JP4863428B2 - Metal particle array sheet - Google Patents

Metal particle array sheet Download PDF

Info

Publication number
JP4863428B2
JP4863428B2 JP2004303625A JP2004303625A JP4863428B2 JP 4863428 B2 JP4863428 B2 JP 4863428B2 JP 2004303625 A JP2004303625 A JP 2004303625A JP 2004303625 A JP2004303625 A JP 2004303625A JP 4863428 B2 JP4863428 B2 JP 4863428B2
Authority
JP
Japan
Prior art keywords
metal fine
fine particle
metal
separation membrane
hydrophobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004303625A
Other languages
Japanese (ja)
Other versions
JP2006088310A (en
Inventor
茂 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2004303625A priority Critical patent/JP4863428B2/en
Publication of JP2006088310A publication Critical patent/JP2006088310A/en
Application granted granted Critical
Publication of JP4863428B2 publication Critical patent/JP4863428B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は、金属微粒子をナノレベルで二次元的に配置させた高分子シート及びこのシートを用いた金属ドットの二次元超格子を有する金属微粒子配列基板に関する。この金属ドットは、量子ドットとして単一電子トランジスタや単一電子メモリ−のような単一電子トンネル果を利用した量子素子に用いることができる。   The present invention relates to a polymer sheet in which metal fine particles are two-dimensionally arranged at a nano level and a metal fine particle array substrate having a two-dimensional superlattice of metal dots using the sheet. This metal dot can be used for a quantum device using a single electron tunnel effect such as a single electron transistor or a single electron memory as a quantum dot.

両親媒性ブロック共重合体を成膜すると、疎水性又は親水性部分を中心としたドメインを形成し、径が3〜15nmの円筒状の親水性ドメインが疎水性基質中に10〜50nmの間隔で多数存在する形態をとることが知られている(特許文献1)。このような微小な親水性領域を微小な間隔で有する膜は従来得られておらず、その活用が大いに期待されている。
このような活用例の一つとして基板上に整列した極微小な金属ドットが考えられる。このような金属ドットは、単一電子トンネル効果を利用した素子へ応用できる。
今まで微細加工法として実用的に最も進んだ電子線リソグラフィを採用しても20 nm以下という加工精度を達成することは困難であり、走査型トンネル顕微鏡を用いた単原子操作では生産性に乏しく実用的ではなかった。また、液滴エピタキシー法では、ドットの大きさや密度は制御できても配置までは制御できない。
現在、半導体素子の加工寸法は100 nm以下になりつつあり、近い将来数nmになると予想されている。このようなサイズの半導体素子では、従来の原理による素子動作が困難であり、単一電子トンネル効果を利用した単一電子トランジスタや単一電子メモリのような新たな動作原理に基づく素子の開発が注目されている(非特許文献1、特許文献2)。このような素子を室温で動作させるには、10 nm以下の極微小な金属ドットからなる量子ドットを絶縁体上に配置する必要があり、電子線リソグラフィ−、走査型トンネル顕微鏡による原子操作、液滴エピタキシーなどがの微細加工技術が研究されている。
When an amphiphilic block copolymer is formed into a film, a domain centering on a hydrophobic or hydrophilic portion is formed, and a cylindrical hydrophilic domain having a diameter of 3 to 15 nm is spaced at a distance of 10 to 50 nm in a hydrophobic substrate. It is known to take a form existing in large numbers (Patent Document 1). A film having such minute hydrophilic regions at minute intervals has not been obtained so far, and its utilization is greatly expected.
As one example of such utilization, extremely minute metal dots arranged on a substrate can be considered. Such a metal dot can be applied to an element using a single electron tunnel effect.
Even if electron beam lithography, which has been practically the most advanced as a microfabrication method, is used, it is difficult to achieve a processing accuracy of 20 nm or less, and single atom operation using a scanning tunneling microscope has poor productivity. It was not practical. In addition, in the droplet epitaxy method, the size and density of dots can be controlled, but the arrangement cannot be controlled.
Currently, the processing dimensions of semiconductor devices are becoming less than 100 nm, and are expected to be several nm in the near future. With semiconductor devices of this size, device operation based on the conventional principle is difficult, and devices based on new operation principles such as single-electron transistors and single-electron memories using the single-electron tunnel effect have been developed. It is attracting attention (Non-Patent Document 1, Patent Document 2). In order to operate such an element at room temperature, it is necessary to dispose quantum dots made of extremely fine metal dots of 10 nm or less on an insulator, electron beam lithography, atomic manipulation with a scanning tunneling microscope, Microfabrication technology such as droplet epitaxy has been studied.

特開2004-124088JP2004-124088 特開2003-51498JP2003-51498 日立評論 vol.86, No.7, 55-58 (2004.7)Hitachi review vol.86, No.7, 55-58 (2004.7)

本発明は、従来製造が困難であった10nm以下の金属ドットを配列させたシリコンウエハなど基板及びこのような基板を生産性よく形成させる手段を提供する。
配向が制御された金属ナノ粒子は、ナノ粒子単独では見られない新たな電子・光物性を有するため高い関心が寄せられており、単一電子を利用するナノ電子デバイスをはじめ局在プラズモン光の増強電場を利用したナノ光デバイスへの応用が期待される。現在、金属ナノ粒子の二次元配向制御は、その分散溶液を平滑な基板上に滴下後乾燥させるなど自己組織化法によることが多い。しかし、これでは複雑なパタ−ン形成には限界がある。
そこで、本発明は、金属ナノ粒子の新たな配向制御法の開発を目的として、両親媒性ブロック共重合体が形成するナノ規則構造に着目し、これをテンプレ−トとして金属ナノ粒子を組織化する手段を提供する。
The present invention provides a substrate such as a silicon wafer on which metal dots of 10 nm or less, which have been difficult to manufacture, are arranged, and means for forming such a substrate with high productivity.
Metal nanoparticles with controlled orientation are attracting a great deal of attention because they have new electronic and optical properties that are not seen with nanoparticles alone. Localized plasmon light, including nanoelectronic devices that use single electrons, is attracting attention. Applications to nano-optical devices using an enhanced electric field are expected. Currently, the two-dimensional orientation control of metal nanoparticles is often performed by a self-organization method such as dropping the dispersion on a smooth substrate and then drying. However, this limits the formation of complex patterns.
Therefore, the present invention focuses on the nano-order structure formed by the amphiphilic block copolymer for the purpose of developing a new method for controlling the orientation of metal nanoparticles, and organizes the metal nanoparticles using this as a template. Provide a means to

まず、両親媒性ブロック共重合体を自己集合させてミクロ相分離膜を形成させた(特許文献1)。このミクロ相分離膜は、表面上に3〜15nmの略円形の親水性の領域を10〜50nmの間隔で多数有する。一方、径が1〜5nmの金属微粒子を有機配位子で覆い外側に浸水性基が露出したコアシェル型球状ミセルの溶液を用意し、これに上記ミクロ相分離膜を浸漬すると、表面ナノ相分離構造により、溶液中でミクロ相分離膜の親水性領域に金属超微粒子ミセルが配列した高分子シートを得ることができた。さらに、このシートをシリコンウエハなどの基板上に移動させ有機物を分解除去することによりナノメ−トルサイズのドットが形成された基板を得ることができた。即ち、微小金属微粒子ドットを微小間隔で基板上に配向制御させることに成功した。   First, an amphiphilic block copolymer was self-assembled to form a microphase separation membrane (Patent Document 1). This microphase separation membrane has a large number of approximately circular hydrophilic regions of 3 to 15 nm on the surface at intervals of 10 to 50 nm. On the other hand, a core-shell type spherical micelle solution in which metal fine particles with a diameter of 1 to 5 nm are covered with an organic ligand and a water-permeable group is exposed on the outside is prepared, and the above-described microphase separation membrane is immersed in the solution. Depending on the structure, it was possible to obtain a polymer sheet in which ultrafine metal particle micelles were arranged in the hydrophilic region of the microphase separation membrane in solution. Furthermore, by moving this sheet onto a substrate such as a silicon wafer and decomposing and removing organic substances, it was possible to obtain a substrate on which nanometer-sized dots were formed. That is, the fine metal fine particle dots have been successfully controlled on the substrate at fine intervals.

即ち、本発明は、表面に、径が3〜15nmの略円形の疎水性又は親水性の領域を10〜50nmの間隔で多数有するミクロ相分離膜上の該略円形領域に、金属微粒子含有球状ミセルをそれぞれ1個配置させてなる金属微粒子配列シートであって、該金属微粒子含有球状ミセルが、径が1〜5nmの金属微粒子を有機配位子で覆ったコアシェル型球状ミセルであり、前記ミクロ相分離膜上の略円形の領域が親水性の場合には親水性基、前記ミクロ相分離膜上の略円形の領域が疎水性の場合には疎水性基が外側に露出した球状ミセルである、金属微粒子配列シートである。
That is, the present invention provides a metal particle-containing sphere in the substantially circular region on the microphase separation membrane having a large number of substantially circular hydrophobic or hydrophilic regions having a diameter of 3 to 15 nm at intervals of 10 to 50 nm on the surface. A metal fine particle arrangement sheet in which one micelle is arranged, wherein the metal fine particle-containing spherical micelle is a core-shell type spherical micelle in which metal fine particles having a diameter of 1 to 5 nm are covered with an organic ligand, When the substantially circular region on the phase separation membrane is hydrophilic, it is a hydrophilic group, and when the substantially circular region on the micro phase separation membrane is hydrophobic, it is a spherical micelle with the hydrophobic group exposed to the outside. It is a metal fine particle arrangement sheet.

また本発明は、基板上に両親媒性ブロック共重合体を含む溶液をキャストしてミクロ相分離膜を形成する段階、金属微粒子含有球状ミセルを分散させた分散液に前記ミクロ相分離膜を浸漬する段階、及び該ミクロ相分離膜をこの分散液から取り出して乾燥させる段階から成り、前記両親媒性ブロック共重合体が、親水性ポリマー成分(A)及び疎水性ポリマー成分(B)の互いに非相溶性のポリマーが共有結合によって結合して形成された、前記親水性ポリマー成分(A)及び前記疎水性ポリマー成分(B)の分子量分布(Mw/Mn)が1.3以下である両親媒性ブロック共重合体であり、前記金属微粒子含有球状ミセルが、径が1〜5nmの金属微粒子を有機配位子で覆ったコアシェル型球状ミセルである金属微粒子配列シートの製法である。
更に、本発明は、上記金属微粒子配列シートの製法に、更に前記金属微粒子配列シートを基板に積層する段階、及び前記ミクロ相分離膜及び前記有機配位子を除去する段階を含む金属微粒子配列基板の製法である。
The present invention also includes a step of casting a solution containing an amphiphilic block copolymer on a substrate to form a microphase separation membrane, and immersing the microphase separation membrane in a dispersion in which spherical particles containing metal fine particles are dispersed. And the step of removing the microphase separation membrane from the dispersion and drying, wherein the amphiphilic block copolymer is composed of a hydrophilic polymer component (A) and a hydrophobic polymer component (B). Amphiphilicity in which the molecular weight distribution (Mw / Mn) of the hydrophilic polymer component (A) and the hydrophobic polymer component (B) is 1.3 or less, which is formed by covalently bonding compatible polymers. In the process for producing a metal fine particle array sheet, which is a block copolymer, and wherein the metal fine particle-containing spherical micelle is a core-shell type spherical micelle in which a metal fine particle having a diameter of 1 to 5 nm is covered with an organic ligand. That.
Furthermore, the present invention provides a method for producing the metal fine particle arrangement sheet, further comprising the steps of laminating the metal fine particle arrangement sheet on a substrate, and removing the microphase separation film and the organic ligand. It is a manufacturing method.

本発明の金属微粒子配列シート及び金属微粒子配列基板は、材質や形状を選ばず任意の基板上の広範な領域に金属ドットが形成されたものであり、金属微粒子の大きさは1〜5nmであることから、その自由電子の静電エネルギーは、室温での電子の熱励起レベルよりも高く、このような金属超微粒子をシリコンウエハのような基板上にナノメ−トルスケ−ルの間隔で堆積させた金属ドットは、室温で動作する量子素子へ応用することができる。   The metal fine particle arrangement sheet and the metal fine particle arrangement substrate of the present invention are obtained by forming metal dots in a wide area on any substrate regardless of the material and shape, and the size of the metal fine particles is 1 to 5 nm. Therefore, the electrostatic energy of the free electrons is higher than the thermal excitation level of the electrons at room temperature, and such ultrafine metal particles were deposited on a substrate such as a silicon wafer at nanometer scale intervals. Metal dots can be applied to quantum devices that operate at room temperature.

本発明で用いるミクロ相分離膜は、表面に、径が3〜15nmの略円形の疎水性又は親水性の領域を10〜50nmの間隔で多数有する。この相分離膜は表面上にのみこの領域を有していてもよいし、又はその領域は略円筒形のドメインが膜中に存在してその断面が膜表面に現れたものであってもよい。本発明において、ミクロ相分離膜はこのような形態を有するものであれば、その化学組成に特に限定はない。
本発明においては、特に両親媒性ブロック共重合体から成る膜であって、自己集合的にこのような略円筒形のドメインが膜中に形成された膜を用いることができる。この両親媒性ブロック共重合体は、親水性ポリマー成分(A)及び疎水性ポリマー成分(B)の互いに非相溶性のポリマーが共有結合によって結合したブロック共重合体であって、前記親水性ポリマー成分(A)及び前記疎水性ポリマー成分(B)の分子量分布(Mw/Mn)が1.3以下の両親媒性ブロック共重合体であることが好ましい。
この親水性成分と疎水性成分との量的関係から、親水性成分と疎水性成分のいずれかが島状領域(略円筒形のドメイン)を構成し、他方が海状領域を構成する構造をとるものと考えられる。
形成される膜の厚さは、通常50nm〜1μm程度である。
The microphase separation membrane used in the present invention has a large number of substantially circular hydrophobic or hydrophilic regions having a diameter of 3 to 15 nm at intervals of 10 to 50 nm on the surface. The phase separation membrane may have this region only on the surface, or the region may be one in which a substantially cylindrical domain is present in the membrane and its cross section appears on the membrane surface. . In the present invention, the chemical composition of the microphase separation membrane is not particularly limited as long as it has such a form.
In the present invention, a film made of an amphiphilic block copolymer, in which such a substantially cylindrical domain is self-assembled, can be used. This amphiphilic block copolymer is a block copolymer in which a hydrophilic polymer component (A) and a hydrophobic polymer component (B) are incompatible with each other by a covalent bond. The component (A) and the hydrophobic polymer component (B) are preferably amphiphilic block copolymers having a molecular weight distribution (Mw / Mn) of 1.3 or less.
From the quantitative relationship between the hydrophilic component and the hydrophobic component, either the hydrophilic component or the hydrophobic component constitutes an island region (substantially cylindrical domain) and the other constitutes a sea region. It is considered to be taken.
The thickness of the film to be formed is usually about 50 nm to 1 μm.

分子量分布(Mw/Mn)はゲルパーミエーションクロマトグラフ法によって測定したポリエチレン換算の重量平均分子量Mw及び数平均分子量Mnより算出した値をいう。
上記ブロック共重合体の分子量は、好ましくは5000〜100000、より好ましくは10000〜50000である。
The molecular weight distribution (Mw / Mn) refers to a value calculated from the weight average molecular weight Mw in terms of polyethylene and the number average molecular weight Mn measured by gel permeation chromatography.
The molecular weight of the block copolymer is preferably 5,000 to 100,000, more preferably 10,000 to 50,000.

上記親水性ポリマー成分(A)としては、例えばポリ(エチレンオキシド)、ポリ(プロピレンオキシド)、ポリ(ビニルアルコール)、ポリ(アクリル酸)、ポリ(メタクリル酸)、ポリ(アクリルアミド)、オリゴ(エチレンオキシド)やクラウンエーテルやクリプタンド又は糖鎖を側鎖に有するポリ(メタクリレート)又はポリ(アクリレート)等が挙げられる。
また、上記疎水性ポリマー成分(B)としては、例えば、メソゲン側鎖、長鎖アルキル側鎖又は疎水性側鎖を有する、ポリ(メタクリレート)、ポリ(アクリレート)、ポリ(スチレン)、ビニルポリマー等が挙げられる。メソゲン側鎖とは液晶性分子などの配向性の強い分子鎖をいう。
Examples of the hydrophilic polymer component (A) include poly (ethylene oxide), poly (propylene oxide), poly (vinyl alcohol), poly (acrylic acid), poly (methacrylic acid), poly (acrylamide), and oligo (ethylene oxide). And crown ether, cryptand, poly (methacrylate) or poly (acrylate) having a sugar chain in the side chain.
Examples of the hydrophobic polymer component (B) include poly (methacrylate), poly (acrylate), poly (styrene), vinyl polymer having a mesogenic side chain, a long-chain alkyl side chain, or a hydrophobic side chain. Is mentioned. The mesogenic side chain refers to a highly oriented molecular chain such as a liquid crystal molecule.

このブロック共重合体は下記一般式(1)で表されるものが好ましい。
一般式(1):CH3(OCH2CH2)m OCOC(CH3)2(CH2C(CH3)COOR) n-X
(式中、m及びnは同一であっても異なっていてもよく、それぞれ5〜500の整数であり、Rは、下記一般式(2)又は(3)で表される置換基であり、Xは水素原子又はハロゲン原子を表す。)
一般式(2):-CH2(CH2)CH2O-B-N=N-B-R1
(式中、aは0〜20の整数であり、Rは水素又は炭素数1〜22のアルキル基、Bはp−フェニレン基を表す。)
一般式(3):-CH2(CH2)CH2O-B-CH=CH-B-R2
(式中、bは0〜20の整数であり、Rは水素又は炭素数1〜22のアルキル基、Bはp−フェニレン基を表す。)
This block copolymer is preferably represented by the following general formula (1).
Formula (1): CH 3 (OCH 2 CH 2) m O COC (CH 3) 2 (CH 2 C (CH 3) COOR) n -X
(In the formula, m and n may be the same or different and each is an integer of 5 to 500; R is a substituent represented by the following general formula (2) or (3); X represents a hydrogen atom or a halogen atom.)
Formula (2): —CH 2 (CH 2 ) a CH 2 OBN = NBR 1
(In the formula, a represents an integer of 0 to 20, R 1 represents hydrogen or an alkyl group having 1 to 22 carbon atoms, and B represents a p-phenylene group.)
Formula (3): —CH 2 (CH 2 ) b CH 2 OB—CH═CH—BR 2
(In the formula, b represents an integer of 0 to 20, R 2 represents hydrogen or an alkyl group having 1 to 22 carbon atoms, and B represents a p-phenylene group.)

本発明で用いる金属微粒子含有球状ミセルは、金属微粒子を有機配位子で覆ったコアシェル型球状ミセルである。
この金属としては、金、銀、白金、ロジウム等が挙げられる。この金属微粒子の径は金属イオンと有機配位子の混合比及び還元剤の還元力や添加速度によって定まるが、通常1〜5nmである。
The metal fine particle-containing spherical micelle used in the present invention is a core-shell type spherical micelle in which metal fine particles are covered with an organic ligand.
Examples of the metal include gold, silver, platinum, and rhodium. The diameter of the metal fine particles is usually 1 to 5 nm, although it is determined by the mixing ratio of metal ions and organic ligands and the reducing power and addition rate of the reducing agent.

有機配位子は、上記ミクロ相分離膜上の略円形の領域が親水性の場合には親水性基、上記ミクロ相分離膜上の略円形の領域が疎水性の場合には疎水性基がミセルの外側に露出するように設計される。
有機配位子としては、片末端にチオール基(−SH)、ジスルフィド基(−S−S−)又はチオエーテル基(−S−)等を有するものが好ましい。また、他末端はミクロ相分離膜上の親水部あるいは疎水部に選択的に結合可能な官能基修飾されていればどのような官能基でも可能であるが、合成上の簡便性から親水性基としては、エチレンオキシド基、水酸基、アミノ基、カルボキシル基等が挙げられ、疎水性基としては、アルキル基、アリール基、コレステリル基等が挙げられる。
この配位子として、特に親水性基を露出させる場合には、(R3O(R4O)R5S)2(式中、Rは水素原子又はアルキル基、Rは炭素数が2又は3のアルキレン基、cは1〜10の整数、Rは炭素数が2〜4のアルキレン基を表す。)で表される化合物が好ましい。
この配位子は、Sが金属に結合することにより、径が通常170〜200nm程度のコアシェル型球状ミセルを形成し、更に複数の金属微粒子と配位子とが結合して径が通常180〜220nm程度の金属微粒子含有球状ミセルを形成する。この金属微粒子含有球状ミセルにおいては、金属微粒子が配位子に内包される場合と、金属微粒子が配位子の外側を取り巻く場合とがあり、複数の金属微粒子が内包される場合にはその金属部分の径は約30〜60nm程度である。
The organic ligand has a hydrophilic group when the substantially circular region on the microphase separation membrane is hydrophilic, and has a hydrophobic group when the substantially circular region on the microphase separation membrane is hydrophobic. Designed to be exposed outside the micelle.
As the organic ligand, one having a thiol group (—SH), a disulfide group (—S—S—) or a thioether group (—S—) at one end is preferable. In addition, the other end can be any functional group as long as it is modified with a functional group capable of selectively binding to the hydrophilic or hydrophobic part on the microphase separation membrane. Examples thereof include an ethylene oxide group, a hydroxyl group, an amino group, and a carboxyl group, and examples of the hydrophobic group include an alkyl group, an aryl group, and a cholesteryl group.
In the case of exposing a hydrophilic group as this ligand, in particular, (R 3 O (R 4 O) c R 5 S) 2 (wherein R 3 is a hydrogen atom or an alkyl group, and R 4 is a carbon number. Is an alkylene group having 2 or 3, c is an integer of 1 to 10, and R 5 is an alkylene group having 2 to 4 carbon atoms.
This ligand forms a core-shell type spherical micelle having a diameter of about 170 to 200 nm when S is bonded to a metal, and a plurality of metal fine particles and the ligand are further bonded to form a diameter of usually 180 to 200 nm. A spherical micelle containing fine metal particles of about 220 nm is formed. In this metal microparticle-containing spherical micelle, there are cases where the metal microparticles are encapsulated in the ligand and cases where the metal microparticles surround the outside of the ligand, and when a plurality of metal microparticles are encapsulated, the metal The diameter of the part is about 30 to 60 nm.

本発明においては、上記のミクロ相分離膜上の該略円形領域に、金属微粒子含有球状ミセルを配置させた金属微粒子配列シートを作成する。以下その製法の例を示す。
まず、ミクロ相分離膜を作成する。その作成法はミクロ相分離膜の化学組成にもよるが特に限定はない。
本発明の両親媒性ブロック共重合体を用いる場合には、自己集合的に親水性ドメインと疎水性ドメインが分離するので、溶液中で自己集合させたり又は加温することにより、自己集合による配置を促進することが好ましい。
一例として、基板に両親媒性ブロック共重合体を含む溶液を滴下して成膜したり、又は型にこの溶液を注入してすることにより成膜することができる。この基板として平滑性の高いものが好ましく、例えば、雲母板、シリコンウエハなどを用いることができる。
一般式(1)のブロック共重合体を両親媒性ブロック共重合体として用いる場合には、厚さが50nm〜1μm程度で面積が数m程度の膜又はフィルムを得ることができる。この様子を図1に示す。
In the present invention, a metal fine particle array sheet is prepared in which metal fine particle-containing spherical micelles are arranged in the substantially circular region on the microphase separation membrane. Examples of the production method are shown below.
First, a microphase separation membrane is prepared. The preparation method is not particularly limited, although it depends on the chemical composition of the microphase separation membrane.
When the amphiphilic block copolymer of the present invention is used, since the hydrophilic domain and the hydrophobic domain are separated in a self-assembled manner, the self-assembled or heated in solution can be arranged by self-assembly. It is preferable to promote.
As an example, a film containing an amphiphilic block copolymer can be dropped onto a substrate to form a film, or a film can be formed by injecting this solution into a mold. As this substrate, a substrate having high smoothness is preferable. For example, a mica plate, a silicon wafer, or the like can be used.
When the block copolymer of the general formula (1) is used as an amphiphilic block copolymer, a film or film having a thickness of about 50 nm to 1 μm and an area of about several m 2 can be obtained. This is shown in FIG.

一方、金属微粒子含有球状ミセルについてもその製法に特に制限はない。通常、金属を含む塩の溶液に有機配位子を添加することにより、金属に有機配位子が配位して、コアシェル型の微粒子を形成する。
この金属微粒子含有球状ミセルを分散させた分散液を用意する。溶媒としては、エタノール、エーテルなどを用いることが好ましい。分散液中の金属微粒子含有球状ミセルの濃度は0.5〜2.5wt%程度であり、分散液の温度は通常−80℃〜室温程度、好ましくは20〜25℃程度に保つことが好ましい。
この分散液に上記ミクロ相分離膜を浸漬し、ミクロ相分離膜をこの分散液から取り出す。この様子を図2に示す。
On the other hand, there is no particular limitation on the production method of the spherical micelles containing fine metal particles. Usually, by adding an organic ligand to a salt solution containing a metal, the organic ligand is coordinated with the metal to form core-shell type fine particles.
A dispersion in which the metal fine particle-containing spherical micelles are dispersed is prepared. As the solvent, ethanol, ether or the like is preferably used. The concentration of the metal fine particle-containing spherical micelles in the dispersion is about 0.5 to 2.5 wt%, and the temperature of the dispersion is usually kept at about −80 ° C. to room temperature, preferably about 20 to 25 ° C.
The microphase separation membrane is immersed in this dispersion, and the microphase separation membrane is taken out from this dispersion. This is shown in FIG.

また、この分散液を用いてスピンコート法で上記ミクロ相分離膜上に金属微粒子含有球状ミセルを堆積させてもよい。例えば、金属微粒子含有球状ミセルの濃度を0.05〜0.5wt%程度に調整した分散液を、ミクロ相分離膜上に滴下し、約500〜2000rpm程度で約5〜30秒間回転させる。   Further, using this dispersion, spherical fine micelles containing metal fine particles may be deposited on the microphase separation film by spin coating. For example, a dispersion liquid in which the concentration of metal fine particle-containing spherical micelles is adjusted to about 0.05 to 0.5 wt% is dropped on a microphase separation membrane and rotated at about 500 to 2000 rpm for about 5 to 30 seconds.

その結果、ミクロ相分離膜上の島領域(疎水性領域又は親水性領域)に、球状ミセルが結合する。この結合は、ファンデアワールス力、双極子−双極子相互作用、静電引力などの非共有結合によるものである。この結合力は弱いものであるため、例えば分散液の濃度をあまり高くすると、球状ミセルが島領域に選択的に結合しなくなる場合があるので、所望の占有率(島領域にミセルが結合する割合)を得ることができるように球状ミセルの濃度を適宜調整することが好ましい。その他の条件(浸漬時間、温度、回転数等)に関しても同様の配慮が好ましい。
その後、必要に応じてこの膜を乾燥してもよい。乾燥は室温、減圧下で行うことが好ましい。
As a result, spherical micelles bind to the island region (hydrophobic region or hydrophilic region) on the microphase separation membrane. This coupling is due to non-covalent bonds such as van der Waals forces, dipole-dipole interactions, electrostatic attraction. Since this binding force is weak, for example, if the concentration of the dispersion is too high, spherical micelles may not selectively bind to the island region, so the desired occupation ratio (ratio of micelle binding to the island region) It is preferable to adjust the concentration of the spherical micelles appropriately so that the above can be obtained. The same consideration is preferable for other conditions (immersion time, temperature, rotation speed, etc.).
Thereafter, the membrane may be dried as necessary. Drying is preferably performed at room temperature and under reduced pressure.

次に、金属ドットの二次元超格子を有する金属微粒子配列基板の作成法を記す。上記のようにして得られたミクロ相分離膜を取り出して基板に積層する。この基板として、オゾン(O)によって酸化されにくいものが好ましく、例えば、シリコンウエハ、ガラス、金属などの基板を用いることができる。上記の方法において適当な基板を用いているのであればこの操作を省略してもよい。
次に、ミクロ相分離膜及び前記有機配位子を除去する。この除去手段として、紫外線照射、加熱、プラズマエッチングなどの方法が挙げられる。
紫外線を用いる場合には、170〜260nm程度の波長の紫外線を照射して有機物を分解し除去することができる。光源として、エキシマランプ、低圧水銀灯などを用いることができる。
加熱する場合には、350〜400℃で行うことが好ましい。
この操作の結果、基板上に径が1〜5nmの金属微粒子が10〜50nmの間隔で多数配列した金属微粒子配列基板を得ることができる。
Next, a method for producing a metal fine particle array substrate having a two-dimensional superlattice of metal dots will be described. The microphase separation membrane obtained as described above is taken out and laminated on the substrate. As this substrate, a substrate that is not easily oxidized by ozone (O 3 ) is preferable. For example, a substrate such as a silicon wafer, glass, or metal can be used. If an appropriate substrate is used in the above method, this operation may be omitted.
Next, the microphase separation membrane and the organic ligand are removed. Examples of the removing means include ultraviolet irradiation, heating, and plasma etching.
When ultraviolet rays are used, the organic matter can be decomposed and removed by irradiating ultraviolet rays having a wavelength of about 170 to 260 nm. As the light source, an excimer lamp, a low-pressure mercury lamp, or the like can be used.
When heating, it is preferable to carry out at 350-400 degreeC.
As a result of this operation, a metal fine particle array substrate in which a large number of metal fine particles having a diameter of 1 to 5 nm are arranged on the substrate at intervals of 10 to 50 nm can be obtained.

以下、実施例にて本発明を例証するが本発明を限定することを意図するものではない。
製造例1
有機配位子を以下の方法で作成した。合成反応を図4(Scheme 1)に示す。
トリエチレングリコールモノメチルエーテル(4g、0.024 mol)、塩化チオニル(5.71g、0.048 mol)、ピリジン (3.8g、0.048 mol) の混合溶液を80℃で6時間加熱撹拌した。反応終了後、この反応液を室温まで放冷し、減圧下50℃で濃縮を行った。得られた残渣に塩化メチレンを加え、塩化チオニルを除去した。除去を行った後、残渣を3時間冷蔵庫で冷却し、これをジエチルエーテルで洗浄して化合物2を黄色液として得た(3.55g,収率81%)。
1H-NMR(DMSO) : δ3.230(3H,s)、3.424(2H,m)、3.522(6H,m)、3.666(4H,m)
化合物2(1.0 g, 5.5 mmol) とチオ酢酸カリウム(1.8 g ,16.5 mmol)をDMF 30 mlに溶解させ60 ℃で17時間加熱撹拌した。室温まで放冷させ、ジエチルエーテルを用いて抽出を行った。抽出したジエチルエーテルを減圧下濃縮した。その後カラムクロマトグラフィー分離(シリカゲル、3%メタノール/塩化メチレン)で分離し化合物3を黄色液として得た(912mg,収率75%)。
1H-NMR(DMSO) : δ2.320(3H,s)、3.001(2H,t,J=6.59)、3.229(3H,s)、3.309(2H,m)、3.490(8H,m) IR(cm-1):1692(CO)
化合物3(100 mg, 0.45 mmol)とNaOMe (72.87 mg, 1.349 mmol)をメタノール5 mlに溶解させ室温で48時間撹拌した。反応終了後、減圧下濃縮を行い、残渣をジエチルエーテルで抽出し、カラムクロマトグラフィー(シリカゲル、3%メタノール/塩化メチレン)で分離し化合物4(化学式:(MeO(C2H4O)2C2H4S)2)を黄色液体として得た(115mg,収率72 %)。
1H-NMR(DMSO) : δ 2.885(4H,t,J=6.34)、3.230(6H,s)、3.313(4H,m)、3.508(12H,m)、3.626(4H,t,J=6.34)
The following examples illustrate the invention but are not intended to limit the invention.
Production Example 1
An organic ligand was prepared by the following method. The synthesis reaction is shown in FIG. 4 (Scheme 1).
A mixed solution of triethylene glycol monomethyl ether (4 g, 0.024 mol), thionyl chloride (5.71 g, 0.048 mol) and pyridine (3.8 g, 0.048 mol) was heated and stirred at 80 ° C. for 6 hours. After completion of the reaction, the reaction solution was allowed to cool to room temperature and concentrated under reduced pressure at 50 ° C. Methylene chloride was added to the resulting residue to remove thionyl chloride. After removal, the residue was cooled in a refrigerator for 3 hours and washed with diethyl ether to give compound 2 as a yellow liquid (3.55 g, 81% yield).
1 H-NMR (DMSO): δ 3.230 (3H, s), 3.424 (2H, m), 3.522 (6H, m), 3.666 (4H, m)
Compound 2 (1.0 g, 5.5 mmol) and potassium thioacetate (1.8 g, 16.5 mmol) were dissolved in 30 ml of DMF, and the mixture was heated and stirred at 60 ° C. for 17 hours. The mixture was allowed to cool to room temperature and extracted with diethyl ether. The extracted diethyl ether was concentrated under reduced pressure. Thereafter, separation by column chromatography (silica gel, 3% methanol / methylene chloride) was performed to obtain Compound 3 as a yellow liquid (912 mg, yield 75%).
1 H-NMR (DMSO): δ 2.320 (3H, s), 3.001 (2H, t, J = 6.59), 3.229 (3H, s), 3.309 (2H, m), 3.490 (8H, m) IR ( cm -1 ): 1692 (CO)
Compound 3 (100 mg, 0.45 mmol) and NaOMe (72.87 mg, 1.349 mmol) were dissolved in 5 ml of methanol and stirred at room temperature for 48 hours. After completion of the reaction, the reaction mixture was concentrated under reduced pressure. The residue was extracted with diethyl ether and separated by column chromatography (silica gel, 3% methanol / methylene chloride) to obtain compound 4 (chemical formula: (MeO (C 2 H 4 O) 2 C 2 H and 4 S) 2) as a yellow liquid (115 mg, 72% yield).
1 H-NMR (DMSO): δ 2.885 (4H, t, J = 6.34), 3.230 (6H, s), 3.313 (4H, m), 3.508 (12H, m), 3.626 (4H, t, J = 6.34) )

製造例2
製造例1で得た有機配位子を用いて金属微粒子含有球状ミセルを下の方法で作成した。その反応を図5(Scheme 2)に示す。
40mM HAuCl4水溶液(66mg、0.1603mmol ) 4 mlを31 mM BrN(C8H17)4トルエン溶液(220 mg,0.4.023mmol)13mlに撹拌しながら加えた。 AuCl が有機層に移動するまで撹拌し、有機層を分離した。Au:RSH=1:10の化合物4を加え、室温で10分間撹拌した。撹拌後、新鮮な0. 4M NaBH4水溶液を1秒で滴下した室温で12時間撹拌を行った後、析出物、トルエン層、水層の混合物を析出物と溶液に分けた。析出物については、一晩乾燥した。乾燥後、残渣に塩化メチレンを加えて溶解物と不溶物に分けた。塩化メチレンに溶かした溶解物をn-ヘキサンを加えて再び沈殿させ、黒褐色の固体を得た。溶液についてはトルエン層と水層に分離し、トルエン層の濃縮を行い、得られた残渣を一晩乾燥した。乾燥後、残渣を塩化メチレンに溶解させ、n-ヘキサンを加えて再び沈殿させた。
Production Example 2
Using the organic ligand obtained in Production Example 1, spherical micelles containing fine metal particles were prepared by the following method. The reaction is shown in FIG. 5 (Scheme 2).
4 ml of 40 mM HAuCl 4 aqueous solution (66 mg, 0.1603 mmol) was added to 13 ml of 31 mM BrN (C 8 H 17 ) 4 toluene solution (220 mg, 0.4.023 mmol) with stirring. The mixture was stirred until AuCl 4 moved to the organic layer, and the organic layer was separated. Compound 4 of Au: RSH = 1: 10 was added and stirred at room temperature for 10 minutes. After stirring, a fresh 0.4M NaBH 4 aqueous solution was added dropwise in 1 second, and the mixture was stirred at room temperature for 12 hours. Then, the mixture of the precipitate, the toluene layer, and the aqueous layer was separated into the precipitate and the solution. The precipitate was dried overnight. After drying, methylene chloride was added to the residue to separate it into dissolved and insoluble materials. The dissolved material dissolved in methylene chloride was precipitated again by adding n-hexane to obtain a dark brown solid. The solution was separated into a toluene layer and an aqueous layer, the toluene layer was concentrated, and the resulting residue was dried overnight. After drying, the residue was dissolved in methylene chloride and precipitated again by adding n-hexane.

製造例3
ミクロ相分離膜を以下の方法で作成した。その様子を図1に示す。
(1)下式(化1)で表されるブロック共重合体を2.0‐5.0 wt%のトルエン溶液とした。
(本式は、一般式(1)においてm=114、n=48であり、Rは一般式(2)である。)
(2)この溶液をシリンジフィルタ(Whatman 社製、網目0.45μm)を用いて濾過をした。
(3)濾液200μlをできるだけ平面状に整えた2 cm×4 cmの雲母板上全体に滴下し、バーコーター(第一理化株式会社製、番手2、10、20)を用いて塗布した。
(4)その後、110℃で24時間熱処理を行い、シートを得た。
得られたシートを、原子間力顕微鏡(AFM)(セイコーインスツルメンツ社製、SPA400)を用いて観察を行った。その結果を図6に示す。
Production Example 3
A microphase separation membrane was prepared by the following method. This is shown in FIG.
(1) A block copolymer represented by the following formula (Chemical Formula 1) was used as a 2.0-5.0 wt% toluene solution.
(In this formula, m = 114 and n = 48 in the general formula (1), and R is the general formula (2).)
(2) The solution was filtered using a syringe filter (Whatman, mesh 0.45 μm).
(3) 200 μl of the filtrate was dropped on the entire 2 cm × 4 cm mica plate as flat as possible and applied using a bar coater (manufactured by Daiichi Rika Co., Ltd., counts 2, 10, 20).
(4) Thereafter, heat treatment was performed at 110 ° C. for 24 hours to obtain a sheet.
The obtained sheet was observed using an atomic force microscope (AFM) (manufactured by Seiko Instruments Inc., SPA400). The result is shown in FIG.

図6から、径が10nm椙度の略円形の凹部が六方最密状に配列しておリ、膜表面の高低差の観察からこれら凹状略円形が24〜26nm間隔で周期的に配列していることがわかる。即ち、この略円形部は親水性のpEOmドメインであり、周辺部の疎水性PMA(AZ)nドメインから相分離し、基板に対してほぼ垂直方向に円筒状のシリンダーアレイ構造を形成させていることがわかる。   From FIG. 6, approximately circular concave portions having a diameter of 10 nm are arranged in a hexagonal close-packed manner, and these concave substantially circular shapes are periodically arranged at intervals of 24 to 26 nm from observation of the height difference of the film surface. I understand that. That is, the substantially circular portion is a hydrophilic pEOm domain, and is phase-separated from the hydrophobic PMA (AZ) n domain in the peripheral portion to form a cylindrical cylinder array structure in a direction substantially perpendicular to the substrate. I understand that.

本実施例では、金属微粒子配列シートを以下の方法で作成した。その様子を図2に示す。
(1)製造例2で得た金属微粒子含有球状ミセルのエタノール溶液を0.1−2.0 wt%に調製した。
(2)製造例3で得たミクロ相分離膜を約1 cm×2 cmに切り取りとった。
(3)この相分離膜を室温(25 ℃)で(1)の溶液に30−90 秒間、垂直に浸漬した。
(4) その後、垂直に引き上げ、減圧下で1時間乾燥した。
In this example, a metal fine particle array sheet was prepared by the following method. This is shown in FIG.
(1) The ethanol solution of the metal fine particle-containing spherical micelle obtained in Production Example 2 was prepared to 0.1 to 2.0 wt%.
(2) The microphase separation membrane obtained in Production Example 3 was cut out to about 1 cm × 2 cm.
(3) The phase separation membrane was immersed vertically in the solution of (1) at room temperature (25 ° C.) for 30 to 90 seconds.
(4) Then, it pulled up vertically and dried under reduced pressure for 1 hour.

得られたシートを、原子間力顕微鏡(SPA400)を用いて観察を行った。その結果を図7に示す。図7から、凹部であったミクロ相分離膜表面の略円形部分が、金ナノ粒子(平均粒径5nm程度)の堆積後4〜5nm程度隆起しており、1個の金ナノ粒子が膜表面の略円形部分に堆積していることがわかる。さらに、金ナノ粒子は膜の周期構造と同じ23〜24nm間隔で配列しており、表面を親水性基で修飾された金ナノ粒子が、同じ親水性のpEOmドメイン上に選択的に堆積していることがわかる。


The obtained sheet was observed using an atomic force microscope (SPA400). The result is shown in FIG. From FIG. 7, the substantially circular portion of the microphase separation membrane surface that was a concave portion was raised about 4 to 5 nm after the deposition of the gold nanoparticles (average particle size of about 5 nm), and one gold nanoparticle was It can be seen that they are deposited in a substantially circular portion . Furthermore, the gold nanoparticles are arranged at the same interval of 23 to 24 nm as the periodic structure of the film, and the gold nanoparticles whose surface is modified with hydrophilic groups are selectively deposited on the same hydrophilic pEOm domain. I understand that.


ミクロ相分離膜上に配列させた金超微粒子数の浸漬時間と金ナノ粒子の濃度依存性を図8に示す。図8中に示される占有率は、一定面積内(100×100nm)に存在するpEOmドメインに着目し、金ナノ粒子が堆積しているPEOmドメイン数を全PEOmドメイン数に対する割含で表わしたものである。浸漬時間を10秒あるいは20秒と一定にしたとき、浸漬させる金ナノ粒子溶液の濃度が高くなるほど金ナノ粒子がより多く堆積し占有率が上昇することがわかった。また、金ナノ粒子溶液の濃度を一定にしたとき、浸漬時間を10sから20秒へと長くするに従い占有率が上昇することがわかった。しかし、2.0wt%以上の濃度の高い金ナノ粒子溶液に20秒以上の長い時間浸漬させると占有率は上がるものの、同時に金ナノ粒子の凝集が起こることがわかった。金ナノ粒子を配列させるには適切な浸漬時間と濃度があり、0.5wt%の金ナノ粒子溶液に20秒間浸漬させたとき、比較的良好な占有率(32%)が得られることがわかった。 FIG. 8 shows the immersion time of the number of ultrafine gold particles arranged on the microphase separation membrane and the concentration dependence of the gold nanoparticles. The occupancy shown in FIG. 8 pays attention to pEOm domains existing within a certain area (100 × 100 nm 2 ), and represents the number of PEOm domains on which gold nanoparticles are deposited as a percentage of the total number of PEOm domains. Is. It was found that when the immersion time was fixed at 10 seconds or 20 seconds, the gold nanoparticle was deposited more and the occupation ratio increased as the concentration of the gold nanoparticle solution to be immersed was higher. Moreover, when the density | concentration of the gold nanoparticle solution was made constant, it turned out that an occupation rate rises as immersion time is lengthened from 10 s to 20 seconds. However, it was found that when the gold nanoparticle solution having a high concentration of 2.0 wt% or more is immersed for a long time of 20 seconds or more, the occupation ratio increases, but at the same time, aggregation of the gold nanoparticles occurs. It is found that there is an appropriate immersion time and concentration for arranging the gold nanoparticles, and a relatively good occupation ratio (32%) can be obtained when immersed in a 0.5 wt% gold nanoparticle solution for 20 seconds. It was.

金属微粒子のみを配列させたシリコンウエハを以下の方法で作成した。その様子を図3に示す。
(1) 製造例3で得た金属微粒子配列シートをシリコンウエハ上に置いた。
(2) 減圧下VUVランプを照射してオゾンを発生させ、基板上の有機物を分解消失させた。この時の基板の温度は-80〜30℃であり、空気の流量、雰囲気の圧力はそれぞれ5〜250 ml / min 、0.9〜1.1×103 Paであった。
その結果、基板(シリコンウエハ)上に金属微粒子が多数配列した金属微粒子配列基板を得ることができた(結果は特に示さない)。
A silicon wafer in which only metal fine particles were arranged was prepared by the following method. This is shown in FIG.
(1) The metal fine particle array sheet obtained in Production Example 3 was placed on a silicon wafer.
(2) Ozone was generated by irradiating a VUV lamp under reduced pressure, and organic substances on the substrate were decomposed and lost. At this time, the substrate temperature was -80 to 30 ° C., and the air flow rate and the atmospheric pressure were 5 to 250 ml / min and 0.9 to 1.1 × 10 3 Pa, respectively.
As a result, a metal fine particle array substrate in which a large number of metal fine particles were arranged on the substrate (silicon wafer) could be obtained (results are not particularly shown).

ミクロ相分離膜形成の様子を示す図である。It is a figure which shows the mode of micro phase separation membrane formation. 微粒子配列シート作成の様子を示す図である。It is a figure which shows the mode of fine particle arrangement | sequence sheet | seat preparation. 転写の様子を示す図である。It is a figure which shows the mode of transcription | transfer. 配位子の合成を示す図である。It is a figure which shows the synthesis | combination of a ligand. 金超微粒子の合成を示す図である。It is a figure which shows the synthesis | combination of a gold ultrafine particle. ミクロ相分離膜のAFM形状像を示す図である。It is a figure which shows the AFM shape image of a micro phase separation membrane. ミクロ相分離膜上に配列した金ナノ粒子のAFM形状像を示す図である。It is a figure which shows the AFM shape image of the gold nanoparticle arranged on the micro phase separation membrane. ミクロ相分離膜上に配列させた金超微粒子数の浸漬時間と金ナノ粒子の濃度依存性を示す図である。It is a figure which shows the immersion time of the number of gold | metal ultrafine particles arranged on the micro phase separation membrane, and the density | concentration dependence of a gold nanoparticle.

Claims (7)

表面に、径が3〜15nmの略円形の疎水性又は親水性の領域を10〜50nmの間隔で多数有するミクロ相分離膜上の該略円形領域に、金属微粒子含有球状ミセルをそれぞれ1個配置させてなる金属微粒子配列シートであって、該金属微粒子含有球状ミセルが、径が1〜5nmの金属微粒子を有機配位子で覆ったコアシェル型球状ミセルであり、前記ミクロ相分離膜上の略円形の領域が親水性の場合には親水性基、前記ミクロ相分離膜上の略円形の領域が疎水性の場合には疎水性基が外側に露出した球状ミセルである、金属微粒子配列シート。
One spherical fine micelle containing metal fine particles is disposed on the surface of the micro-phase separation membrane having a large number of substantially circular hydrophobic or hydrophilic regions having a diameter of 3 to 15 nm at intervals of 10 to 50 nm on the surface. The metal fine particle-arranged sheet is a core-shell type spherical micelle in which the metal fine particle-containing spherical micelle is covered with an organic ligand and having a diameter of 1 to 5 nm. A metal fine particle array sheet, which is a hydrophilic group when the circular region is hydrophilic, and a spherical micelle with the hydrophobic group exposed to the outside when the substantially circular region on the microphase separation membrane is hydrophobic.
前記ミクロ相分離膜が、親水性ポリマー成分(A)及び疎水性ポリマー成分(B)の互いに非相溶性のポリマーが共有結合によって結合したブロック共重合体であって、前記親水性ポリマー成分(A)及び前記疎水性ポリマー成分(B)の分子量分布(Mw/Mn)が1.3以下の両親媒性ブロック共重合体から成る請求項1に記載の金属微粒子配列シート。 The microphase separation membrane is a block copolymer in which a hydrophilic polymer component (A) and a hydrophobic polymer component (B) are incompatible with each other by a covalent bond, and the hydrophilic polymer component (A) ) And the hydrophobic polymer component (B) are composed of amphiphilic block copolymers having a molecular weight distribution (Mw / Mn) of 1.3 or less. 前記ブロック共重合体が下記一般式(1)で表される請求項2に記載の金属微粒子配列シート。
一般式(1):CH3(OCH2CH2)m OCOC(CH3)2(CH2C(CH3)COOR) n-X
(式中、m及びnは同一であっても異なっていてもよく、それぞれ5〜500の整数であり、Rは、下記一般式(2)又は(3)で表される置換基であり、Xは水素原子又はハロゲン原子を表す。)
一般式(2):-CH2(CH2)CH2O-B-N=N-B-R1
(式中、aは0〜20の整数であり、Rは水素又は炭素数1〜22のアルキル基、Bはp−フェニレン基を表す。)
一般式(3):-CH2(CH2)CH2O-B-CH=CH-B-R2
(式中、bは0〜20の整数であり、Rは水素又は炭素数1〜22のアルキル基、Bはp−フェニレン基を表す。)
The metal fine particle arrangement sheet according to claim 2, wherein the block copolymer is represented by the following general formula (1).
Formula (1): CH 3 (OCH 2 CH 2) m O COC (CH 3) 2 (CH 2 C (CH 3) COOR) n -X
(In the formula, m and n may be the same or different and each is an integer of 5 to 500; R is a substituent represented by the following general formula (2) or (3); X represents a hydrogen atom or a halogen atom.)
Formula (2): —CH 2 (CH 2 ) a CH 2 OBN = NBR 1
(In the formula, a represents an integer of 0 to 20, R 1 represents hydrogen or an alkyl group having 1 to 22 carbon atoms, and B represents a p-phenylene group.)
Formula (3): —CH 2 (CH 2 ) b CH 2 OB—CH═CH—BR 2
(In the formula, b represents an integer of 0 to 20, R 2 represents hydrogen or an alkyl group having 1 to 22 carbon atoms, and B represents a p-phenylene group.)
前記金属微粒子含有球状ミセルが、径が1〜5nmの金属微粒子を、(R3O(R4O)R5S)2(式中、Rは水素原子又はアルキル基、Rは炭素数が2又は3のアルキレン基、cは1〜10の整数、Rは炭素数が2〜4のアルキレン基を表す。)で表される化合物で覆ったコアシェル型球状ミセルである請求項1〜3のいずれか一項に記載の金属微粒子配列シート。 The metal fine particle-containing spherical micelles are metal fine particles having a diameter of 1 to 5 nm, (R 3 O (R 4 O) c R 5 S) 2 (wherein R 3 is a hydrogen atom or an alkyl group, and R 4 is carbon. 2. A core-shell spherical micelle covered with a compound represented by 2 or 3 alkylene group, c is an integer of 1 to 10, and R 5 is an alkylene group of 2 to 4 carbon atoms. The metal fine particle arrangement | sequence sheet | seat as described in any one of -3. 請求項1〜4のいずれか一項に記載の金属微粒子配列シートを基板に積層し、前記ミクロ相分離膜及び前記有機配位子を除去することにより得られる基板上に径が1〜5nmの金属微粒子が10〜50nmの間隔で多数配列した金属微粒子配列基板。 The metal fine particle arrangement sheet according to any one of claims 1 to 4 is laminated on a substrate, and the diameter is 1 to 5 nm on the substrate obtained by removing the microphase separation film and the organic ligand. A metal particle array substrate in which a large number of metal particles are arrayed at intervals of 10 to 50 nm. 基板上に両親媒性ブロック共重合体を含む溶液をキャストしてミクロ相分離膜を形成する段階、金属微粒子含有球状ミセルを分散させた分散液に前記ミクロ相分離膜を浸漬する段階、及び該ミクロ相分離膜をこの分散液から取り出して乾燥させる段階から成り、前記両親媒性ブロック共重合体が、親水性ポリマー成分(A)及び疎水性ポリマー成分(B)の互いに非相溶性のポリマーが共有結合によって結合して形成された、前記親水性ポリマー成分(A)及び前記疎水性ポリマー成分(B)の分子量分布(Mw/Mn)が1.3以下である両親媒性ブロック共重合体であり、前記金属微粒子含有球状ミセルが、径が1〜5nmの金属微粒子を有機配位子で覆ったコアシェル型球状ミセルである、径が3〜15nmの略円形の疎水性又は親水性の領域を10〜50nmの間隔で多数有するミクロ相分離膜上の該略円形領域に該金属微粒子含有球状ミセルがそれぞれ1個配置された金属微粒子配列シートの製法。
Casting a solution containing an amphiphilic block copolymer on a substrate to form a microphase separation membrane, immersing the microphase separation membrane in a dispersion in which metal microparticle-containing spherical micelles are dispersed, and The step comprises removing the microphase separation membrane from the dispersion and drying, wherein the amphiphilic block copolymer comprises a hydrophilic polymer component (A) and a hydrophobic polymer component (B) that are incompatible with each other. An amphiphilic block copolymer formed by covalent bonding and having a molecular weight distribution (Mw / Mn) of 1.3 or less of the hydrophilic polymer component (A) and the hydrophobic polymer component (B) There, the metal particles containing spherical micelles, diameter of core-shell type spherical micelles covered with organic ligands metal fine particles of 1 to 5 nm, the diameter of substantially circular 3~15nm hydrophobic or hydrophilic The symbolic circular region to the metal fine particle-containing spherical micelles one disposed metal particles array sheet manufacturing method each region on the micro phase separation membrane having a large number at intervals of 10 to 50 nm.
請求項6に記載の金属微粒子配列シートの製法に、更に前記金属微粒子配列シートを基板に積層する段階、及び前記ミクロ相分離膜及び前記有機配位子を除去する段階を含む金属微粒子配列基板の製法。
A method for producing a metal fine particle arrangement sheet according to claim 6, further comprising: laminating the metal fine particle arrangement sheet on a substrate; and removing the microphase separation film and the organic ligand. Manufacturing method.
JP2004303625A 2004-08-26 2004-10-19 Metal particle array sheet Expired - Fee Related JP4863428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004303625A JP4863428B2 (en) 2004-08-26 2004-10-19 Metal particle array sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004246402 2004-08-26
JP2004246402 2004-08-26
JP2004303625A JP4863428B2 (en) 2004-08-26 2004-10-19 Metal particle array sheet

Publications (2)

Publication Number Publication Date
JP2006088310A JP2006088310A (en) 2006-04-06
JP4863428B2 true JP4863428B2 (en) 2012-01-25

Family

ID=36229762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004303625A Expired - Fee Related JP4863428B2 (en) 2004-08-26 2004-10-19 Metal particle array sheet

Country Status (1)

Country Link
JP (1) JP4863428B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004060738B4 (en) * 2004-12-15 2008-07-03 Forschungszentrum Jülich GmbH Process for the structured application of molecules to a conductor track
WO2007122998A1 (en) * 2006-04-19 2007-11-01 Japan Science And Technology Agency Substrate with microfine metallic lumps arranged on surface
JP5041360B2 (en) * 2006-09-29 2012-10-03 国立大学法人 東京大学 Metal fine particle array film and method for producing the same
US7999160B2 (en) * 2007-03-23 2011-08-16 International Business Machines Corporation Orienting, positioning, and forming nanoscale structures
JP5445991B2 (en) * 2007-08-09 2014-03-19 独立行政法人物質・材料研究機構 Nano-flaked metal composite material, method for producing the same, and surface-enhanced Raman scattering active substrate
KR100961277B1 (en) 2008-07-28 2010-06-03 연세대학교 산학협력단 Polymer nanoparticle containing metal halogen nanoparticles and method for preparing the same
JP5151842B2 (en) * 2008-09-12 2013-02-27 宇部興産株式会社 Method for producing metal fine particle array film and metal fine particle array film
JP5396063B2 (en) * 2008-10-27 2014-01-22 独立行政法人物質・材料研究機構 Functional metal composite substrate and manufacturing method thereof
JP5875124B2 (en) * 2011-10-17 2016-03-02 国立研究開発法人産業技術総合研究所 Semiconductor element bonding method and bonding structure
JP6704577B2 (en) * 2015-02-23 2020-06-03 国立大学法人 奈良先端科学技術大学院大学 Method for producing carbon nanotube-dopant composition composite and carbon nanotube-dopant composition composite
CN114522746A (en) * 2020-11-23 2022-05-24 京东方科技集团股份有限公司 Micro-fluidic chip and modification method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3244653B2 (en) * 1997-08-22 2002-01-07 科学技術振興事業団 Metal / organic polymer composite structure, porous body, and method for producing the same
US6890624B1 (en) * 2000-04-25 2005-05-10 Nanogram Corporation Self-assembled structures
JP3940546B2 (en) * 1999-06-07 2007-07-04 株式会社東芝 Pattern forming method and pattern forming material
DE10137342A1 (en) * 2001-07-31 2003-03-06 Infineon Technologies Ag Biosensor and method for detecting macromolecular biopolymers using at least one unit for immobilizing macromolecular biopolymers
JP3979470B2 (en) * 2002-09-11 2007-09-19 財団法人理工学振興会 Block copolymer and method for producing micro phase separation structure membrane

Also Published As

Publication number Publication date
JP2006088310A (en) 2006-04-06

Similar Documents

Publication Publication Date Title
Wu et al. Janus nanoarchitectures: From structural design to catalytic applications
Dong et al. A molecular approach to magnetic metallic nanostructures from metallopolymer precursors
JP5598970B2 (en) Microstructure manufacturing method, composite
Rozenberg et al. Polymer-assisted fabrication of nanoparticles and nanocomposites
US8465803B2 (en) Templated monolayer polymerization and replication
Advincula Surface initiated polymerization from nanoparticle surfaces
Hu et al. Fabrication, properties and applications of Janus particles
TWI596125B (en) Block copolymer
US20090269555A1 (en) Surface nanopatterning
JP4863428B2 (en) Metal particle array sheet
Sun et al. Self-assembly of CdTe nanoparticles into dendrite structure: A microsensor to Hg2+
JP2000504374A (en) Monodisperse microcrystals of organically functionalized metals
JP4020247B2 (en) Polymer graft substrate manufacturing method
US20150232628A1 (en) Method for forming metal nanowire or metal nanomesh
JP5988258B2 (en) Method for producing fine structure, method for producing composite
Levchenko et al. Controlled solvothermal routes to hierarchical 3D superparticles of nanoscopic CdS
JP5144762B2 (en) Copolymer for resist containing photoacid generator and method for producing the same
KR100548017B1 (en) Nanometer or less pattern formation method
Correa-Espinoza Synthesis of Ag2S quantum dots and their biomedical applications
JP2003332199A (en) Photosensitive composition, polymer structure, and pattern forming method
KR100860506B1 (en) Polymer composites comprising metal nanoparticles and synthesis method thereof
Striccoli et al. Nanocrystal-Based Polymer Composites as Novel Functional Materials
Fan et al. Synthesis and applications of optically active nanomaterials
Hill et al. Assembly of Plasmonic Nanoparticles
Athanassiou et al. Laser-based lithography for polymeric nanocomposite structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees