JPH1140787A - Manufacture of solid-state image pick-up element - Google Patents

Manufacture of solid-state image pick-up element

Info

Publication number
JPH1140787A
JPH1140787A JP18935397A JP18935397A JPH1140787A JP H1140787 A JPH1140787 A JP H1140787A JP 18935397 A JP18935397 A JP 18935397A JP 18935397 A JP18935397 A JP 18935397A JP H1140787 A JPH1140787 A JP H1140787A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
part
film
formed
lens
flattening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18935397A
Other languages
Japanese (ja)
Other versions
JP3809708B2 (en )
Inventor
Takeshi Matsuda
Yoshitetsu Toumiya
祥哲 東宮
健 松田
Original Assignee
Sony Corp
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a solid-state image pick-up device where an interlayer lens is formed in a desired shape to improve condensing efficiency. SOLUTION: A method is used to manufacture a solid-state image pick-up element 15 with a light reception part 2 that is formed at the surface-layer part of a substrate 1 for photoelectric conversion, a charge transfer part 3 for transferring a charge being read from the light reception part 2, and a transfer electrode 5 being provided via an insulation film 4 at a part nearly directly above the charge transfer part on the substrate 1. In this case, a first flattening film 8 is formed by covering the transfer electrode 5, and a transparent material is formed on the first flattening film 8 by the plasma CVD method. Further, a film 9 consisting of the transparent material is subjected to patterning, thus forming a transparent material into a lens 11 in layer in a convex lens shape that projects on a part directly above the light reception part 2. Then, the lens 11 in layer is covered, a second flattening film 12 is formed, and an on-chip lens 14 is formed directly above the light reception part 2 on the second flattening film 12.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、集光効率を高めた固体撮像素子の製造方法に関する。 The present invention relates to a method for producing a solid-state imaging device with increased light collection efficiency.

【0002】 [0002]

【従来の技術】固体撮像素子の微細化に伴い、特に1/ With miniaturization of the Related Art Solid state imaging device, in particular 1 /
4”38万画素より小さいデバイスなどではその感度向上が必須となってきている。このような背景のもとに従来では、カラーフィルタ上にオンチップレンズを設け、 4 "380,000 its sensitivity improvement by such pixels smaller devices have become indispensable. In conventionally Against this background, the on-chip lens provided on the color filter,
集光効率を高めるといった工夫がなされている。 Make such contrivance increase the light collection efficiency have been made.

【0003】ところが、近年においてはデバイスの小型化、高感度化に伴ってさらなる集光効率の向上が望まれているものの、前述したオンチップレンズによる集光効果はほぼ限界に近づいており、オンチップレンズとは別の新たな技術の開発が望まれている。 [0003] However, the miniaturization of devices in recent years, although further improvement of light collection efficiency with the high sensitivity is desired, light condensing effect by the on-chip lens described above is approaching substantially limit on development of another new technology and chip lens is desired.

【0004】このような要望に対応する技術として、オンチップレンズと併用する状態で層内レンズを設ける技術が一部に提案されている。 As a technique to cope with such demands, a technique of providing a layer lens in a state in combination with the on-chip lens is proposed in a part. この層内レンズは、光電変換をなす受光部の直上において層間膜中に形成されるレンズであり、オンチップレンズと同様にこの層内レンズに入射した光を該層内レンズの上面側または下面側の界面で屈折させ、受光部に導くものである。 This layer lens is a lens formed in the interlayer film right above the light receiving portion constituting the photoelectric conversion, the upper surface or lower surface of said layer in the lens incident light similarly to the on-chip lens into this layer lens it is refracted at the interface side, and guides the light receiving portion. したがって、 Therefore,
このような層間レンズを前記オンチップレンズと併用することにより、オンチップレンズで集光されて入射した光を再度層内レンズで集光することができ、これにより固体撮像素子全体としての集光効率をより高めることができるのである。 The combined use of such an interlayer lens and the on-chip lens, it is possible to condense light incident is condensed again layer lens in the on-chip lens, thereby condensing the solid imaging device as a whole efficiency it is possible to increase the.

【0005】 [0005]

【発明が解決しようとする課題】ところが、従来提案されている層内レンズはほとんどが凹型のレンズであり、 [SUMMARY OF THE INVENTION However, the intralayer lens proposed conventionally are mostly concave lens,
これを形成する場合、遮光膜の上にBPSG(ホウ素リンシリケートガラス)等のリフロー形状をもつ膜を形成し、転送電極間、すなわち受光部の直上に形成されたくぼみの中に高屈折率材を埋め込み、この埋め込んだ高屈折率材を層内レンズとする、といったプロセスを採るのが普通である。 When forming this film is formed having a reflow shape, such as BPSG (boron phosphorus silicate glass) is formed on the light shielding film, between the transfer electrodes, i.e. the high refractive index material in a recess formed directly above the light receiving portion embedded, the embedded high refractive index material and layer lens, it is common to adopt processes such. しかして、このプロセスでは層内レンズの形状がリフロー膜の形状で決まってしまうことから、 Thus, since the shape of the inner lens in this process it will determined by the shape of the reflow layer,
所望の形状、すなわち集光に最適な形状を得るのが困難であり、したがって層内レンズを設けたとはいえ未だ十分に高い集光効率を得るのが困難である。 Desired shape, i.e. it is difficult to obtain an optimum shape in the condenser, thus it is difficult to obtain a still sufficiently high collection efficiency Nevertheless provided layer lens.

【0006】本発明は前記事情に鑑みてなされたもので、その目的とするところは、集光効率向上を図るべく、層間レンズを所望する形状に形成し得るようにした固体撮像装置の製造方法を提供することにある。 [0006] The present invention has been made in view of the above circumstances, it is an object in order to improve light collection efficiency, a manufacturing method of a solid-state imaging apparatus that can form a desired shape of the interlayer lens It is to provide a.

【0007】 [0007]

【課題を解決するための手段】本発明の固体撮像装置では、基体表層部に形成されて光電変換をなす受光部と、 In the solid-state imaging device of the present invention According to an aspect of the light-receiving portion constituting a photoelectric conversion is formed on the substrate surface portion,
該受光部から読み出された電荷を転送する電荷転送部と、前記基体上の、前記電荷転送部の略直上位置に絶縁膜を介して設けられた転送電極とを備えた固体撮像素子を製造するに際して、前記転送電極を覆って第1平坦化膜を形成し、次に前記第1平坦化膜上にプラズマCVD Producing a charge transfer unit for transferring charges read from the light receiving portion, on said substrate, a solid-state imaging device and a transfer electrode provided via an insulating film at substantially right above the position of the charge transfer section plasma CVD when, in the cover the transfer electrodes to form a first planarizing film, then the first planarizing film is
法によって透明材料を成膜し、次いで前記透明材料からなる膜をパターニングして該透明材料を、前記受光部の直上において上に凸となる凸レンズ状の層内レンズとし、次いで前記層内レンズを覆って第2平坦化膜を形成し、その後前記第2平坦化膜上における前記受光部の直上にオンチップレンズを形成することを前記課題の解決手段とした。 To form a transparent material by law, then the transparent material by patterning the film made of the transparent material, a convex become convex-shaped layer lens on right above the light receiving portion, and then the layer lens covering the second planarizing film is formed, and the forming the on-chip lens directly on the light receiving portion in the subsequent second planarizing film on the solutions of the problems.

【0008】この固体撮像装置の製造方法によれば、第1平坦化膜上にプラズマCVD法で透明材料を成膜し、 [0008] According to the manufacturing method of the solid-state imaging device, to form a transparent material by a plasma CVD method on the first planarizing film,
さらに得られた透明材料膜をパターニングすることによって層内レンズを形成するので、下地である第1平坦化膜の表面がもちろん平坦であることによってこの下地に依存することなく層内レンズを所望形状に形成することが可能になり、また、透明材料についてもプラズマCV Since forming layer lens by patterning the further resulting transparent material film, the desired shape layer lens without depending on the underlying by the surface of the first planarizing film as a base is of course flat it is possible to form the, also, the transparent material also plasma CV
D法で堆積して成膜することから種々の材料を選択することが可能になって屈折率を任意に設定することが可能になる。 Deposited with D method makes it possible to arbitrarily set the refractive index is possible to select various materials since the film formation.

【0009】なお、透明材料からなる膜をパターニングして層内レンズを形成するにあたっては、透明材料膜上にレジスト層を形成し、続いて該レジスト層を上に凸となる凸レンズ形状にパターニングし、その後得られた凸レンズ形状のパターンをマスクとして、該レジストと前記透明材料との選択比がほぼ1となる条件で前記透明材料膜をエッチングし、層内レンズを形成するのが好ましく、このように選択比がほぼ1となる条件で前記透明材料膜をエッチングすることにより、得られる層内レンズをレジストのパターンとほぼ同一の形状にすることができ、したがって層内レンズの形状を所望する形状に形成し易くなる。 [0009] Incidentally, when forming a layer lens by patterning the formed of a transparent material film, a resist layer is formed on the transparent material film, followed by patterning in a convex lens shape which is convex upward the resist layer , a pattern of subsequently obtained convex lens shape as a mask, etching the transparent material layer under the condition that selectivity between the resist and the transparent material is substantially 1, is preferable to form the inner-layer lens, such shape selectivity is by etching the transparent material film approximately 1 become conditions, the intralayer lens obtained can be made substantially the same shape as the resist pattern, thus the desired shape of the inner-layer lens It tends to form on.

【0010】 [0010]

【発明の実施の形態】以下、本発明を詳しく説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention is described in detail.
図1(a)〜(c)、図2(a)〜(c)は本発明の固体撮像素子の製造方法の一実施形態例を説明するための図であり、これらの図において符号1はシリコン基板(基体)である。 Figure 1 (a) ~ (c), are diagrams for explaining an embodiment of a method for manufacturing a solid-state imaging device of FIG. 2 (a) ~ (c) is present invention, reference numeral 1 in these figures it is a silicon substrate (substrate). この例では、図1(a)に示すように、従来と同様にしてシリコン基板1の表層部に受光部2、電荷転送部3、チャネルストップ(図示略)、読み出し部(図示略)をそれぞれ形成するとともに、シリコン基板1表面に絶縁膜4を形成し、さらに該絶縁膜4上に転送電極5、層間膜絶縁6、遮光膜7を形成する。 In this example, as shown in FIG. 1 (a), the light receiving section 2 in the surface layer of the silicon substrate 1 in the same manner as the conventional charge transfer portion 3, a channel stop (not shown), reading section (not shown), respectively and forming, on the surface of the silicon substrate 1 to form an insulating film 4, further transfer electrodes 5 on the insulating film 4, interlayer film insulating 6, to form a light shielding film 7.

【0011】具体的には、まずシリコン基板1中にイオン注入等によって不純物を注入しさらにこれを拡散させ、電荷転送部3、チャネルストップ(図示略)、読み出し部(図示略)をそれぞれ形成する。 [0011] Specifically, impurity implantation and further which is diffused into first silicon substrate 1 by ion implantation or the like, a charge transfer portion 3, a channel stop (not shown), to form reading unit (not shown), respectively . 次に、熱酸化法やCVD法によってシリコン基板1表面にSiO 2からなる絶縁膜4を形成する。 Next, an insulating film 4 made of SiO 2 on the surface of the silicon substrate 1 by thermal oxidation or CVD. なお、この絶縁膜4については、SiO 2からなる構造に代えてONO(SiO 2 Note that the insulating film 4, instead of the structure consisting of SiO 2 ONO (SiO 2 -
SiN−SiO 2 )構造としてもよい。 SiN-SiO 2) may have a structure.

【0012】次に、CVD法によりポリシリコンを成膜し、さらにこのポリシリコン膜(図示略)を公知のレジスト技術、リソグラフィー技術、エッチング技術によりパターニングし、転送電極5を形成する。 [0012] Next, polysilicon is deposited by a CVD method, further the polysilicon film (not shown) known resist technology, and patterning lithography technique, etching technique, to form the transfer electrode 5. 続いて、形成した転送電極5をマスクにしてイオン注入等によって不純物を注入しさらにこれを拡散させ、受光部2を自己整合的に形成する。 Subsequently, the transfer electrodes 5 formed as a mask by diffusing it further implanting impurity by ion implantation or the like, to form the light receiving portion 2 in a self-aligned manner. なお、この受光部2の形成については、前記の電荷転送部3、チャネルストップ、読み出し部の形成時にこれらの形成に前後してあるいは同時に形成してもよい。 Incidentally, the formation of the light receiving portion 2, the charge transfer portion 3, a channel stop, during the formation of the reading portion may be formed before or after or simultaneously to the formation of these.

【0013】次いで、CVD法等により転送電極5を覆った状態にSiO 2等からなる層間膜絶縁6を形成する。 [0013] Subsequently, an interlayer film dielectric 6 consisting of SiO 2 or the like in a state of covering the transfer electrodes 5 by CVD or the like. なお、この転送電極4の形成については、転送電極構造が二層である場合には前記工程を2回繰り返し、三層以上である場合にはその層数分だけ繰り返す。 Incidentally, the formation of the transfer electrodes 4, when the transfer electrode structure is two layers twice the step, when it is more than three layers are repeated by the layer a few minutes.

【0014】次いで、アルミニウムやアルミニウム合金、あるいはTiやWなどの高融点金属をスパッタ法によって単層あるいは複層成膜する。 [0014] Next, a single-layer or multilayer film formation by sputtering a refractory metal such as aluminum or an aluminum alloy or Ti or W,. そして、リソグラフィー技術、エッチング技術によって得られた膜に配線用の開口(図示略)や受光部2の直上位置の一部開口など必要なパターニングを施すことにより、遮光膜7およびその開口部7aを形成する。 Then, lithography, by subjecting the film obtained by etching and patterning required and some openings of the opening immediately above (not shown) and the light receiving portion 2 position of the wiring, the light shielding film 7 and the opening 7a Form. なお、この遮光膜7の材料については、この後に形成する第1平坦化膜のリフロー条件に応じて選択される。 Note that the material of the light shielding film 7 is selected depending on the reflow condition of the first planarizing film to be formed later. すなわち、リフロー条件として高温加熱が必要な場合には、遮光膜7の材料としてT That is, when a high temperature heating as reflow conditions is required, T as the material of the light shielding film 7
iやWなどの高融点金属が用いられ、高温加熱が必要でない場合にはアルミニウム等が用いられる。 Refractory metals such as i and W are used, aluminum or the like is used and when not, requires a high temperature heat.

【0015】次いで、BPSG(ホウ素リンシリケートガラス)膜あるいはHDP CVD膜等を形成し、さらにこれにリフロー処理等を施すことによって平坦化し、 [0015] Then, BPSG was formed (boron phosphorus silicate glass) film or HDP CVD film or the like, flattened by further applying it to reflow treatment or the like,
図1(b)に示すように第1平坦化膜8を形成する。 As shown in FIG. 1 (b) to form the first planarizing film 8. なお、この例においては、第1平坦化膜8を屈折率が1. Incidentally, in this example, the first planarizing film 8 is a refractive index of 1.
47のBPSG膜から形成した。 It formed from 47 BPSG film. したがって、このBP Therefore, the BP
SG膜のリフロー処理には高温加熱が必要でないため、 Because the reflow process SG film do not require high temperature heating,
前記遮光膜7についてはその材料としてアルミニウムを用いている。 Aluminum is used as the material for the light shielding film 7.

【0016】このようにして第1平坦化膜8を形成したら周辺部の配線(図示略)を形成し、その後、該第1平坦化膜8上に後述する層内レンズの材料となる透明材料をプラズマCVD法によって成膜し、図1(c)に示すように透明材料膜9を形成する。 The transparent material in this manner was first to form a wiring of the peripheral portion After forming the planarization layer 8 (not shown) and, subsequently, as a material for the layer lens described later on the first planarizing film 8 It was formed by a plasma CVD method to form a transparent material film 9, as shown in Figure 1 (c). ここで、透明材料膜9 Here, the transparent material film 9
の形成については、半導体プロセスなどにおいて一般的に用いられるプラズマCVD法で行うことから、屈折率の異なる種々の材料を用いて成膜するとができる。 For the formation may from doing by the general plasma CVD method used in a semiconductor process, when deposited using a variety of materials having different refractive indices.

【0017】換言すれば、前記第1平坦化膜8の屈折率や後述する第2平坦化膜の屈折率との差を考慮して、受光部2への集光効率を高めるうえでこれら第1平坦化膜8あるいは第2平坦化膜との間で最適な屈折率差が得られるような屈折率の材料を選択することができる。 [0017] In other words, in consideration of the difference between the refractive index of the second planarizing film for refractive index and below the first planarizing film 8, these first in increasing the condensing efficiency of the light receiving section 2 1 can be optimal refractive index difference between the planarization layer 8 or the second planarizing film is to select a material having a refractive index as obtained. 例えば、屈折率を1.9〜2.0としたい場合にはP−SI For example, if you want a refractive index as 1.9 to 2.0 is P-SI
N膜(プラズマ窒化膜)を選択し、屈折率を1.5〜 Select N membrane (plasma nitride layer), 1.5 refractive index
1.9としたい場合にはP−SiON膜(プラズマ酸化窒化膜)を選択すればよい。 If you want to 1.9 may be selected P-SiON film (plasma oxynitride film). また、この透明材料膜9については、形成する層内レンズの高さに合わせてその膜厚を決めるのがプロセス上無駄がなく有利であり、具体的には0.5〜2.0μm程度とするのが好ましい。 Further, the transparent material film 9, to determine its thickness is preferably not wasted on the process in accordance with the height of the layer lens forming, specifically and about 0.5~2.0μm it is preferable to. なお、この実施形態例においては、屈折率が1.9〜2. Incidentally, in this embodiment, the refractive index from 1.9 to 2.
0となるよう、P−SINを成膜することによって透明材料膜9を形成した。 0 so as to form a transparent material layer 9 by forming the P-SIN.

【0018】次いで、この透明材料膜9の上にレジストを塗布してレジスト層を形成し、さらにこれをパターニングして図2(a)に示すように上に凸となる凸レンズ形状のレジストパターン10を形成する。 [0018] Then, the resist pattern 10 of a convex lens shape which is convex upward so as resist is applied to form a resist layer, further illustrated in and patterned FIGS. 2 (a) on top of the transparent material film 9 to form. このレジストパターン10の形成にあたっては、まず、エッチングによりレジスト層を各受光部2毎に平面視した状態で矩形状もしくは正方形状に分割する。 The resist In forming the pattern 10 first divides a rectangular or square shape of the resist layer by etching in plan view for each light receiving portion 2. そして、このように分割したレジスト層を140℃〜180℃程度の温度でリフロー処理し、各レジスト層を一旦溶融させた後固化させて該レジスト層を上に凸の球面状となる凸レンズ形状にパターニングし、レジストパターン10を得る。 And thus the divided resist layer reflow treatment at a temperature of about 140 ° C. to 180 ° C., in a convex lens shape solidified on a convex spherical shape on the resist layer after once melted the respective resist layer patterning, a resist pattern 10. なお、レジストの種類については特に限定されないものの、後述するように透明材料膜9との間でほぼ1の選択比がとれる材質のものがより好適に用いられる。 Incidentally, although there is no particular limitation on the kind of the resist, it is more suitably used as the material almost 1 selection ratio can take between the transparent material film 9 as will be described later.

【0019】このようにしてレジストパターン10を形成したら、これをマスクにして前記透明材料膜9をエッチングする。 [0019] After this manner, a resist pattern 10 is formed by, for etching the transparent material film 9 by this to a mask. このとき、エッチング条件については、該レジストパターン10と透明材料膜9との選択比がほぼ1となる条件で行うのが好ましく、具体的には、平行平板RIEにより、反応ガスとしてSF 6 /O 2 (=40 At this time, the etching conditions, the it is preferred selectivity of the resist pattern 10 and the transparent material film 9 is conducted at approximately 1 become conditions, specifically, the parallel-plate RIE, SF 6 / O as reactive gases 2 (= 40
/40ccm)を用い、圧力35Pa、RFパワー45 / 40ccm) using a pressure 35 Pa, RF power 45
0Wで行う。 It carried out at 0W. このように選択比がほぼ1となる条件で透明材料膜9のエッチングを行うと、図2(b)に示すようにレジストパターン10とほぼ同一形状の層内レンズ11を形成することができる。 With such selection ratio for etching the transparent material film 9 at approximately 1 become conditions, it is possible to form the inner-layer lens 11 having substantially the same shape as the resist pattern 10 as shown in FIG. 2 (b).

【0020】次いで、図2(c)に示すように得られた層内レンズ11を覆って第1平坦化膜8上に第2平坦化膜12を形成する。 [0020] Next, a second planarizing film 12 on the first planarizing film 8 covering layer lens 11 obtained as shown in Figure 2 (c). この第2平坦化膜12については、 This second planarization film 12,
アクリル系樹脂(屈折率;約1.60)やポリイミド系樹脂(屈折率;約1.80)などが用いられるが、特に層内レンズ11との間の屈折率差を考慮して、集光効率の点で有利となるように材料が選択される。 Acrylic resin (refractive index: about 1.60), polyimide resin (refractive index: about 1.80) is used, such as in particular taking into account the refractive index difference between the inner lens 11, the condensing material is selected to be advantageous in terms of efficiency. その後、第2平坦化膜12の上に従来と同様にしてカラーフィルタ13を形成し、さらにこのカラーフィルタ13の上にポリスチレン(屈折率;約1.60)等からなるオンチップレンズ14を従来と同様にして形成し、これにより固体撮像素子15を得る。 Thereafter, in the same manner as conventional on the second planarizing film 12 to form a color filter 13, further polystyrene (refractive index: about 1.60) over the color filter 13 and the on-chip lens 14 consisting of such as a conventional It formed in the same manner as in, thereby obtaining a solid-state imaging device 15.

【0021】このような固体撮像素子15の製造方法にあっては、第1平坦化膜8上にプラズマCVD法で透明材料膜9を形成し、これをパターニングすることによって層内レンズ11を形成するので、下地である第1平坦化膜8の表面がもちろん平坦であることによってこの下地に依存することなく層内レンズ11を所望形状に形成することができる。 [0021] In the manufacturing method of the solid-state imaging device 15, a transparent material film 9 is formed by plasma CVD on the first planarizing film 8, forming an interlayer lens 11 by patterning the since, it is possible by the surface of the first planarizing film 8 as a base is of course flat formed into the desired shape layer lens 11 without depending on the base. また、透明材料についても、プラズマCVD法で堆積して成膜することから種々の材料を選択することができ、屈折率を任意に設定することができるなどその材料選択性の自由度や設計自由度を高めることができる。 As for the transparent material, is deposited by a plasma CVD method can be selected from various materials from forming a film, freedom freedom and design of the material selectivity such a refractive index can be arbitrarily set degree can be increased.

【0022】また、透明材料膜9をパターニングして層内レンズ11を形成する際、透明材料膜9上に凸レンズ形状のレジストパターン10を形成し、これをマスクにして、該レジストと前記透明材料との選択比がほぼ1となる条件で透明材料膜9をエッチングしているので、得られる層内レンズ11をレジストパターン10とほぼ同一の形状にすることができ、したがって層内レンズ11 Further, when forming the interlayer lens 11 by patterning a transparent material film 9, a resist pattern 10 of the convex lens shape on the transparent material film 9, which was the mask, the with the resist transparent material the selectivity of a is etched transparent material film 9 at approximately 1 become conditions, it is possible to layer lens 11 obtained substantially the same shape as the resist pattern 10, thus the inner-layer lens 11
の形状を所望する形状に容易に形成することができる。 The shape can be easily formed into a desired shape.

【0023】 [0023]

【発明の効果】以上説明したように本発明の固体撮像素子の製造方法は、第1平坦化膜上にプラズマCVD法で透明材料を成膜し、さらに得られた透明材料膜をパターニングすることによって層内レンズを形成する方法であるから、下地である第1平坦化膜の表面が平坦であることによってこの下地に依存することなく層内レンズを所望形状に形成することができる。 Solid-state imaging device manufacturing method of the present invention as described above, according to the present invention may be a transparent material by a plasma CVD method on the first planarizing film is formed, patterning the further resulting clear material film since a method of forming a layer lens, it is possible that the surface of the first planarizing film as an underlying forming into a desired shape layer lens without depending on the underlying by flat. また、透明材料についても、プラズマCVD法で堆積して成膜することから種々の材料を選択することができ、屈折率を任意に設定することができるなどその材料選択性の自由度や設計自由度を高めることができる。 As for the transparent material, is deposited by a plasma CVD method can be selected from various materials from forming a film, freedom freedom and design of the material selectivity such a refractive index can be arbitrarily set degree can be increased.

【0024】また、透明材料膜をパターニングして層内レンズを形成する際、透明材料膜上に凸レンズ形状のレジストパターンを形成し、これをマスクにして、該レジストと前記透明材料との選択比がほぼ1となる条件で透明材料膜をエッチングすれば、得られる層内レンズをレジストパターンとほぼ同一の形状にすることができ、したがって層内レンズの形状を所望する形状に容易に形成することができる。 Further, by patterning the transparent material film when forming the layer lens, to form a resist pattern of the convex lens shape on the transparent material film, which as a mask, selectivity between the resist and the transparent material if etching the transparent material film under the condition that the approximately 1, the resulting layer in the lens can be a made substantially the same shape as the resist pattern, thus easily be shaped to a desired shape of the inner-layer lens can.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】(a)〜(c)は本発明の固体撮像装置の製造方法の一実施形態例を工程順に説明するための要部側断面図である。 [1] (a) ~ (c) is a main portion side sectional view for explaining an embodiment in the order of steps of the method for manufacturing the solid-state imaging device of the present invention.

【図2】(a)〜(c)は本発明の固体撮像装置の製造方法の一実施形態例を説明するための図であり、図1 Figure 2 (a) ~ (c) is a diagram for explaining an embodiment of a method for manufacturing a solid-state imaging device of the present invention, FIG. 1
(c)に示した工程に続く工程を工程順に示す要部側断面図である。 It is a side cross-sectional views sequentially showing the steps of the process that follows the step shown in (c).

【符号の説明】 DESCRIPTION OF SYMBOLS

1…シリコン基板(基体)、2…受光部、3…電荷転送部、4…絶縁膜、5…転送電極、8…第1平坦化膜、9 1 ... silicon substrate (base), 2 ... light-receiving portion, 3 ... charge transfer section, 4 ... insulation film, 5 ... transfer electrodes 8 ... first planarizing film, 9
…透明材料膜、10…レジストパターン、11…層内レンズ、12…第2平坦化膜、14…オンチップレンズ、 ... transparent material film, 10 ... resist pattern, 11 ... inner-layer lens, 12 ... second planarization film, 14 ... on-chip lens,
15…固体撮像素子 15 ... solid-state imaging device

Claims (2)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 基体表層部に形成されて光電変換をなす受光部と、該受光部から読み出された電荷を転送する電荷転送部と、前記基体上の、前記電荷転送部の略直上位置に絶縁膜を介して設けられた転送電極とを備えた固体撮像素子の製造方法において、 前記転送電極を覆って第1平坦化膜を形成する工程と、 前記第1平坦化膜上にプラズマCVD法によって透明材料を成膜する工程と、 前記透明材料からなる膜をパターニングして該透明材料を、前記受光部の直上において上に凸となる凸レンズ状の層内レンズとする工程と、 前記層内レンズを覆って第2平坦化膜を形成する工程と、 前記第2平坦化膜上における前記受光部の直上にオンチップレンズを形成する工程と、を備えたことを特徴とする固体撮像素子の製造方法。 And 1. A light receiving portion is formed on a substrate surface layer portion constituting the photoelectric conversion, a charge transfer unit for transferring charges read from the light receiving portion, on said substrate, substantially directly above the position of the charge transfer section in the method for manufacturing the solid-state imaging device having a transfer electrode provided via an insulating film, forming a first planarizing film covering the transfer electrodes, the plasma CVD in the first planarizing film a step of forming a transparent material by law, the steps of the transparent material by patterning the film made of the transparent material, and a convex lens-like layer lens which is convex on the right above the light receiving portion, said layer forming a second planarizing film covers the inner lens, the solid-state imaging device characterized by comprising a step of forming an on-chip lens directly on the light receiving portion in the second planarizing film the method of production.
  2. 【請求項2】 前記透明材料からなる膜をパターニングして層内レンズを形成する工程が、前記透明材料膜上にレジスト層を形成する工程と、該レジスト層を上に凸となる凸レンズ形状にパターニングする工程と、得られた凸レンズ形状のパターンをマスクとして、該レジストと前記透明材料との選択比がほぼ1となる条件で前記透明材料膜をエッチングし、層内レンズを形成する工程と、 2. A process for forming a layer lens by patterning a film made of the transparent material, forming a resist layer on the transparent material film, the convex lens shape which is convex upward the resist layer a step of patterning a mask pattern of the obtained convex lens shape, a step of selectivity between the resist and the transparent material by etching the transparent material film approximately 1 become conditions, to form a layer lens,
    からなることを特徴とする請求項1記載の固体撮像素子の製造方法。 Method for manufacturing a solid-state imaging device according to claim 1, characterized in that it consists of.
JP18935397A 1997-07-15 1997-07-15 The solid-state imaging device and manufacturing method thereof Expired - Fee Related JP3809708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18935397A JP3809708B2 (en) 1997-07-15 1997-07-15 The solid-state imaging device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18935397A JP3809708B2 (en) 1997-07-15 1997-07-15 The solid-state imaging device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH1140787A true true JPH1140787A (en) 1999-02-12
JP3809708B2 JP3809708B2 (en) 2006-08-16

Family

ID=16239914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18935397A Expired - Fee Related JP3809708B2 (en) 1997-07-15 1997-07-15 The solid-state imaging device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3809708B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033467A (en) * 2000-07-17 2002-01-31 Hamamatsu Photonics Kk Semiconductor device
GB2387967A (en) * 2002-02-05 2003-10-29 Sharp Kk Semiconductor device intralayer lens
US6753557B2 (en) 2002-01-31 2004-06-22 Sharp Kabushiki Kaisha Semiconductor device having a condenser lens for use in light receiving device or light emitting device
US6784014B2 (en) * 2000-08-22 2004-08-31 Sony Corporation Solid-state imaging device
JP2004363356A (en) * 2003-06-05 2004-12-24 Matsushita Electric Ind Co Ltd Solid state imaging device and method of manufacturing the same
US6903391B2 (en) 2003-09-10 2005-06-07 Fuji Photo Film Co., Ltd. Solid state image pickup device
JP2006019588A (en) * 2004-07-02 2006-01-19 Sony Corp Solid-state imaging apparatus and its manufacturing method
EP1626442A2 (en) * 2004-08-13 2006-02-15 St Microelectronics S.A. Image sensor
US7019373B2 (en) 2003-05-28 2006-03-28 Canon Kabushiki Kaisha Photoelectric conversion device and manufacturing method thereof
US7166484B2 (en) * 2003-12-11 2007-01-23 Magnachip Semiconductor, Ltd. Method for fabricating image sensor with inorganic microlens
JP2008109153A (en) * 2007-12-18 2008-05-08 Sony Corp Solid-state image sensing device and its manufacturing method
US7439554B2 (en) 2003-12-05 2008-10-21 Sharp Kabushiki Kaisha Semiconductor device and method for fabricating the same
US7453130B2 (en) 2003-02-19 2008-11-18 Sharp Kabushiki Kaisha Semiconductor apparatus and method for fabricating the same
US7470965B2 (en) * 2003-09-11 2008-12-30 Panasonic Corporation Solid-state imaging device
US7474350B2 (en) 2003-09-08 2009-01-06 Sanyo Electric Co., Ltd. Solid state image pickup device comprising lenses for condensing light on photodetection parts
JP2009157397A (en) * 2009-04-13 2009-07-16 Sony Corp Method for manufacturing solid image pickup device and solid image pickup device
JP2009272650A (en) * 2003-05-28 2009-11-19 Canon Inc Photoelectric conversion device
JP2010010331A (en) * 2008-06-26 2010-01-14 Sharp Corp Solid-state imaging device and method for manufacturing same
US7656453B2 (en) 2004-09-24 2010-02-02 Panasonic Corporation Solid-state imaging device having characteristic color unit depending on color, manufacturing method thereof and camera
US7683388B2 (en) 2005-03-01 2010-03-23 Canon Kabushiki Kaisha Image pickup device with color filter arranged for each color on interlayer lenses
US7986019B2 (en) 2008-03-10 2011-07-26 Panasonic Corporation Solid-state imaging device and its manufacturing method
JP2012049257A (en) * 2010-08-25 2012-03-08 Toshiba Corp Solid state imaging device
US8217481B2 (en) 2008-04-11 2012-07-10 Sharp Kabushiki Kaisha Solid-state image capturing device and electronic information device
US9837463B2 (en) 2015-05-14 2017-12-05 Canon Kabushiki Kaisha Solid-state imaging device and method of manufacturing the same

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033467A (en) * 2000-07-17 2002-01-31 Hamamatsu Photonics Kk Semiconductor device
US7053427B2 (en) 2000-08-22 2006-05-30 Kouichi Tanigawa Solid-state imaging device
US6784014B2 (en) * 2000-08-22 2004-08-31 Sony Corporation Solid-state imaging device
US6753557B2 (en) 2002-01-31 2004-06-22 Sharp Kabushiki Kaisha Semiconductor device having a condenser lens for use in light receiving device or light emitting device
GB2387967A (en) * 2002-02-05 2003-10-29 Sharp Kk Semiconductor device intralayer lens
GB2387967B (en) * 2002-02-05 2004-07-07 Sharp Kk Semiconductor device and method of manufacturing the same
US6903395B2 (en) 2002-02-05 2005-06-07 Sharp Kabushiki Kaisha Semiconductor device including interlayer lens
US7453130B2 (en) 2003-02-19 2008-11-18 Sharp Kabushiki Kaisha Semiconductor apparatus and method for fabricating the same
US8299557B2 (en) 2003-05-28 2012-10-30 Canon Kabushiki Kaisha Photoelectric conversion device and manufacturing method
US8866249B2 (en) 2003-05-28 2014-10-21 Canon Kabushiki Kaisha Photoelectric conversion device and manufacturing method thereof
US7019373B2 (en) 2003-05-28 2006-03-28 Canon Kabushiki Kaisha Photoelectric conversion device and manufacturing method thereof
US7420236B2 (en) 2003-05-28 2008-09-02 Canon Kabushiki Kaisha Photoelectric conversion device and manufacturing method thereof
JP2009272650A (en) * 2003-05-28 2009-11-19 Canon Inc Photoelectric conversion device
US8581358B2 (en) 2003-05-28 2013-11-12 Canon Kabushiki Kaisha Photoelectric conversion device and manufacturing method
US7709918B2 (en) 2003-05-28 2010-05-04 Canon Kabushiki Kaisha Photoelectric conversion device and manufacturing method thereof
JP2004363356A (en) * 2003-06-05 2004-12-24 Matsushita Electric Ind Co Ltd Solid state imaging device and method of manufacturing the same
US7474350B2 (en) 2003-09-08 2009-01-06 Sanyo Electric Co., Ltd. Solid state image pickup device comprising lenses for condensing light on photodetection parts
US6903391B2 (en) 2003-09-10 2005-06-07 Fuji Photo Film Co., Ltd. Solid state image pickup device
US7470965B2 (en) * 2003-09-11 2008-12-30 Panasonic Corporation Solid-state imaging device
US7439554B2 (en) 2003-12-05 2008-10-21 Sharp Kabushiki Kaisha Semiconductor device and method for fabricating the same
US7166484B2 (en) * 2003-12-11 2007-01-23 Magnachip Semiconductor, Ltd. Method for fabricating image sensor with inorganic microlens
JP4595405B2 (en) * 2004-07-02 2010-12-08 ソニー株式会社 A solid-state imaging device and manufacturing method thereof
JP2006019588A (en) * 2004-07-02 2006-01-19 Sony Corp Solid-state imaging apparatus and its manufacturing method
EP1626442A2 (en) * 2004-08-13 2006-02-15 St Microelectronics S.A. Image sensor
US7291826B2 (en) 2004-08-13 2007-11-06 Stmicroelectronics S.A. Image sensor with a conjugate lens arrangement
EP1626442A3 (en) * 2004-08-13 2007-02-28 St Microelectronics S.A. Image sensor
US7656453B2 (en) 2004-09-24 2010-02-02 Panasonic Corporation Solid-state imaging device having characteristic color unit depending on color, manufacturing method thereof and camera
US7683388B2 (en) 2005-03-01 2010-03-23 Canon Kabushiki Kaisha Image pickup device with color filter arranged for each color on interlayer lenses
JP2008109153A (en) * 2007-12-18 2008-05-08 Sony Corp Solid-state image sensing device and its manufacturing method
US7986019B2 (en) 2008-03-10 2011-07-26 Panasonic Corporation Solid-state imaging device and its manufacturing method
US8217481B2 (en) 2008-04-11 2012-07-10 Sharp Kabushiki Kaisha Solid-state image capturing device and electronic information device
JP2010010331A (en) * 2008-06-26 2010-01-14 Sharp Corp Solid-state imaging device and method for manufacturing same
JP2009157397A (en) * 2009-04-13 2009-07-16 Sony Corp Method for manufacturing solid image pickup device and solid image pickup device
JP2012049257A (en) * 2010-08-25 2012-03-08 Toshiba Corp Solid state imaging device
US8711267B2 (en) 2010-08-25 2014-04-29 Kabushiki Kaisha Toshiba Solid-state imaging device
US9837463B2 (en) 2015-05-14 2017-12-05 Canon Kabushiki Kaisha Solid-state imaging device and method of manufacturing the same

Also Published As

Publication number Publication date Type
JP3809708B2 (en) 2006-08-16 grant

Similar Documents

Publication Publication Date Title
US5731236A (en) Process to integrate a self-aligned contact structure, with a capacitor structure
US20060038209A1 (en) Photoelectric conversion device and manufacturing method thereof
US6614479B1 (en) Solid-state image pickup device in-layer lens with antireflection film with intermediate index of refraction
US20060231898A1 (en) CMOS image sensor and method of manufacturing the same
US20050104148A1 (en) Solid-state imaging device and method of manufacturing solid-state imaging device background of the invention
US20060138577A1 (en) Photoelectric Conversion Device and Method for Producing Photoelectric Conversion Device
US6255640B1 (en) Solid-state image sensing device and method for manufacturing solid-state image sensing device
US7029944B1 (en) Methods of forming a microlens array over a substrate employing a CMP stop
US20080090323A1 (en) Image sensor and method of fabricating the same
US20060220025A1 (en) Image sensor and method of manufacturing the same
US20020058350A1 (en) Solid state image sensor and method of manufacturing the same
US20060011953A1 (en) Solid state imaging device and method of manufacturing the same
US20070001252A1 (en) Solid-state image sensing device equipped with inner lens
US7453130B2 (en) Semiconductor apparatus and method for fabricating the same
JP2001267544A (en) Solid-state image pickup device and manufacturing method
JP2009088415A (en) Solid-state imaging device, method of manufacturing the same, and camera
JP2004221527A (en) Imaging element and its manufacturing method
KR20040065963A (en) Image device and method of manufacturing the same
JP2003224249A (en) Semiconductor image pick-up device and its manufacturing method
JP2002246579A (en) Solid-state image pickup element and manufacturing method thereof
US20100084728A1 (en) Solid-state imaging device and method for manufacturing the same
US20050045928A1 (en) Solid-state imaging device and manufacturing method thereof
US20060145222A1 (en) CMOS image sensor and method for manufacturing the same
US5384231A (en) Fabricating lens array structures for imaging devices
JP2002151670A (en) Solid-state image pickup device and manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060515

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees