JPH1140787A - Manufacture of solid-state image pick-up element - Google Patents

Manufacture of solid-state image pick-up element

Info

Publication number
JPH1140787A
JPH1140787A JP9189353A JP18935397A JPH1140787A JP H1140787 A JPH1140787 A JP H1140787A JP 9189353 A JP9189353 A JP 9189353A JP 18935397 A JP18935397 A JP 18935397A JP H1140787 A JPH1140787 A JP H1140787A
Authority
JP
Japan
Prior art keywords
film
transparent material
lens
forming
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9189353A
Other languages
Japanese (ja)
Other versions
JP3809708B2 (en
Inventor
Takeshi Matsuda
健 松田
Yoshitetsu Toumiya
祥哲 東宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP18935397A priority Critical patent/JP3809708B2/en
Publication of JPH1140787A publication Critical patent/JPH1140787A/en
Application granted granted Critical
Publication of JP3809708B2 publication Critical patent/JP3809708B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a solid-state image pick-up device where an interlayer lens is formed in a desired shape to improve condensing efficiency. SOLUTION: A method is used to manufacture a solid-state image pick-up element 15 with a light reception part 2 that is formed at the surface-layer part of a substrate 1 for photoelectric conversion, a charge transfer part 3 for transferring a charge being read from the light reception part 2, and a transfer electrode 5 being provided via an insulation film 4 at a part nearly directly above the charge transfer part on the substrate 1. In this case, a first flattening film 8 is formed by covering the transfer electrode 5, and a transparent material is formed on the first flattening film 8 by the plasma CVD method. Further, a film 9 consisting of the transparent material is subjected to patterning, thus forming a transparent material into a lens 11 in layer in a convex lens shape that projects on a part directly above the light reception part 2. Then, the lens 11 in layer is covered, a second flattening film 12 is formed, and an on-chip lens 14 is formed directly above the light reception part 2 on the second flattening film 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、集光効率を高めた
固体撮像素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid-state imaging device with improved light-collecting efficiency.

【0002】[0002]

【従来の技術】固体撮像素子の微細化に伴い、特に1/
4”38万画素より小さいデバイスなどではその感度向
上が必須となってきている。このような背景のもとに従
来では、カラーフィルタ上にオンチップレンズを設け、
集光効率を高めるといった工夫がなされている。
2. Description of the Related Art With the miniaturization of solid-state imaging devices, in particular, 1 /
For devices smaller than 4 ″ 380,000 pixels, it is essential to improve the sensitivity. Under such a background, conventionally, an on-chip lens is provided on a color filter,
Some measures have been taken to increase the light collection efficiency.

【0003】ところが、近年においてはデバイスの小型
化、高感度化に伴ってさらなる集光効率の向上が望まれ
ているものの、前述したオンチップレンズによる集光効
果はほぼ限界に近づいており、オンチップレンズとは別
の新たな技術の開発が望まれている。
However, in recent years, further improvement in light-collecting efficiency has been desired with the miniaturization and higher sensitivity of devices, but the light-collecting effect of the above-described on-chip lens has almost reached its limit. Development of a new technology different from a chip lens is desired.

【0004】このような要望に対応する技術として、オ
ンチップレンズと併用する状態で層内レンズを設ける技
術が一部に提案されている。この層内レンズは、光電変
換をなす受光部の直上において層間膜中に形成されるレ
ンズであり、オンチップレンズと同様にこの層内レンズ
に入射した光を該層内レンズの上面側または下面側の界
面で屈折させ、受光部に導くものである。したがって、
このような層間レンズを前記オンチップレンズと併用す
ることにより、オンチップレンズで集光されて入射した
光を再度層内レンズで集光することができ、これにより
固体撮像素子全体としての集光効率をより高めることが
できるのである。
As a technique for responding to such a demand, a technique for providing an inner lens in a state of being used together with an on-chip lens has been proposed in part. The in-layer lens is a lens formed in the interlayer film immediately above the light-receiving portion that performs photoelectric conversion. Like the on-chip lens, the light incident on the in-layer lens is on the upper surface side or the lower surface of the in-layer lens. The light is refracted at the interface on the side and guided to the light receiving section. Therefore,
By using such an interlayer lens together with the on-chip lens, the light condensed by the on-chip lens and incident can be condensed again by the inner-layer lens, thereby condensing the entire solid-state imaging device. Efficiency can be further improved.

【0005】[0005]

【発明が解決しようとする課題】ところが、従来提案さ
れている層内レンズはほとんどが凹型のレンズであり、
これを形成する場合、遮光膜の上にBPSG(ホウ素リ
ンシリケートガラス)等のリフロー形状をもつ膜を形成
し、転送電極間、すなわち受光部の直上に形成されたく
ぼみの中に高屈折率材を埋め込み、この埋め込んだ高屈
折率材を層内レンズとする、といったプロセスを採るの
が普通である。しかして、このプロセスでは層内レンズ
の形状がリフロー膜の形状で決まってしまうことから、
所望の形状、すなわち集光に最適な形状を得るのが困難
であり、したがって層内レンズを設けたとはいえ未だ十
分に高い集光効率を得るのが困難である。
However, most of the conventionally proposed inner lenses are concave lenses.
When this is formed, a film having a reflow shape such as BPSG (boron phosphorus silicate glass) is formed on the light-shielding film, and a high refractive index material is formed between the transfer electrodes, that is, in the recess formed immediately above the light receiving portion. It is common to adopt a process of embedding a high refractive index material into an inner layer lens. In this process, the shape of the inner lens is determined by the shape of the reflow film.
It is difficult to obtain a desired shape, that is, an optimum shape for light collection. Therefore, it is difficult to obtain a sufficiently high light collection efficiency even though the in-layer lens is provided.

【0006】本発明は前記事情に鑑みてなされたもの
で、その目的とするところは、集光効率向上を図るべ
く、層間レンズを所望する形状に形成し得るようにした
固体撮像装置の製造方法を提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method of manufacturing a solid-state imaging device in which an interlayer lens can be formed in a desired shape in order to improve light-collecting efficiency. Is to provide.

【0007】[0007]

【課題を解決するための手段】本発明の固体撮像装置で
は、基体表層部に形成されて光電変換をなす受光部と、
該受光部から読み出された電荷を転送する電荷転送部
と、前記基体上の、前記電荷転送部の略直上位置に絶縁
膜を介して設けられた転送電極とを備えた固体撮像素子
を製造するに際して、前記転送電極を覆って第1平坦化
膜を形成し、次に前記第1平坦化膜上にプラズマCVD
法によって透明材料を成膜し、次いで前記透明材料から
なる膜をパターニングして該透明材料を、前記受光部の
直上において上に凸となる凸レンズ状の層内レンズと
し、次いで前記層内レンズを覆って第2平坦化膜を形成
し、その後前記第2平坦化膜上における前記受光部の直
上にオンチップレンズを形成することを前記課題の解決
手段とした。
According to the present invention, there is provided a solid-state imaging device, comprising: a light-receiving portion formed on a surface layer of a substrate to perform photoelectric conversion;
A solid-state imaging device including: a charge transfer unit configured to transfer charges read from the light receiving unit; and a transfer electrode provided on the substrate at a position substantially directly above the charge transfer unit via an insulating film. Forming a first planarization film covering the transfer electrode, and then performing plasma CVD on the first planarization film.
A transparent material is formed by a method, and then the film made of the transparent material is patterned to form the transparent material into a convex lens-shaped inner lens that is upwardly convex immediately above the light receiving unit, and then the inner lens is formed. Forming a second planarizing film so as to cover, and then forming an on-chip lens on the second planarizing film directly above the light receiving section is a means for solving the problem.

【0008】この固体撮像装置の製造方法によれば、第
1平坦化膜上にプラズマCVD法で透明材料を成膜し、
さらに得られた透明材料膜をパターニングすることによ
って層内レンズを形成するので、下地である第1平坦化
膜の表面がもちろん平坦であることによってこの下地に
依存することなく層内レンズを所望形状に形成すること
が可能になり、また、透明材料についてもプラズマCV
D法で堆積して成膜することから種々の材料を選択する
ことが可能になって屈折率を任意に設定することが可能
になる。
According to the method of manufacturing a solid-state imaging device, a transparent material is formed on the first planarization film by a plasma CVD method.
Further, since the inner lens is formed by patterning the obtained transparent material film, the surface of the first flattening film, which is the base, is of course flat, so that the inner lens can have the desired shape without depending on the base. , And transparent CV
Since the film is deposited by the method D, various materials can be selected, and the refractive index can be arbitrarily set.

【0009】なお、透明材料からなる膜をパターニング
して層内レンズを形成するにあたっては、透明材料膜上
にレジスト層を形成し、続いて該レジスト層を上に凸と
なる凸レンズ形状にパターニングし、その後得られた凸
レンズ形状のパターンをマスクとして、該レジストと前
記透明材料との選択比がほぼ1となる条件で前記透明材
料膜をエッチングし、層内レンズを形成するのが好まし
く、このように選択比がほぼ1となる条件で前記透明材
料膜をエッチングすることにより、得られる層内レンズ
をレジストのパターンとほぼ同一の形状にすることがで
き、したがって層内レンズの形状を所望する形状に形成
し易くなる。
In forming an inner lens by patterning a film made of a transparent material, a resist layer is formed on the transparent material film, and then the resist layer is patterned into a convex lens shape having an upward convexity. It is preferable to form the inner lens by etching the transparent material film under the condition that the selectivity between the resist and the transparent material is approximately 1, using the obtained convex lens shape pattern as a mask. By etching the transparent material film under the condition that the selectivity becomes substantially 1, the obtained inner lens can be made to have almost the same shape as the resist pattern. It becomes easy to form.

【0010】[0010]

【発明の実施の形態】以下、本発明を詳しく説明する。
図1(a)〜(c)、図2(a)〜(c)は本発明の固
体撮像素子の製造方法の一実施形態例を説明するための
図であり、これらの図において符号1はシリコン基板
(基体)である。この例では、図1(a)に示すよう
に、従来と同様にしてシリコン基板1の表層部に受光部
2、電荷転送部3、チャネルストップ(図示略)、読み
出し部(図示略)をそれぞれ形成するとともに、シリコ
ン基板1表面に絶縁膜4を形成し、さらに該絶縁膜4上
に転送電極5、層間膜絶縁6、遮光膜7を形成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
FIGS. 1A to 1C and 2A to 2C are views for explaining an embodiment of a method for manufacturing a solid-state imaging device according to the present invention. It is a silicon substrate (base). In this example, as shown in FIG. 1A, a light receiving unit 2, a charge transfer unit 3, a channel stop (not shown), and a readout unit (not shown) are respectively provided on the surface layer of a silicon substrate 1 in the same manner as in the related art. At the same time, an insulating film 4 is formed on the surface of the silicon substrate 1, and a transfer electrode 5, an interlayer insulating film 6, and a light shielding film 7 are formed on the insulating film 4.

【0011】具体的には、まずシリコン基板1中にイオ
ン注入等によって不純物を注入しさらにこれを拡散さ
せ、電荷転送部3、チャネルストップ(図示略)、読み
出し部(図示略)をそれぞれ形成する。次に、熱酸化法
やCVD法によってシリコン基板1表面にSiO2 から
なる絶縁膜4を形成する。なお、この絶縁膜4について
は、SiO2 からなる構造に代えてONO(SiO2
SiN−SiO2 )構造としてもよい。
More specifically, first, impurities are implanted into the silicon substrate 1 by ion implantation or the like, and the impurities are diffused to form a charge transfer section 3, a channel stop (not shown), and a reading section (not shown). . Next, an insulating film 4 made of SiO 2 is formed on the surface of the silicon substrate 1 by a thermal oxidation method or a CVD method. Note that the insulating film 4, instead of the structure consisting of SiO 2 ONO (SiO 2 -
SiN-SiO 2) may have a structure.

【0012】次に、CVD法によりポリシリコンを成膜
し、さらにこのポリシリコン膜(図示略)を公知のレジ
スト技術、リソグラフィー技術、エッチング技術により
パターニングし、転送電極5を形成する。続いて、形成
した転送電極5をマスクにしてイオン注入等によって不
純物を注入しさらにこれを拡散させ、受光部2を自己整
合的に形成する。なお、この受光部2の形成について
は、前記の電荷転送部3、チャネルストップ、読み出し
部の形成時にこれらの形成に前後してあるいは同時に形
成してもよい。
Next, a polysilicon film is formed by a CVD method, and this polysilicon film (not shown) is patterned by a known resist technique, lithography technique, and etching technique to form a transfer electrode 5. Subsequently, impurities are implanted by ion implantation or the like using the formed transfer electrode 5 as a mask and further diffused to form the light receiving section 2 in a self-aligned manner. The light receiving section 2 may be formed before or after the formation of the charge transfer section 3, the channel stop, and the readout section before or at the same time.

【0013】次いで、CVD法等により転送電極5を覆
った状態にSiO2 等からなる層間膜絶縁6を形成す
る。なお、この転送電極4の形成については、転送電極
構造が二層である場合には前記工程を2回繰り返し、三
層以上である場合にはその層数分だけ繰り返す。
Next, an interlayer insulating film 6 made of SiO 2 or the like is formed so as to cover the transfer electrode 5 by a CVD method or the like. When the transfer electrode 4 has two layers, the above steps are repeated twice. When the transfer electrode 4 has three or more layers, the number of layers is repeated.

【0014】次いで、アルミニウムやアルミニウム合
金、あるいはTiやWなどの高融点金属をスパッタ法に
よって単層あるいは複層成膜する。そして、リソグラフ
ィー技術、エッチング技術によって得られた膜に配線用
の開口(図示略)や受光部2の直上位置の一部開口など
必要なパターニングを施すことにより、遮光膜7および
その開口部7aを形成する。なお、この遮光膜7の材料
については、この後に形成する第1平坦化膜のリフロー
条件に応じて選択される。すなわち、リフロー条件とし
て高温加熱が必要な場合には、遮光膜7の材料としてT
iやWなどの高融点金属が用いられ、高温加熱が必要で
ない場合にはアルミニウム等が用いられる。
Next, a single layer or multiple layers of a high melting point metal such as aluminum or aluminum alloy or Ti or W is formed by sputtering. The light-shielding film 7 and its opening 7a are formed by subjecting the film obtained by the lithography technique and the etching technique to necessary patterning such as an opening for wiring (not shown) and a partial opening immediately above the light receiving section 2. Form. The material of the light-shielding film 7 is selected according to the reflow condition of the first flattening film to be formed later. That is, when high-temperature heating is required as a reflow condition, T
A high melting point metal such as i or W is used, and aluminum or the like is used when high-temperature heating is not required.

【0015】次いで、BPSG(ホウ素リンシリケート
ガラス)膜あるいはHDP CVD膜等を形成し、さら
にこれにリフロー処理等を施すことによって平坦化し、
図1(b)に示すように第1平坦化膜8を形成する。な
お、この例においては、第1平坦化膜8を屈折率が1.
47のBPSG膜から形成した。したがって、このBP
SG膜のリフロー処理には高温加熱が必要でないため、
前記遮光膜7についてはその材料としてアルミニウムを
用いている。
Next, a BPSG (boron phosphorus silicate glass) film or an HDP CVD film or the like is formed, and the film is flattened by performing a reflow process or the like.
As shown in FIG. 1B, a first planarizing film 8 is formed. In this example, the first flattening film 8 has a refractive index of 1.
47 BPSG films. Therefore, this BP
Since high temperature heating is not required for reflow treatment of SG film,
The light shielding film 7 is made of aluminum.

【0016】このようにして第1平坦化膜8を形成した
ら周辺部の配線(図示略)を形成し、その後、該第1平
坦化膜8上に後述する層内レンズの材料となる透明材料
をプラズマCVD法によって成膜し、図1(c)に示す
ように透明材料膜9を形成する。ここで、透明材料膜9
の形成については、半導体プロセスなどにおいて一般的
に用いられるプラズマCVD法で行うことから、屈折率
の異なる種々の材料を用いて成膜するとができる。
After the first flattening film 8 is formed in this manner, peripheral wiring (not shown) is formed, and then a transparent material, which will be described later as a material of an in-layer lens, is formed on the first flattening film 8. Is formed by a plasma CVD method, and a transparent material film 9 is formed as shown in FIG. Here, the transparent material film 9
Is formed by a plasma CVD method generally used in a semiconductor process or the like, and thus can be formed using various materials having different refractive indexes.

【0017】換言すれば、前記第1平坦化膜8の屈折率
や後述する第2平坦化膜の屈折率との差を考慮して、受
光部2への集光効率を高めるうえでこれら第1平坦化膜
8あるいは第2平坦化膜との間で最適な屈折率差が得ら
れるような屈折率の材料を選択することができる。例え
ば、屈折率を1.9〜2.0としたい場合にはP−SI
N膜(プラズマ窒化膜)を選択し、屈折率を1.5〜
1.9としたい場合にはP−SiON膜(プラズマ酸化
窒化膜)を選択すればよい。また、この透明材料膜9に
ついては、形成する層内レンズの高さに合わせてその膜
厚を決めるのがプロセス上無駄がなく有利であり、具体
的には0.5〜2.0μm程度とするのが好ましい。な
お、この実施形態例においては、屈折率が1.9〜2.
0となるよう、P−SINを成膜することによって透明
材料膜9を形成した。
In other words, considering the difference between the refractive index of the first flattening film 8 and the refractive index of the second flattening film, which will be described later, in order to increase the light-collecting efficiency to the light receiving section 2, these second flattening films 8 are used. It is possible to select a material having a refractive index such that an optimum refractive index difference is obtained between the first flattening film 8 and the second flattening film. For example, if the refractive index is desired to be 1.9 to 2.0, P-SI
Select the N film (plasma nitride film) and set the refractive index to 1.5 to
If 1.9 is desired, a P-SiON film (plasma oxynitride film) may be selected. Further, it is advantageous that the thickness of the transparent material film 9 is determined according to the height of the inner lens to be formed without waste in the process. Specifically, the thickness is about 0.5 to 2.0 μm. Is preferred. In this embodiment, the refractive index is 1.9 to 2.0.
The transparent material film 9 was formed by forming P-SIN so as to be 0.

【0018】次いで、この透明材料膜9の上にレジスト
を塗布してレジスト層を形成し、さらにこれをパターニ
ングして図2(a)に示すように上に凸となる凸レンズ
形状のレジストパターン10を形成する。このレジスト
パターン10の形成にあたっては、まず、エッチングに
よりレジスト層を各受光部2毎に平面視した状態で矩形
状もしくは正方形状に分割する。そして、このように分
割したレジスト層を140℃〜180℃程度の温度でリ
フロー処理し、各レジスト層を一旦溶融させた後固化さ
せて該レジスト層を上に凸の球面状となる凸レンズ形状
にパターニングし、レジストパターン10を得る。な
お、レジストの種類については特に限定されないもの
の、後述するように透明材料膜9との間でほぼ1の選択
比がとれる材質のものがより好適に用いられる。
Next, a resist is applied on the transparent material film 9 to form a resist layer, which is further patterned to form a resist pattern 10 having a convex lens shape having an upward convex as shown in FIG. To form In forming the resist pattern 10, first, the resist layer is divided into a rectangular shape or a square shape by etching in a state where each light receiving portion 2 is viewed in plan. Then, the resist layer thus divided is subjected to a reflow treatment at a temperature of about 140 ° C. to 180 ° C., and the respective resist layers are once melted and solidified to form the resist layer into a convex lens shape having an upwardly convex spherical shape. By patterning, a resist pattern 10 is obtained. The type of the resist is not particularly limited, but a material having a selectivity of approximately 1 with the transparent material film 9 as described later is more preferably used.

【0019】このようにしてレジストパターン10を形
成したら、これをマスクにして前記透明材料膜9をエッ
チングする。このとき、エッチング条件については、該
レジストパターン10と透明材料膜9との選択比がほぼ
1となる条件で行うのが好ましく、具体的には、平行平
板RIEにより、反応ガスとしてSF6 /O2 (=40
/40ccm)を用い、圧力35Pa、RFパワー45
0Wで行う。このように選択比がほぼ1となる条件で透
明材料膜9のエッチングを行うと、図2(b)に示すよ
うにレジストパターン10とほぼ同一形状の層内レンズ
11を形成することができる。
After the resist pattern 10 is formed in this manner, the transparent material film 9 is etched using the resist pattern 10 as a mask. At this time, it is preferable that the etching is performed under the condition that the selectivity between the resist pattern 10 and the transparent material film 9 becomes substantially 1. Specifically, the parallel plate RIE is performed to obtain SF 6 / O as a reaction gas. 2 (= 40
/ 40ccm), pressure 35Pa, RF power 45
Perform at 0W. When the transparent material film 9 is etched under the condition that the selectivity is substantially 1, an inner lens 11 having substantially the same shape as the resist pattern 10 can be formed as shown in FIG. 2B.

【0020】次いで、図2(c)に示すように得られた
層内レンズ11を覆って第1平坦化膜8上に第2平坦化
膜12を形成する。この第2平坦化膜12については、
アクリル系樹脂(屈折率;約1.60)やポリイミド系
樹脂(屈折率;約1.80)などが用いられるが、特に
層内レンズ11との間の屈折率差を考慮して、集光効率
の点で有利となるように材料が選択される。その後、第
2平坦化膜12の上に従来と同様にしてカラーフィルタ
13を形成し、さらにこのカラーフィルタ13の上にポ
リスチレン(屈折率;約1.60)等からなるオンチッ
プレンズ14を従来と同様にして形成し、これにより固
体撮像素子15を得る。
Next, as shown in FIG. 2C, a second planarizing film 12 is formed on the first planarizing film 8 so as to cover the inner lens 11 obtained. Regarding the second planarizing film 12,
Acrylic resin (refractive index: about 1.60), polyimide resin (refractive index: about 1.80), or the like is used. The materials are selected to be advantageous in terms of efficiency. Thereafter, a color filter 13 is formed on the second flattening film 12 in the same manner as in the related art, and an on-chip lens 14 made of polystyrene (refractive index: about 1.60) is formed on the color filter 13 in the related art. Thus, the solid-state imaging device 15 is obtained.

【0021】このような固体撮像素子15の製造方法に
あっては、第1平坦化膜8上にプラズマCVD法で透明
材料膜9を形成し、これをパターニングすることによっ
て層内レンズ11を形成するので、下地である第1平坦
化膜8の表面がもちろん平坦であることによってこの下
地に依存することなく層内レンズ11を所望形状に形成
することができる。また、透明材料についても、プラズ
マCVD法で堆積して成膜することから種々の材料を選
択することができ、屈折率を任意に設定することができ
るなどその材料選択性の自由度や設計自由度を高めるこ
とができる。
In the method of manufacturing such a solid-state image pickup device 15, a transparent material film 9 is formed on the first flattening film 8 by a plasma CVD method, and the transparent material film 9 is patterned to form an inner-layer lens 11. Therefore, since the surface of the first flattening film 8 serving as the base is of course flat, the inner lens 11 can be formed in a desired shape without depending on the base. Also, as for the transparent material, various materials can be selected because the film is deposited and deposited by the plasma CVD method, and the refractive index can be set arbitrarily. The degree can be increased.

【0022】また、透明材料膜9をパターニングして層
内レンズ11を形成する際、透明材料膜9上に凸レンズ
形状のレジストパターン10を形成し、これをマスクに
して、該レジストと前記透明材料との選択比がほぼ1と
なる条件で透明材料膜9をエッチングしているので、得
られる層内レンズ11をレジストパターン10とほぼ同
一の形状にすることができ、したがって層内レンズ11
の形状を所望する形状に容易に形成することができる。
When forming the inner lens 11 by patterning the transparent material film 9, a resist pattern 10 having a convex lens shape is formed on the transparent material film 9, and the resist and the transparent material are used as masks. Since the transparent material film 9 is etched under the condition that the selectivity of the inner layer 11 is substantially 1, the obtained inner lens 11 can be made almost the same shape as the resist pattern 10, and therefore the inner lens 11 can be formed.
Can be easily formed into a desired shape.

【0023】[0023]

【発明の効果】以上説明したように本発明の固体撮像素
子の製造方法は、第1平坦化膜上にプラズマCVD法で
透明材料を成膜し、さらに得られた透明材料膜をパター
ニングすることによって層内レンズを形成する方法であ
るから、下地である第1平坦化膜の表面が平坦であるこ
とによってこの下地に依存することなく層内レンズを所
望形状に形成することができる。また、透明材料につい
ても、プラズマCVD法で堆積して成膜することから種
々の材料を選択することができ、屈折率を任意に設定す
ることができるなどその材料選択性の自由度や設計自由
度を高めることができる。
As described above, the method of manufacturing a solid-state imaging device according to the present invention comprises forming a transparent material on a first planarization film by a plasma CVD method and patterning the obtained transparent material film. Therefore, since the surface of the first flattening film serving as the base is flat, the inner lens can be formed in a desired shape without depending on the base. Also, as for the transparent material, various materials can be selected because the film is deposited and deposited by the plasma CVD method, and the refractive index can be set arbitrarily. The degree can be increased.

【0024】また、透明材料膜をパターニングして層内
レンズを形成する際、透明材料膜上に凸レンズ形状のレ
ジストパターンを形成し、これをマスクにして、該レジ
ストと前記透明材料との選択比がほぼ1となる条件で透
明材料膜をエッチングすれば、得られる層内レンズをレ
ジストパターンとほぼ同一の形状にすることができ、し
たがって層内レンズの形状を所望する形状に容易に形成
することができる。
When forming the inner layer lens by patterning the transparent material film, a resist pattern having a convex lens shape is formed on the transparent material film, and this is used as a mask to select the resist and the transparent material. If the transparent material film is etched under the condition that is approximately 1, the obtained inner lens can be made almost the same shape as the resist pattern, and therefore, the inner lens can be easily formed into a desired shape. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)〜(c)は本発明の固体撮像装置の製造
方法の一実施形態例を工程順に説明するための要部側断
面図である。
FIGS. 1A to 1C are cross-sectional views of a main part for describing an embodiment of a method for manufacturing a solid-state imaging device according to the present invention in the order of steps.

【図2】(a)〜(c)は本発明の固体撮像装置の製造
方法の一実施形態例を説明するための図であり、図1
(c)に示した工程に続く工程を工程順に示す要部側断
面図である。
FIGS. 2A to 2C are views for explaining an embodiment of a method for manufacturing a solid-state imaging device according to the present invention, and FIGS.
FIG. 6 is a side sectional view of a main part showing steps subsequent to the step shown in FIG.

【符号の説明】[Explanation of symbols]

1…シリコン基板(基体)、2…受光部、3…電荷転送
部、4…絶縁膜、5…転送電極、8…第1平坦化膜、9
…透明材料膜、10…レジストパターン、11…層内レ
ンズ、12…第2平坦化膜、14…オンチップレンズ、
15…固体撮像素子
DESCRIPTION OF SYMBOLS 1 ... Silicon substrate (base), 2 ... Light receiving part, 3 ... Charge transfer part, 4 ... Insulating film, 5 ... Transfer electrode, 8 ... First planarization film, 9
... transparent material film, 10 ... resist pattern, 11 ... in-layer lens, 12 ... second planarization film, 14 ... on-chip lens,
15 ... Solid-state image sensor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基体表層部に形成されて光電変換をなす
受光部と、該受光部から読み出された電荷を転送する電
荷転送部と、前記基体上の、前記電荷転送部の略直上位
置に絶縁膜を介して設けられた転送電極とを備えた固体
撮像素子の製造方法において、 前記転送電極を覆って第1平坦化膜を形成する工程と、 前記第1平坦化膜上にプラズマCVD法によって透明材
料を成膜する工程と、 前記透明材料からなる膜をパターニングして該透明材料
を、前記受光部の直上において上に凸となる凸レンズ状
の層内レンズとする工程と、 前記層内レンズを覆って第2平坦化膜を形成する工程
と、 前記第2平坦化膜上における前記受光部の直上にオンチ
ップレンズを形成する工程と、を備えたことを特徴とす
る固体撮像素子の製造方法。
1. A light receiving unit formed on a surface layer of a base to perform photoelectric conversion, a charge transfer unit for transferring charges read from the light receiving unit, and a position on the base substantially directly above the charge transfer unit. A method for manufacturing a solid-state imaging device, comprising: a transfer electrode provided on a first insulating film; a step of forming a first planarization film covering the transfer electrode; and a plasma CVD method on the first planarization film. A step of forming a transparent material by a method, and a step of patterning the film made of the transparent material to form the transparent material into a convex lens-shaped inner lens that is upwardly convex immediately above the light receiving unit; A solid-state imaging device comprising: a step of forming a second planarization film covering the inner lens; and a step of forming an on-chip lens on the second planarization film immediately above the light receiving unit. Manufacturing method.
【請求項2】 前記透明材料からなる膜をパターニング
して層内レンズを形成する工程が、前記透明材料膜上に
レジスト層を形成する工程と、該レジスト層を上に凸と
なる凸レンズ形状にパターニングする工程と、得られた
凸レンズ形状のパターンをマスクとして、該レジストと
前記透明材料との選択比がほぼ1となる条件で前記透明
材料膜をエッチングし、層内レンズを形成する工程と、
からなることを特徴とする請求項1記載の固体撮像素子
の製造方法。
2. The step of patterning a film made of the transparent material to form an intralayer lens includes the steps of forming a resist layer on the transparent material film, and forming the resist layer into a convex lens shape that is convex upward. Patterning, using the obtained convex lens-shaped pattern as a mask, etching the transparent material film under conditions that the selectivity between the resist and the transparent material is substantially 1, forming an in-layer lens;
2. The method for manufacturing a solid-state imaging device according to claim 1, comprising:
JP18935397A 1997-07-15 1997-07-15 Solid-state imaging device and manufacturing method thereof Expired - Fee Related JP3809708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18935397A JP3809708B2 (en) 1997-07-15 1997-07-15 Solid-state imaging device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18935397A JP3809708B2 (en) 1997-07-15 1997-07-15 Solid-state imaging device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH1140787A true JPH1140787A (en) 1999-02-12
JP3809708B2 JP3809708B2 (en) 2006-08-16

Family

ID=16239914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18935397A Expired - Fee Related JP3809708B2 (en) 1997-07-15 1997-07-15 Solid-state imaging device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3809708B2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033467A (en) * 2000-07-17 2002-01-31 Hamamatsu Photonics Kk Semiconductor device
GB2387967A (en) * 2002-02-05 2003-10-29 Sharp Kk Semiconductor device intralayer lens
WO2004030101A1 (en) * 2002-09-27 2004-04-08 Sony Corporation Solid state imaging device and production method therefor
US6753557B2 (en) 2002-01-31 2004-06-22 Sharp Kabushiki Kaisha Semiconductor device having a condenser lens for use in light receiving device or light emitting device
US6784014B2 (en) * 2000-08-22 2004-08-31 Sony Corporation Solid-state imaging device
JP2004363356A (en) * 2003-06-05 2004-12-24 Matsushita Electric Ind Co Ltd Solid state imaging device and method of manufacturing the same
US6903391B2 (en) 2003-09-10 2005-06-07 Fuji Photo Film Co., Ltd. Solid state image pickup device
JP2006019588A (en) * 2004-07-02 2006-01-19 Sony Corp Solid-state imaging apparatus and its manufacturing method
EP1626442A2 (en) * 2004-08-13 2006-02-15 St Microelectronics S.A. Image sensor
US7019373B2 (en) 2003-05-28 2006-03-28 Canon Kabushiki Kaisha Photoelectric conversion device and manufacturing method thereof
US7166484B2 (en) * 2003-12-11 2007-01-23 Magnachip Semiconductor, Ltd. Method for fabricating image sensor with inorganic microlens
JP2008109153A (en) * 2007-12-18 2008-05-08 Sony Corp Solid-state image sensing device and its manufacturing method
US7439554B2 (en) 2003-12-05 2008-10-21 Sharp Kabushiki Kaisha Semiconductor device and method for fabricating the same
US7453130B2 (en) 2003-02-19 2008-11-18 Sharp Kabushiki Kaisha Semiconductor apparatus and method for fabricating the same
US7470965B2 (en) * 2003-09-11 2008-12-30 Panasonic Corporation Solid-state imaging device
US7474350B2 (en) 2003-09-08 2009-01-06 Sanyo Electric Co., Ltd. Solid state image pickup device comprising lenses for condensing light on photodetection parts
JP2009157397A (en) * 2009-04-13 2009-07-16 Sony Corp Method for manufacturing solid image pickup device and solid image pickup device
JP2009272650A (en) * 2003-05-28 2009-11-19 Canon Inc Photoelectric conversion device
JP2010010331A (en) * 2008-06-26 2010-01-14 Sharp Corp Solid-state imaging device and method for manufacturing same
US7656453B2 (en) 2004-09-24 2010-02-02 Panasonic Corporation Solid-state imaging device having characteristic color unit depending on color, manufacturing method thereof and camera
US7683388B2 (en) 2005-03-01 2010-03-23 Canon Kabushiki Kaisha Image pickup device with color filter arranged for each color on interlayer lenses
US7986019B2 (en) 2008-03-10 2011-07-26 Panasonic Corporation Solid-state imaging device and its manufacturing method
JP2012049257A (en) * 2010-08-25 2012-03-08 Toshiba Corp Solid state imaging device
US8217481B2 (en) 2008-04-11 2012-07-10 Sharp Kabushiki Kaisha Solid-state image capturing device and electronic information device
WO2017131009A1 (en) 2016-01-29 2017-08-03 パナソニック・タワージャズセミコンダクター株式会社 Solid-state imaging device
US9837463B2 (en) 2015-05-14 2017-12-05 Canon Kabushiki Kaisha Solid-state imaging device and method of manufacturing the same

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033467A (en) * 2000-07-17 2002-01-31 Hamamatsu Photonics Kk Semiconductor device
US7053427B2 (en) 2000-08-22 2006-05-30 Kouichi Tanigawa Solid-state imaging device
US6784014B2 (en) * 2000-08-22 2004-08-31 Sony Corporation Solid-state imaging device
US6753557B2 (en) 2002-01-31 2004-06-22 Sharp Kabushiki Kaisha Semiconductor device having a condenser lens for use in light receiving device or light emitting device
GB2387967B (en) * 2002-02-05 2004-07-07 Sharp Kk Semiconductor device and method of manufacturing the same
GB2387967A (en) * 2002-02-05 2003-10-29 Sharp Kk Semiconductor device intralayer lens
SG102069A1 (en) * 2002-02-05 2004-02-27 Sharp Kk Semiconductor device and method of manufacturing the same
US6903395B2 (en) 2002-02-05 2005-06-07 Sharp Kabushiki Kaisha Semiconductor device including interlayer lens
WO2004030101A1 (en) * 2002-09-27 2004-04-08 Sony Corporation Solid state imaging device and production method therefor
US7453130B2 (en) 2003-02-19 2008-11-18 Sharp Kabushiki Kaisha Semiconductor apparatus and method for fabricating the same
US7709918B2 (en) 2003-05-28 2010-05-04 Canon Kabushiki Kaisha Photoelectric conversion device and manufacturing method thereof
US8866249B2 (en) 2003-05-28 2014-10-21 Canon Kabushiki Kaisha Photoelectric conversion device and manufacturing method thereof
US7019373B2 (en) 2003-05-28 2006-03-28 Canon Kabushiki Kaisha Photoelectric conversion device and manufacturing method thereof
JP2009272650A (en) * 2003-05-28 2009-11-19 Canon Inc Photoelectric conversion device
US8581358B2 (en) 2003-05-28 2013-11-12 Canon Kabushiki Kaisha Photoelectric conversion device and manufacturing method
US8299557B2 (en) 2003-05-28 2012-10-30 Canon Kabushiki Kaisha Photoelectric conversion device and manufacturing method
US7420236B2 (en) 2003-05-28 2008-09-02 Canon Kabushiki Kaisha Photoelectric conversion device and manufacturing method thereof
JP2004363356A (en) * 2003-06-05 2004-12-24 Matsushita Electric Ind Co Ltd Solid state imaging device and method of manufacturing the same
US7474350B2 (en) 2003-09-08 2009-01-06 Sanyo Electric Co., Ltd. Solid state image pickup device comprising lenses for condensing light on photodetection parts
US6903391B2 (en) 2003-09-10 2005-06-07 Fuji Photo Film Co., Ltd. Solid state image pickup device
US7470965B2 (en) * 2003-09-11 2008-12-30 Panasonic Corporation Solid-state imaging device
US7439554B2 (en) 2003-12-05 2008-10-21 Sharp Kabushiki Kaisha Semiconductor device and method for fabricating the same
US7166484B2 (en) * 2003-12-11 2007-01-23 Magnachip Semiconductor, Ltd. Method for fabricating image sensor with inorganic microlens
JP2006019588A (en) * 2004-07-02 2006-01-19 Sony Corp Solid-state imaging apparatus and its manufacturing method
JP4595405B2 (en) * 2004-07-02 2010-12-08 ソニー株式会社 Solid-state imaging device and manufacturing method thereof
US7291826B2 (en) 2004-08-13 2007-11-06 Stmicroelectronics S.A. Image sensor with a conjugate lens arrangement
EP1626442A2 (en) * 2004-08-13 2006-02-15 St Microelectronics S.A. Image sensor
EP1626442A3 (en) * 2004-08-13 2007-02-28 St Microelectronics S.A. Image sensor
US7656453B2 (en) 2004-09-24 2010-02-02 Panasonic Corporation Solid-state imaging device having characteristic color unit depending on color, manufacturing method thereof and camera
US7683388B2 (en) 2005-03-01 2010-03-23 Canon Kabushiki Kaisha Image pickup device with color filter arranged for each color on interlayer lenses
JP2008109153A (en) * 2007-12-18 2008-05-08 Sony Corp Solid-state image sensing device and its manufacturing method
US7986019B2 (en) 2008-03-10 2011-07-26 Panasonic Corporation Solid-state imaging device and its manufacturing method
US8217481B2 (en) 2008-04-11 2012-07-10 Sharp Kabushiki Kaisha Solid-state image capturing device and electronic information device
JP2010010331A (en) * 2008-06-26 2010-01-14 Sharp Corp Solid-state imaging device and method for manufacturing same
JP2009157397A (en) * 2009-04-13 2009-07-16 Sony Corp Method for manufacturing solid image pickup device and solid image pickup device
JP2012049257A (en) * 2010-08-25 2012-03-08 Toshiba Corp Solid state imaging device
US8711267B2 (en) 2010-08-25 2014-04-29 Kabushiki Kaisha Toshiba Solid-state imaging device
US9837463B2 (en) 2015-05-14 2017-12-05 Canon Kabushiki Kaisha Solid-state imaging device and method of manufacturing the same
WO2017131009A1 (en) 2016-01-29 2017-08-03 パナソニック・タワージャズセミコンダクター株式会社 Solid-state imaging device
US10734433B2 (en) 2016-01-29 2020-08-04 Towerjazz Panasonic Semiconductor Co., Ltd. Solid-state imaging device

Also Published As

Publication number Publication date
JP3809708B2 (en) 2006-08-16

Similar Documents

Publication Publication Date Title
JP3809708B2 (en) Solid-state imaging device and manufacturing method thereof
KR100540421B1 (en) Semiconductor device and method of producing the same
JP3620237B2 (en) Solid-state image sensor
JP4383959B2 (en) Photoelectric conversion device and manufacturing method thereof
KR100602882B1 (en) Semiconductor apparatus and method for fabricating the same
US6348361B1 (en) CMOS image sensor having enhanced photosensitivity and method for fabricating the same
JPH10284710A (en) Solid-state image-pickup element, manufacture therefor, and solid-state image-pickup device
JP2007181209A (en) Image sensor and manufacturing method thereof
KR100585137B1 (en) CMOS image sensor having high image light collection efficiency and method for manufacturing the same
KR20070087858A (en) Complementary metal oxide silicon image sensor and method of fabricating the same
JP3677970B2 (en) Solid-state imaging device and manufacturing method thereof
JP4448087B2 (en) CMOS image sensor and manufacturing method thereof
JP4153426B2 (en) Method for manufacturing an integrated image sensor
JP2007305683A (en) Solid state image sensing element and method for manufacturing the same
JP2005033074A (en) Solid state imaging device and its manufacturing method
JP2007201266A (en) Micro-lens, its process for fabrication, solid imaging element using the micro-lens, and its process for fabrication
KR100449951B1 (en) Image sensor and method of fabricating the same
JP2007188964A (en) Solid-state imaging device and its manufacturing method
KR20000044590A (en) Image sensor and fabrication method
JPH11284162A (en) Solid-state imaging element
JP2007208059A (en) Micro-lens, manufacturing method thereof, solid imaging element using same, and manufacturing method thereof
JP2007067212A (en) Solid-state imaging device and method of manufacturing same
JPH10326885A (en) Solid-state image-pickup element
JP4378108B2 (en) Photoelectric conversion device and manufacturing method thereof
JP3664997B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040428

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060515

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees