒子を得た。
[Embodiment 11] In Embodiment 1, instead of metatitanic acid having a particle diameter of 0.03 μm, the particle diameter is 0.0
Using 4 μm of metatitanic acid, 40 g of ethyltrimethoxysilane and 30 g (30 g of n-butyltrimethoxysilane) were used.
% By weight) and the drying temperature was changed from 150 ° C. to 170 ° C., and the same treatment as in the same example was carried out to obtain the desired hydrophobic metatitanic acid fine particles.

【0032】[実施例12] 実施例1において、粒径
が0.03μmのメタチタン酸の代わりに粒径が0.0
5μmのメタチタン酸を用い、エチルトリメトキシシラ
ン40gをn−ブチルトリメトキシシラン30g(30
重量%)とし、乾燥温度150℃を170℃としたほか
は、同例の場合と同様に処理して、目的とする疎水性メ
タチタン酸微粒子を得た。
[Embodiment 12] In Embodiment 1, a particle size of 0.03 μm is used instead of the metatitanic acid having a particle size of 0.03 μm.
Using 5 μm of metatitanic acid, 40 g of ethyltrimethoxysilane and 30 g (30 g of n-butyltrimethoxysilane) were used.
% By weight) and the drying temperature was changed from 150 ° C. to 170 ° C., and the same treatment as in the same example was carried out to obtain the desired hydrophobic metatitanic acid fine particles.

【0033】[実施例13] 実施例1において、粒径
が0.03μmのメタチタン酸の代わりに粒径が0.0
7μmのメタチタン酸を用い、エチルトリメトキシシラ
ン40gをn−ブチルトリメトキシシラン20g(20
重量%)とし、乾燥温度150℃を170℃としたほか
は、同例の場合と同様に処理して、目的とする疎水性メ
タチタン酸微粒子を得た。
[Example 13] In Example 1, the particle size was 0.03 μm instead of 0.03 μm.
Using 7 μm of metatitanic acid, 40 g of ethyltrimethoxysilane and 20 g of n-butyltrimethoxysilane (20 g
% By weight) and the drying temperature was changed from 150 ° C. to 170 ° C., and the same treatment as in the same example was carried out to obtain the desired hydrophobic metatitanic acid fine particles.

【0034】[実施例14] 実施例3において、乾燥
温度150℃を110℃としたほかは、同例の場合と同
様に処理して、目的とする疎水性メタチタン酸微粒子を
得た。
Example 14 The same procedure as in Example 3 was carried out except that the drying temperature was changed from 150 ° C. to 110 ° C. to obtain the desired hydrophobic metatitanic acid fine particles.

【0035】[比較例1] 実施例1の粒径が0.03
μmのメタチタン酸解膠スラリーに4N水酸化ナトリウ
ム水溶液を加えpH6.0とした後、ろ過、水洗した。
110℃で乾燥後300℃で加熱脱水処理して得られた
親水性二酸化チタン粉末を水もどしし、湿式ボールミル
を用いて微粉砕スラリー化を行った。引き続き、この中
からTiO2として100g分のスラリーを分取し、撹
拌しながら6N塩酸を添加してpHを1.2とした。次
いで、35℃に加温保持し、撹拌しながらn−ブチルト
リメトキシシラン25gを添加し、30分間撹拌保持後
8N水酸化ナトリウム水溶液を加え、pH6.5まで中
和し、ろ過、水洗を行った。
Comparative Example 1 The particle size of Example 1 is 0.03.
A 4N aqueous sodium hydroxide solution was added to the μm metatitanic acid deflocculating slurry to adjust the pH to 6.0, followed by filtration and washing with water.
The hydrophilic titanium dioxide powder obtained by drying at 110 ° C. and heating at 300 ° C. for dehydration was rehydrated and finely pulverized into a slurry using a wet ball mill. Subsequently, a slurry of 100 g of TiO 2 was taken out of the solution, and 6N hydrochloric acid was added thereto with stirring to adjust the pH to 1.2. Next, while maintaining the temperature at 35 ° C. and adding 25 g of n-butyltrimethoxysilane while stirring, and stirring and holding for 30 minutes, 8N aqueous sodium hydroxide solution was added to neutralize to pH 6.5, and filtration and washing with water were performed. It was

【0036】ろ過、水洗済ケーキは170℃で乾燥した
後エアジェット方式による微粉砕機で微粉砕し、疎水性
酸化チタン微粒子を得た。
The cake filtered and washed with water was dried at 170 ° C. and then pulverized by an air jet pulverizer to obtain hydrophobic titanium oxide fine particles.

【0037】[比較例2] 実施例14の粒径が0.0
5μmのメタチタン酸を用い、比較例1と同様に処理し
て疎水性酸化チタン微粒子を得た。
Comparative Example 2 The particle size of Example 14 is 0.0
Using 5 μm of metatitanic acid, the same treatment as in Comparative Example 1 was carried out to obtain hydrophobic titanium oxide fine particles.

【0038】[比較例3] 実施例1の粒径が0.03
μmのメタチタン酸で、水酸化ナトリウム水溶液でpH
9.0とする脱硫酸根処理を行わず、そのまま6N塩酸
を加えpH1.2とし2時間保持した。
Comparative Example 3 The particle size of Example 1 was 0.03.
μm metatitanic acid, pH with aqueous sodium hydroxide
Without desulfurization treatment to 9.0, 6N hydrochloric acid was added as it was to adjust the pH to 1.2 and the mixture was maintained for 2 hours.

【0039】このメタチタン酸スラリーは硫酸根が残存
するため、解膠は起こらなかった。実施例1において、
解膠スラリーの代わりに未解膠スラリーを用い、エチル
トリメトキシシランをn−ブチルトリメトキシシラン、
乾燥温度150℃を170℃としたほかは、同例の場合
と同様に処理して疎水性メタチタン酸微粒子を得た。 [比較例4] 実施例1において、エチルトリメトキシ
シラン(Rの炭素数2)をメチルトリメトキシシラン
(炭素数1)としたほかは、同例の場合と同様に処理し
て、疎水性メタチタン酸微粒子を得た。
Since sulphate radicals remained in this metatitanic acid slurry, peptization did not occur. In Example 1,
An unpeptized slurry was used in place of the peptized slurry, and ethyltrimethoxysilane was replaced with n-butyltrimethoxysilane,
Hydrophobic metatitanic acid fine particles were obtained by the same treatment as in the same example except that the drying temperature was changed from 150 ° C to 170 ° C. [Comparative Example 4] Hydrophobic metatitanium was prepared in the same manner as in Example 1 except that methyltrimethoxysilane (having 2 carbon atoms in R) was changed to methyltrimethoxysilane (having 1 carbon atom) in Example 1. Acid fine particles were obtained.

【0040】[比較例5] 実施例1において、エチル
トリメトキシシラン40重量%をポリジメチルシロキサ
ンエマルジョン(東レ・ダウコーニング・シリコーン
(株)製SM−7060)有効成分として25重量%と
したほかは、同例の場合と同様に処理して疎水性メタチ
タン酸微粒子を得た。
[Comparative Example 5] In Example 1, except that 40% by weight of ethyltrimethoxysilane was 25% by weight as an active ingredient of polydimethylsiloxane emulsion (SM-7060 manufactured by Toray Dow Corning Silicone Co., Ltd.). Then, the same treatment as in the case of the same example was carried out to obtain hydrophobic metatitanic acid fine particles.

【0041】以上、実施例1〜14、比較例1〜5で得
られた試料の測定結果を表1に示す。これらの測定値
は、下記の要領で測定した値である。
Table 1 shows the measurement results of the samples obtained in Examples 1 to 14 and Comparative Examples 1 to 5. These measured values are values measured in the following manner.

【0042】(1)比表面積 ドイツ、シュトレーライン社製エリアメーターを用い、
BET法にて測定した。
(1) Specific surface area Using an area meter manufactured by Strerain, Germany,
It was measured by the BET method.

【0043】(2)疎水化度 2.5重量%毎のメタノールを含む水溶液を試験管に用
意しておき、少量の微粉末を投入し、沈降の有無を確認
した。疎水化度としては、沈降無重量%〜沈降有重量%
を疎水化度(%)として表示した。
(2) Hydrophobicity: An aqueous solution containing 2.5% by weight of methanol was prepared in a test tube, and a small amount of fine powder was added to confirm the presence or absence of sedimentation. The degree of hydrophobicity is as follows: No sedimentation weight% to sedimentation weight%
Was expressed as the degree of hydrophobicity (%).

【0044】(3)分散性 50ミリリットルのガラスビーカーにメタノール40ミ
リリットルと微粒子約10mgを採取し、日本エマソン
(株)製超音波洗浄器B1200J1を用い5分間分散
した。
(3) Dispersibility 40 ml of methanol and about 10 mg of fine particles were collected in a 50 ml glass beaker and dispersed for 5 minutes using an ultrasonic cleaner B1200J1 manufactured by Nippon Emerson Co., Ltd.

【0045】分散液は、日本分光(株)製Ubest5
0を用い、300nmの透過率が17.5%となる様メ
タノールで希釈調整した液の550nmの値を測定し
た。550nmの値が高く透明なものの方が大粒子が少
なく、分散性良好と判断した。
The dispersion is Ubest5 manufactured by JASCO Corporation.
0 was used to measure the value at 550 nm of a liquid diluted and adjusted with methanol so that the transmittance at 300 nm was 17.5%. The transparent one having a high value of 550 nm had less large particles and was judged to have good dispersibility.

【0046】[0046]

【表1】 *1) 300℃で加熱し、メタチタン酸を二酸化チタ
ンとしたもの。
[Table 1] * 1) Metatitanic acid converted to titanium dioxide by heating at 300 ° C.

【0047】*2) 解膠処理を行っていない凝集性の
メタチタン酸。
* 2) A cohesive metatitanic acid which has not been deflocculated.

【0048】[0048]

【発明の効果】本発明は、種々の分野に利用できる疎水
性及び比表面積が高く、分散性に優れた微粒子を比較的
容易にしかも安価に製造するものであり、工業的に高い
利点がある。
INDUSTRIAL APPLICABILITY The present invention relatively easily and inexpensively produces fine particles having high hydrophobicity and specific surface area and excellent dispersibility which can be used in various fields, and has industrially high advantages. .

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基体であるメタチタン酸に対してアルコ
キシシランを10〜100重量%被覆処理した、粒径が
0.01〜0.1μm、かつ、比表面積が100〜30
0m2/gである疎水性メタチタン酸微粒子。
1. A metatitanic acid which is a substrate is coated with 10 to 100% by weight of alkoxysilane, and has a particle size of 0.01 to 0.1 μm and a specific surface area of 100 to 30.
Hydrophobic metatitanic acid fine particles having a particle size of 0 m 2 / g.
【請求項2】 使用するアルコキシシランが、一般式R
nSiR'm(R:炭化水素基、R':アルコキシ基、n
=1〜3の整数、m=1〜3の整数、n+m=4)で表
されることを特徴とする請求項1記載の疎水性メタチタ
ン酸微粒子。
2. The alkoxysilane used is of the general formula R
nSiR'm (R: hydrocarbon group, R ': alkoxy group, n
= 1-3, m = 1-3, n + m = 4), The hydrophobic metatitanic acid fine particles according to claim 1.
【請求項3】 疎水化度が20〜70%であり、かつ、
550nmにおける透過率が70%以上であることを特
徴とする請求項1又は2記載の疎水性メタチタン酸微粒
子。
3. The degree of hydrophobicity is 20 to 70%, and
The hydrophobic metatitanic acid fine particles according to claim 1 or 2, wherein the transmittance at 550 nm is 70% or more.
【請求項4】 硫酸法加水分解反応により合成されたメ
タチタン酸を解膠処理し、基体であるメタチタン酸に対
してアルコキシシランを10〜100重量%処理した
後、アルカリで中和し、ろ過、洗浄後、100〜190
℃で乾燥することを特徴とする請求項1乃至3のいずれ
か1項記載の疎水性メタチタン酸微粒子の製造方法。
4. A peptization treatment of metatitanic acid synthesized by a hydrolysis reaction with a sulfuric acid method, a treatment of 10 to 100% by weight of alkoxysilane with respect to a metatitanic acid as a substrate, neutralization with an alkali, filtration, After washing, 100-190
The method for producing fine particles of hydrophobic metatitanic acid according to any one of claims 1 to 3, wherein the method is performed at a temperature of ℃.
JP07491195A 1995-03-31 1995-03-31 Hydrophobic metatitanate fine particles and method for producing the same Expired - Lifetime JP3462610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07491195A JP3462610B2 (en) 1995-03-31 1995-03-31 Hydrophobic metatitanate fine particles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07491195A JP3462610B2 (en) 1995-03-31 1995-03-31 Hydrophobic metatitanate fine particles and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08269359A true JPH08269359A (en) 1996-10-15
JP3462610B2 JP3462610B2 (en) 2003-11-05

Family

ID=13561051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07491195A Expired - Lifetime JP3462610B2 (en) 1995-03-31 1995-03-31 Hydrophobic metatitanate fine particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP3462610B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09304961A (en) * 1996-05-16 1997-11-28 Fuji Xerox Co Ltd Developer made of one component and picture image formation method
JPH103177A (en) * 1996-06-17 1998-01-06 Fuji Xerox Co Ltd Electrostatic latent image developer, and image forming method
JPH10123744A (en) * 1996-10-18 1998-05-15 Fuji Xerox Co Ltd One component developer and image forming method
JPH10133414A (en) * 1996-10-31 1998-05-22 Fuji Xerox Co Ltd Image forming method
JPH10186715A (en) * 1996-12-24 1998-07-14 Fuji Xerox Co Ltd Electrophotographic toner composite and image forming method
US5891600A (en) * 1996-10-14 1999-04-06 Fuji Xerox Co., Ltd. Mono-component developer, method of forming image and method of forming multi-color image
US5965312A (en) * 1996-05-16 1999-10-12 Fuji Xerox Co., Ltd. One-component developer
US6001527A (en) * 1996-12-26 1999-12-14 Fuji Xerox Co., Ltd. Electrostatic charge image developer, image formation method and image forming device
JP2007254757A (en) * 1997-03-27 2007-10-04 Ishihara Sangyo Kaisha Ltd Process for producing titanium dioxide pigment
US20180161764A1 (en) * 2016-12-12 2018-06-14 Fuji Xerox Co., Ltd. Metatitanic acid particle, composition for forming photocatalyst, and photocatalyst
US10500579B2 (en) 2017-04-26 2019-12-10 Fuji Xerox Co., Ltd. Metatitanic acid particle, composition for forming photocatalyst, and photocatalyst
US10512895B2 (en) 2017-04-26 2019-12-24 Fuji Xerox Co., Ltd. Titanium oxide particle, composition for forming photocatalyst, and photocatalyst
US10668456B2 (en) 2016-12-12 2020-06-02 Fuji Xerox Co., Ltd. Titanium oxide particle, composition for forming photocatalyst, and photocatalyst

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09304961A (en) * 1996-05-16 1997-11-28 Fuji Xerox Co Ltd Developer made of one component and picture image formation method
US5965312A (en) * 1996-05-16 1999-10-12 Fuji Xerox Co., Ltd. One-component developer
JPH103177A (en) * 1996-06-17 1998-01-06 Fuji Xerox Co Ltd Electrostatic latent image developer, and image forming method
US5891600A (en) * 1996-10-14 1999-04-06 Fuji Xerox Co., Ltd. Mono-component developer, method of forming image and method of forming multi-color image
JPH10123744A (en) * 1996-10-18 1998-05-15 Fuji Xerox Co Ltd One component developer and image forming method
JPH10133414A (en) * 1996-10-31 1998-05-22 Fuji Xerox Co Ltd Image forming method
JPH10186715A (en) * 1996-12-24 1998-07-14 Fuji Xerox Co Ltd Electrophotographic toner composite and image forming method
US6001527A (en) * 1996-12-26 1999-12-14 Fuji Xerox Co., Ltd. Electrostatic charge image developer, image formation method and image forming device
JP2007254757A (en) * 1997-03-27 2007-10-04 Ishihara Sangyo Kaisha Ltd Process for producing titanium dioxide pigment
JP4698637B2 (en) * 1997-03-27 2011-06-08 石原産業株式会社 Method for producing titanium dioxide pigment
US20180161764A1 (en) * 2016-12-12 2018-06-14 Fuji Xerox Co., Ltd. Metatitanic acid particle, composition for forming photocatalyst, and photocatalyst
US10668456B2 (en) 2016-12-12 2020-06-02 Fuji Xerox Co., Ltd. Titanium oxide particle, composition for forming photocatalyst, and photocatalyst
US10668457B2 (en) * 2016-12-12 2020-06-02 Fuji Xerox Co., Ltd. Metatitanic acid particle, composition for forming photocatalyst, and photocatalyst
US10500579B2 (en) 2017-04-26 2019-12-10 Fuji Xerox Co., Ltd. Metatitanic acid particle, composition for forming photocatalyst, and photocatalyst
US10512895B2 (en) 2017-04-26 2019-12-24 Fuji Xerox Co., Ltd. Titanium oxide particle, composition for forming photocatalyst, and photocatalyst

Also Published As

Publication number Publication date
JP3462610B2 (en) 2003-11-05

Similar Documents

Publication Publication Date Title
JP3462610B2 (en) Hydrophobic metatitanate fine particles and method for producing the same
JP4864205B2 (en) Method for producing nano-sized zinc oxide particles
AU2006202179B2 (en) Lower-energy process for preparing passivated inorganic nanoparticles
EP0444798B1 (en) Method for the preparation of titanium dioxide
CN107149943B (en) Metatitanic acid particles and method for producing same
US3146119A (en) Pigment treatment
EP0748362B1 (en) PROCESS FOR PREPARING SILANIZED TiO 2 PIGMENTS USING A MEDIA MILL
JPH05221640A (en) Production of hydrophobic titanium oxide fine particle
WO2010001818A1 (en) Tin oxide particles and process for production thereof
KR950001660B1 (en) Method for production of inorganic oxide particles
JP2007039323A (en) Method for producing hydrophobic silica powder
JP2000053421A (en) Titanium oxide sol and its preparation
JP4495801B2 (en) Method for producing rutile ultrafine titanium dioxide
JP3510210B2 (en) Use of titanium dioxide as a UV inhibitor in rubber compositions
JPH11189416A (en) Production of anhydrous zinc antimonate
WO2012067590A1 (en) Coating of tio2 rutile nanoparticles in a suspension with hydrated sio2 and ai2o3
JP2008150232A (en) Metatitanic acid slurry for raw material of photocatalyst titanium oxide and method for producing the slurry
JPH1111948A (en) Stable anatase type titanium dioxide
JPH1135319A (en) Barium sulfate and its production
JPH101621A (en) Hydrophobic metatitanic acid fine particle and its production
JPH0781930A (en) Production of granular amorphous silica
JP3877235B2 (en) Rutile-type titanium dioxide particles and production method thereof
JPH09316360A (en) Hydrophobic metatitanic acid microparticle and its production
JP3806790B2 (en) Process for producing spindle-shaped titanium dioxide
JPH09124319A (en) Titanium dioxide powder having high masking ability and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term