JP3677970B2 - Solid-state imaging device and manufacturing method thereof - Google Patents

Solid-state imaging device and manufacturing method thereof Download PDF

Info

Publication number
JP3677970B2
JP3677970B2 JP28325697A JP28325697A JP3677970B2 JP 3677970 B2 JP3677970 B2 JP 3677970B2 JP 28325697 A JP28325697 A JP 28325697A JP 28325697 A JP28325697 A JP 28325697A JP 3677970 B2 JP3677970 B2 JP 3677970B2
Authority
JP
Japan
Prior art keywords
film
transparent film
opening
light
receiving sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28325697A
Other languages
Japanese (ja)
Other versions
JPH11121725A (en
Inventor
健 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP28325697A priority Critical patent/JP3677970B2/en
Publication of JPH11121725A publication Critical patent/JPH11121725A/en
Application granted granted Critical
Publication of JP3677970B2 publication Critical patent/JP3677970B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、受光センサ部への集光効率を高め、感度特性の向上を図った固体撮像素子とその製造方法に関する。
【0002】
【従来の技術】
固体撮像素子の微細化に伴い、特に1/4”38万画素より小さいデバイスなどではその感度向上が必須となってきている。このような背景のもとに従来では、カラーフィルタ上にオンチップレンズを設け、集光効率を高めるといった工夫がなされている。
【0003】
ところが、近年においてはデバイスの小型化、高感度化に伴ってさらなる集光効率の向上が望まれているものの、前述したオンチップレンズによる集光効果はほぼ限界に近づいており、オンチップレンズとは別の新たな技術の開発が望まれている。
【0004】
このような要望に対応する技術として、オンチップレンズと併用する状態で層内レンズを設ける技術が一部に提案されている。この層内レンズは、光電変換をなす受光部の直上において層間膜中に形成されるレンズであり、オンチップレンズと同様にこの層内レンズに入射した光を該層内レンズの上面側または下面側の界面で屈折させ、受光部に導くものである。したがって、このような層間レンズを前記オンチップレンズと併用することにより、オンチップレンズで集光されて入射した光を再度層内レンズで集光することができ、これにより固体撮像素子全体としての集光効率をより高めることができるのである。
【0005】
【発明が解決しようとする課題】
ところが、従来提案されている層内レンズはほとんどが凹型のレンズであり、これを形成する場合、遮光膜の上にBPSG(ホウ素リンシリケートガラス)等のリフロー形状をもつ膜を形成し、転送電極間、すなわち受光部の直上に形成されたくぼみの中に高屈折率材を埋め込み、この埋め込んだ高屈折率材を層内レンズとする、といったプロセスを採るのが普通である。
しかして、このプロセスでは層内レンズの形状がリフロー膜の形状で決まってしまうことから、所望の形状、すなわち集光に最適な形状を得るのが困難であり、したがって層内レンズを設けたとはいえ未だ十分に高い集光効率を得るのが困難である。
【0006】
本発明は前記事情に鑑みてなされたもので、その目的とするところは、層間レンズに代わる集光機能を有し、これにより集光効率の向上を図った固体撮像装置とその製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明における第1の固体撮像素子では、基体の表層部に設けられて光電変換をなす受光センサ部と、該受光センサ部から読み出された信号電荷を転送する電荷転送部と、前記基体上の、前記電荷転送部の略直上位置に絶縁膜を介して設けられた転送電極とを備えてなり、前記転送電極上を覆い、かつ前記受光センサ部の直上位置の一部に孔部を形成した状態で平坦化膜が設けられ、前記孔部の内面上に該内面を覆って前記平坦化膜より屈折率が大きい第1の透明膜が設けられ、さらにこの第1の透明膜の内面上に該内面覆って第1の透明膜より屈折率が小さい第2の透明膜が設けられてなることを前記課題の解決手段とした。
【0008】
この固体撮像素子によれば、平坦化膜に形成された孔部内面上に第1の透明膜を設け、この第1の透明膜の内面上に第2の透明膜を設け、さらにこの第1の透明膜の内面上に第2の透明膜を設けたので、孔部内に入射した光のうち受光センサ部の表面に対し斜めに入射して第2の透明膜と第1の透明膜との界面に到った光が第2の透明膜と第1の透明膜との屈折率差によってこの界面で屈折し、第1の透明膜と平坦化膜との界面側に導かれる。すると、この第1の透明膜と平坦化膜との界面側に導かれた光は、第1の透明膜と平坦化膜との界面にて該第1の透明膜と平坦化膜との屈折率差により例えば全反射し、これによって孔部内に戻されて受光センサ部上に入射する。
【0009】
本発明における第2の固体撮像素子では、基体の表層部に設けられて光電変換をなす受光センサ部と、該受光センサ部から読み出された信号電荷を転送する電荷転送部と、前記基体上の、前記電荷転送部の略直上位置に絶縁膜を介して設けられた転送電極と、該転送電極を覆い、かつ受光センサ部の直上位置の一部に開口部を形成した状態で設けられた遮光膜とを備えてなり、前記遮光膜上を覆い、かつ前記開口部に連通する孔部をその内面が前記開口部の内面に略面一となるようにして形成した状態で平坦化膜が設けられ、前記孔部および開口部の内面上に該内面を覆って前記平坦化膜より屈折率が大きい第1の透明膜が設けられてなることを前記課題の解決手段とした。
【0010】
この固体撮像素子によれば、遮光膜上を覆い、かつ前記開口部に連通する孔部をその内面が前記開口部の内面に略面一となるようにして形成した状態で平坦化膜を設け、前記孔部および開口部の内面上に第1の透明膜を設けたので、孔部内に入射した光のうち受光センサ部の表面に対し斜めに入射して第1の透明膜に導かれさらにこの第1の透明膜と平坦化膜との界面に到った光が該第1の透明膜と平坦化膜との屈折率差により例えば全反射し、また第1の透明膜と遮光膜の開口部との界面に到った光が該開口部の内面で全反射して開口部内に戻され、受光センサ部上に入射する。
【0011】
本発明における固体撮像素子の製造方法では、基体の表層部に設けられて光電変換をなす受光センサ部と、該受光センサ部から読み出された信号電荷を転送する電荷転送部と、前記基体上の、前記電荷転送部の略直上位置に絶縁膜を介して設けられた転送電極と、該転送電極を覆い、かつ受光センサ部の直上位置の一部に開口部を形成した状態で設けられた遮光膜とを備えてなる固体撮像素子を製造するに際して、前記転送電極を覆った状態に遮光材料膜を形成し、次に前記遮光材料膜上に平坦化膜材料を成膜し、かつ該平坦化膜材料を平坦化して平坦化膜を形成し、次いで前記受光センサ部の一部の直上位置にある前記平坦化膜と遮光膜とをエッチングすることにより該平坦化膜に形成される孔部の内面と遮光膜に形成される開口部の内面とが略面一になるようにこれら平坦化膜の孔部と遮光膜の開口部とを形成し、その後前記孔部および開口部の内面上に該内面を覆って前記平坦化膜より屈折率が大きい第1の透明膜を形成することを、を備えた前記課題の解決手段とした。
【0012】
この固体撮像素子の製造方法によれば、平坦化膜と遮光膜とをエッチングすることにより該平坦化膜に形成される孔部の内面と遮光膜に形成される開口部の内面とが略面一になるようにこれら平坦化膜の孔部と遮光膜の開口部とを形成し、その後孔部および開口部の内面上に平坦化膜より屈折率が大きい第1の透明膜を形成するので、得られる固体撮像素子は孔部および開口部の内面上に第1の透明膜が設けられたものとなり、したがってこの固体撮像素子では、孔部内に入射した光のうち受光センサ部の表面に対し斜めに入射して第1の透明膜に導かれさらにこの第1の透明膜と平坦化膜との界面に到った光が該第1の透明膜と平坦化膜との屈折率差により例えば全反射し、また第1の透明膜と遮光膜の開口部との界面に到った光が該開口部の内面で全反射して開口部内に戻され、受光センサ部上に入射するようになる。
また、平坦化膜の膜厚を厚くすることにより、全反射をなす平坦化膜と第1の透明膜との界面の高さ(深さ)を容易に拡げることが可能となる。
【0013】
【発明の実施の形態】
以下、本発明を詳しく説明する。
図1は本発明の固体撮像素子の一実施形態例を示す図であり、図1において符号1は固体撮像素子、2はシリコン基板(基体)である。シリコン基板2には、図1に示すようにその表層部に光電変換をなす受光部(図示略)が形成され、さらにこの受光部の上にホール蓄積部(図示略)が形成されている。そして、これら受光部とホール蓄積部とから、HAD(Holl Accumulation Diode )構造の受光センサ部3が形成されている。
【0014】
この受光センサ部3の一方の側には、読み出しゲート4を介して電荷転送部5が形成され、他方の側にはチャネルストップ6を介して別の電荷転送部5が形成されている。そして、このような構成により受光センサ部3で光電変換されて得られた信号電荷は、読み出しゲート4を介して電荷転送部5に読み出され、さらに該電荷転送部5にて転送されるようになっている。
また、シリコン基板2の表面部には、熱酸化法やCVD法等によって形成されたSiO2 からなる絶縁膜7が設けられている。なお、この絶縁膜7についてはSiO2 膜からなる単層膜でなく、SiO2 膜−SiN膜−SiO2 膜の三層からなるいわゆるONO構造の積層膜としてもよい。
【0015】
絶縁膜7の上には、前記電荷転送部5の略直上位置に第1ポリシリコンからなる転送電極8が形成されており、さらに転送電極8とは一部が重なり合う状態で、第2ポリシリコンからなる別の転送電極(図示略)が形成されている。これら転送電極8の表面上、すなわちその上面および側面上には、該転送電極8を覆い、さらに転送電極8、8間に臨む受光センサ部3上の絶縁膜7を覆ってSiO2 からなる層間絶縁膜9が形成されている。
【0016】
この層間膜9の上には、前記転送電極8を覆った状態でアルミニウム(Al)やタングステン(W)等からなる遮光膜10が形成されている。この遮光膜10は、スミアを抑えるため受光センサ部3の直上にまで張り出してなる張り出し部10aを形成したもので、受光センサ部3の直上部分の大部分を外側に臨ませた状態で、すなわち受光センサ部3の直上に前記張り出し部10aで囲った状態に矩形の開口部11を形成したものである。
【0017】
この遮光膜10上には、該遮光膜10を覆ってBPSG(ホウ素リンシリケートガラス)や高密度プラズマ−SiO2 (HDP−SiO2 )等の、屈折率が約1.45のSiO2 系材料からなる平坦化膜12が形成されている。この平坦化膜12は、受光センサ部3の直上位置において孔部13を形成したものである。孔部13は、遮光膜10の開口部11に連通し、その内面が開口部11の内面に略面一となるようにして形成されたものである。
【0018】
また、孔部13と開口部11との内面上には、該内面を覆って前記平坦化膜12より屈折率が大きい第1の透明膜14が設けられている。この第1の透明膜14は、本例ではプラズマCVD法による窒化ケイ素膜(以下、P−SiN膜と記す)からなるもので、その屈折率が約2.0のものである。したがって、孔部13の内面部においては、前記平坦化膜12と第1の透明膜14との界面で大きな屈折率差があり、これによって該界面で大きな屈折が起こるようになっている。
【0019】
具体的には、第1の透明膜14に入射し、そのまま該第1の透明膜14と平坦化膜12との間の界面に到った光は、その入射角θ1 、すなわち該入射光と前記界面との法線とのなす角θ1 が46.5°より大きい角度である場合に、入射光は該界面で全反射するようになっている。
【0020】
つまり、次式に示されるスネルの法則において、
1 ・sinθ1 =n2 ・sinθ2 (スネルの法則)
1 を第1の透明膜14の屈折率(2.0)とし、n2 を平坦化膜12の屈折率(1.45)とし、屈折角θ2 が90°を越えると光が全反射になるとすれば、θ2 に90°を代入し、さらにn1 =2.0、n2 =1.45とすることにより、
2.0×sinθ1 =1.45×sin90°となり、
sin90°=1であることから、sinθ1 =1.45/2.0となり、
これから全反射するための臨界的な角度であるθ1 =46.5°が求まるのである。
【0021】
また、孔部13と開口部11とにおける、前記第1の透明膜14の内面上には、該内面を覆って第1の透明膜14より屈折率が小さい第2の透明膜15が設けられている。この第2の透明膜15は、本例ではプラズマCVD法による酸化窒化ケイ素膜(以下、P−SiON膜と記す)からなるもので、その屈折率が約1.8に調整されたものである。
さらに、この第2の透明膜15の内面上には、該内面を覆い、かつ孔部13および開口部11を埋め込んだ状態に第3の透明膜16が設けられている。この第3の透明膜16も、本例ではプラズマCVD法による酸化窒化ケイ素膜(以下、P−SiON膜と記す)からなるもので、この第3の透明膜16ではその屈折率が約1.6に調整されたものとなっている。
【0022】
ここで、P−SiON膜の屈折率の調整については、その原料ガスであるSiH4 、NH3 、N2 Oの流量比を適宜に調整することによって行う。すなわち、SiH4 を基準とした場合に、NH3 の流量比を増やすと屈折率が大きくなり、N2 Oの流量比を増やすと屈折率が小さくなる。これは、原料中のNH3 が増えると得られるP−SiON中のSi−Nボンドが増え、一方原料中のN2 Oが増えると得られるP−SiON中のSi−Oボンドが増えるからである。
したがって、予めこれら原料ガスの流量比と得られるP−SiONの屈折率との関係を実験やシミュレーションによって求めておき、第2の透明膜15、第3の透明膜16の形成の際には、所望する屈折率に応じてその条件を適宜に選択すればよいのである。
【0023】
このような第2の透明膜15、第3の透明膜16にあっては、その屈折率が第1の透明膜14(n=2.0)、第2の透明膜15(n=1.8)、第3の透明膜16(n=1.6)の順に少しずつ小さくなることから、第1の透明膜14と第2の透明膜15との界面、第2の透明膜15と第3の透明膜16との界面でいずれも各膜の屈折率差によって屈折が起こるようになっている。
すなわち、第3の透明膜16に入射した光が第2の透明膜15に入り、また第2の透明膜15に入射した光が第1の透明膜14に入る場合には、前記のスネルの法則により各界面で孔部13の内面側あるいは開口部11の内面側に屈折し、一方、第2の透明膜15に入射した光が第3の透明膜16に入り、また第1の透明膜14に入射した光が第2の透明膜15に入る場合には、各界面で開口部11の中央部側に屈折する。
【0024】
なお、第1の透明膜14、第2の透明膜15、第3の透明膜16の膜厚については、特に限定されることはないものの、孔部13、開口部11の内寸が数μm程度とされることから、それぞれ300μm〜500μm程度とするのが好ましい。これは、300μm未満であると膜質の均一性が損なわれるおそれがあり、一方、500μmを超えると膜厚にムラが生じるおそれがあるからであり、このように膜質や膜厚が不均一になると、画素間における感度ムラが生じて感度特性が低下してしまうおそれがあるからである。
【0025】
平坦化膜12上には、孔部13および開口部11内に形成された第1の透明膜14、第2の透明膜15、第3の透明膜16を覆った状態にP−SiN等からなるパッシベーション膜17が設けられている。
さらに、このパッシベーション膜17上には樹脂等からなるカラーフィルタ層18が形成されており、このカラーフィルタ層18の上には凸状の透明樹脂等からなるオンチップレンズ19が形成されている。このオンチップレンズ19は、屈折率が1.5〜1.6程度の樹脂等の材料によって形成されたもので、入射光を孔部13内に導くことによってこれを受光センサ部3上に入射させるためのものである。
【0026】
このような構成の固体撮像素子1を作製するには、図2(a)に示すように従来と同様の手法により転送電極8までを形成し、さらにこれを覆って層間絶縁膜9を形成した後、遮光膜10形成のための遮光材料膜19を形成する。なお、この遮光材料膜19については、固体撮像素子1の周辺回路における配線と同一の層として形成することも可能である。
次いで、平坦化膜12の材料としてBPSGを、CVD法等により図2(b)に示すように遮光材料膜20を覆った状態に堆積して平坦化層21を形成し、さらに予め設定した条件でリフロー処理(熱処理)することにより、転送電極8、8等によって形成された凹凸を平坦化する。
【0027】
次いで、図2(c)に示すように平坦化膜14上にレジストパターン22を公知のレジスト技術、リソグラフィー技術によって形成する。続いて、図3(a)に示すようにこのレジストパターン22をマスクにして平坦化層21、遮光材料膜20をエッチングし、平坦化層21に孔部13を形成して該平坦化層21を平坦化膜12とするとともに、遮光材料膜20に開口部11を形成して該遮光材料膜20を遮光膜10とする。
ここで、平坦化層21、遮光材料膜20のエッチングについては、同一のレジストパターン22を用い、また同一のエッチャントを用いて行う必要はなく、例えば平坦化層21と遮光材料膜20とを別のエッチャントで、あるいは別のレジストパターンで形成してもよい。すなわち、本発明において平坦化層21と遮光材料膜20とのエッチングについては、これらを同一の条件で連続的に行っても、また異なる条件で非連続的に行ってもよく、あくまで孔部13と開口部11との内面が略面一となるような条件であれば特に限定されることはないのである。
【0028】
このようにして孔部13と開口部11とを形成したら、図3(b)に示すようにこれらの内面を覆った状態に屈折率が約2.0のP−SiN膜23を所定厚に形成し、続いて該P−SiN膜23の内面を覆った状態に屈折率が約1.8のP−SiON膜24を所定厚に形成し、さらに該P−SiON膜24の内面を覆った状態に屈折率が約1.6のP−SiON膜25を孔部13、開口部11を埋め込んだ状態に形成する。
なお、P−SiON膜24、25の屈折率の調整については、前述したようにその原料ガスであるSiH4 、NH3 、N2 Oの流量比を適宜に調整することによって行う。
【0029】
次いで、図3(c)に示すように形成したP−SiON膜25、P−SiON膜24、P−SiN膜23の、平坦化膜12上に形成された部分をエッチバック法あるいはCMP法(化学機械研磨法)によって除去し、これによって孔部13内、および開口部11内にのみ各膜を残してこの残した部分を第3の透明膜16、第2の透明膜15、第1の透明膜14とする。
【0030】
次いで、図1に示したようにP−SiN膜からなるパッシベーション膜17を形成し、さらに染色法やカラーレジスト塗布によってカラーフィルタ層18を形成し、その後、オンチップレンズ19を形成し、固体撮像素子1を得る。ここで、オンチップレンズ19の形成については、熱溶融性透明樹脂や常温無加熱でCVD可能な高密度SiNを堆積させ、さらにその上部にレジストを設けた後、このレジストを熱リフロー処理して所望の曲率を有する凸レンズ形状にし、さらにこれをマスクにして前記堆積層をエッチングし、レジストを除去してオンチップレンズ19を得るといったエッチバック転写等が用いられる。
【0031】
このようにして得られた固体撮像素子1にあっては、オンチップレンズ19で集光された光のうち受光センサ部3の表面にほぼ垂直に入射した光が、カラーフィルタ層18、パッシベーション膜17を透過して孔部13内の第3の透明膜16、第2の透明膜15、または第1の透明膜14に入射し、さらに開口部11内を通って層間膜9、絶縁膜7を透過して受光センサ部3に到り、ここで光電変換がなす。
【0032】
また、オンチップレンズ19で集光された光のうち受光センサ部3の表面に対して斜めに入射した光は、第3の透明膜16と第2の透明膜15との界面、第2の透明膜15と第1の透明膜14との界面で前述したように屈折する。そして、これら界面で屈折した光のうち第1の透明膜14と平坦化膜12との界面に到った光は、特に該界面の法線とのなす入射角が所定角を超えている場合に全反射し、再度孔部13あるいは開口部11の中央部に戻されてそのまま受光センサ部3に入射する。
また、オンチップレンズ19で集光され、受光センサ部3の表面に対して斜めに入射した光のうち第1の透明膜14と遮光膜10の開口部11との界面に到った光は、該開口部11の内面で全反射して開口部11内に戻され、受光センサ部3上に入射する。
【0033】
したがって、この固体撮像素子1にあっては、平坦化膜12と第1の透明膜14との界面での全反射、および第1の透明膜14、第2の透明膜15、第3の透明膜16の各膜間での界面での屈折により、受光センサ部3の表面に対して斜めに入射した光をも効率よく受光センサ部3上に集光することができ、これにより感度向上を図ることができる。
また、このような固体撮像素子1の製造方法にあっては、図1に示した固体撮像素子1を容易にかつ確実に形成することができ、さらに、平坦化膜12の膜厚を厚くすることにより、全反射をなす平坦化膜12と第1の透明膜14との界面の高さ(深さ)を容易に拡げることができ、これにより集光効率を一層高めることができる。
【0034】
なお、前記実施形態例では、遮光膜10を設けて転送電極8に光が入射するのを防止したが、本発明はこれに限定されることなく、平坦化膜12と第1の透明膜14との界面でここに入射した光を確実に全反射するようにして転送電極8に光が入射するのを防止してもよい。ここで、このように平坦化膜12と第1の透明膜14との界面で光を確実に全反射させるためには、例えばこれらの界面の高さ(深さ)を高く(深く)して全反射面を拡げたり、平坦化膜12と第1の透明膜14との屈折率差を大きくしたりすればよい。
このように遮光膜を設けることなく平坦化膜12と第1の透明膜14との界面で光を確実に全反射させるようにすれば、遮光膜を例えばアルミニウムで形成した場合に、このアルミニウムのグレインによって受光センサ部3…間でその開口形状や大きさが微妙に異なってしまい、乱反射成分も含めて受光センサ部間で微少な感度ムラが生じてしまうのを防止することができる。
【0035】
また、前記実施形態例では、孔部13および開口部11内に第1の透明膜14、第2の透明膜15、第3の透明膜16を形成したが、本発明はこれに限定されることなく、遮光膜10を設けた場合には第1の透明膜14のみを設けて該第1の透明膜14と平坦化膜12との界面で光を全反射させるようにすればよく、また遮光膜10を設けない場合には第1の透明膜14に加え少なくとも第2の透明膜15を設けて第1の透明膜14と平坦化膜12との界面で光を確実に全反射させるようにすればよい。
【0036】
【発明の効果】
以上説明したように本発明における第1の固体撮像素子は、第1の透明膜と平坦化膜との界面側に導かれた光を、第1の透明膜と平坦化膜との界面にて該第1の透明膜と平坦化膜との屈折率差により例えば全反射し、これによって孔部内に光を戻して受光センサ部上に入射させるようにしたものであるから、受光センサ部の表面に対して斜めに入射した光をも効率よく受光センサ部上に集光することができ、これにより感度向上を図ることができる。
【0037】
本発明における第2の固体撮像素子は、第1の透明膜と平坦化膜との界面に到った光を該第1の透明膜と平坦化膜との屈折率差により例えば全反射し、また第1の透明膜と遮光膜の開口部との界面に到った光を該開口部の内面で全反射して開口部内に戻し、受光センサ部上に入射させるようにしたものであるから、受光センサ部の表面に対して斜めに入射した光をも効率よく受光センサ部上に集光することができ、これにより感度向上を図ることができる。
【0038】
本発明における固体撮像素子の製造方法は、本発明における第2の固体撮像素子を容易にかつ確実に形成することができ、また、平坦化膜の膜厚を厚くすることにより、全反射をなす平坦化膜と第1の透明膜との界面の高さ(深さ)を容易に拡げて該界面による全反射率を高めることができる。
【図面の簡単な説明】
【図1】本発明の固体撮像素子の一実施形態例の概略構成を示す要部側断面図である。
【図2】(a)〜(c)は図1に示した固体撮像素子の製造方法を工程順に説明するための要部側断面図である。
【図3】(a)〜(c)は図1に示した固体撮像素子の製造方法を説明するための図であり、図2(c)に続く工程を工程順に説明するための要部側断面図である。
【符号の説明】
1…固体撮像素子、2…シリコン基板(基体)、3…受光センサ部、5…電荷転送部、7…絶縁膜、8…転送電極、10…遮光膜、11…開口部、12…平坦化膜、13…孔部、14…第1の透明膜、15…第2の透明膜、16…第3の透明膜、20…遮光材料膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid-state imaging device that improves light collection efficiency to a light receiving sensor unit and improves sensitivity characteristics, and a method for manufacturing the same.
[0002]
[Prior art]
With the miniaturization of solid-state imaging devices, it is essential to improve the sensitivity especially for devices smaller than 1/4 "380,000 pixels. A device such as a lens is provided to increase the light collection efficiency.
[0003]
However, in recent years, although further improvement in light collection efficiency is desired along with the downsizing and high sensitivity of devices, the light collection effect by the above-described on-chip lens is almost approaching the limit. Development of another new technology is desired.
[0004]
As a technique corresponding to such a demand, a technique for providing an in-layer lens in a state of being used together with an on-chip lens has been proposed in part. This intra-layer lens is a lens formed in the interlayer film immediately above the light-receiving portion that performs photoelectric conversion. Like the on-chip lens, the intra-layer lens transmits light incident on the intra-layer lens on the upper surface side or lower surface of the intra-layer lens. The light is refracted at the side interface and guided to the light receiving portion. Therefore, by using such an interlayer lens together with the on-chip lens, it is possible to condense the incident light that has been collected by the on-chip lens again by the intra-layer lens. The light collection efficiency can be further increased.
[0005]
[Problems to be solved by the invention]
However, most of the conventionally proposed intralayer lenses are concave lenses. When forming this, a film having a reflow shape such as BPSG (boron phosphorus silicate glass) is formed on the light shielding film, and the transfer electrode is formed. In general, a process in which a high refractive index material is embedded in a recess formed immediately above the light receiving portion and the embedded high refractive index material is used as an in-layer lens is generally employed.
In this process, the shape of the in-layer lens is determined by the shape of the reflow film. Therefore, it is difficult to obtain a desired shape, that is, an optimum shape for condensing light. However, it is still difficult to obtain sufficiently high light collection efficiency.
[0006]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a solid-state imaging device having a condensing function in place of an interlayer lens, thereby improving condensing efficiency, and a method for manufacturing the same. There is to do.
[0007]
[Means for Solving the Problems]
In the first solid-state imaging device according to the present invention, a light receiving sensor unit that is provided on a surface layer portion of the substrate and performs photoelectric conversion, a charge transfer unit that transfers signal charges read from the light receiving sensor unit, and the substrate And a transfer electrode provided via an insulating film at a position almost directly above the charge transfer portion, and covers the transfer electrode and forms a hole in a part of the position directly above the light receiving sensor portion. In this state, a planarizing film is provided, and a first transparent film having a refractive index larger than that of the planarizing film is provided on the inner surface of the hole portion, and further on the inner surface of the first transparent film. The above-described means for solving the above-mentioned problems is that a second transparent film having a refractive index smaller than that of the first transparent film is provided to cover the inner surface.
[0008]
According to this solid-state imaging device, the first transparent film is provided on the inner surface of the hole formed in the planarizing film, the second transparent film is provided on the inner surface of the first transparent film, and the first transparent film is further provided. Since the second transparent film is provided on the inner surface of the transparent film, the second transparent film and the first transparent film are incident obliquely to the surface of the light receiving sensor portion of the light incident in the hole portion. The light reaching the interface is refracted at the interface due to the difference in refractive index between the second transparent film and the first transparent film, and is guided to the interface side between the first transparent film and the planarizing film. Then, the light guided to the interface side between the first transparent film and the planarizing film is refracted by the first transparent film and the planarizing film at the interface between the first transparent film and the planarizing film. For example, the light is totally reflected due to the rate difference, and is thereby returned into the hole and incident on the light receiving sensor.
[0009]
In the second solid-state imaging device according to the present invention, a light receiving sensor unit that is provided on a surface layer portion of the substrate and performs photoelectric conversion, a charge transfer unit that transfers a signal charge read from the light receiving sensor unit, and the substrate A transfer electrode provided via an insulating film at a position almost directly above the charge transfer portion, and a state where the transfer electrode is covered and an opening is formed at a part of the position directly above the light receiving sensor portion. A planarizing film in a state in which a hole that covers the light shielding film and communicates with the opening is formed so that an inner surface thereof is substantially flush with an inner surface of the opening. The means for solving the above-mentioned problems is that a first transparent film having a refractive index larger than that of the planarizing film is provided on the inner surfaces of the hole and the opening.
[0010]
According to this solid-state imaging device, the flattening film is provided in a state in which the hole that covers the light shielding film and that communicates with the opening is formed so that the inner surface thereof is substantially flush with the inner surface of the opening. Since the first transparent film is provided on the inner surfaces of the hole and the opening, the light incident on the hole is obliquely incident on the surface of the light receiving sensor part and guided to the first transparent film. The light reaching the interface between the first transparent film and the planarizing film is totally reflected, for example, due to the difference in refractive index between the first transparent film and the planarizing film, and between the first transparent film and the light shielding film. The light that reaches the interface with the opening is totally reflected by the inner surface of the opening and returned into the opening, and is incident on the light receiving sensor.
[0011]
In the method for manufacturing a solid-state imaging device according to the present invention, a light receiving sensor unit that is provided on a surface layer portion of the substrate and performs photoelectric conversion, a charge transfer unit that transfers signal charges read from the light receiving sensor unit, A transfer electrode provided via an insulating film at a position almost directly above the charge transfer portion, and a state where the transfer electrode is covered and an opening is formed at a part of the position directly above the light receiving sensor portion. When manufacturing a solid-state imaging device including a light shielding film, a light shielding material film is formed so as to cover the transfer electrode, and then a planarizing film material is formed on the light shielding material film, and the flat A hole formed in the flattening film by flattening the flattening film material to form a flattening film and then etching the flattening film and the light-shielding film located immediately above a part of the light receiving sensor unit The inner surface of the opening and the inner surface of the opening formed in the light shielding film Are formed so that the holes of the planarizing film and the opening of the light shielding film are substantially flush with each other, and then the inner surface of the hole and the opening is covered with the inner surface of the planarizing film so that the refractive index is higher than that of the planarizing film. Forming a large first transparent film is a means for solving the above-described problems.
[0012]
According to this method for manufacturing a solid-state imaging device, the inner surface of the hole formed in the planarization film and the inner surface of the opening formed in the light shielding film are etched by etching the planarization film and the light shielding film. Since the hole portion of the planarizing film and the opening portion of the light shielding film are formed so as to be uniform, and then the first transparent film having a higher refractive index than the planarizing film is formed on the inner surface of the hole portion and the opening portion. Thus, the obtained solid-state imaging device has the first transparent film provided on the inner surfaces of the hole and the opening. Therefore, in this solid-state imaging device, the light incident on the hole is not exposed to the surface of the light receiving sensor unit. Light that is incident obliquely and is guided to the first transparent film and reaches the interface between the first transparent film and the planarizing film is caused by a difference in refractive index between the first transparent film and the planarizing film, for example. The light that totally reflects and reaches the interface between the first transparent film and the opening of the light shielding film is the opening. Back into the opening is totally reflected by the inner surface, it will be incident on the light receiving sensor portion.
Further, by increasing the film thickness of the planarizing film, it is possible to easily increase the height (depth) of the interface between the planarizing film that makes total reflection and the first transparent film.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
FIG. 1 is a diagram showing an embodiment of a solid-state imaging device according to the present invention. In FIG. 1, reference numeral 1 denotes a solid-state imaging device, and 2 denotes a silicon substrate (substrate). As shown in FIG. 1, the silicon substrate 2 has a light receiving portion (not shown) that performs photoelectric conversion on the surface layer portion, and further a hole accumulation portion (not shown) is formed on the light receiving portion. A light receiving sensor unit 3 having a HAD (Holl Accumulation Diode) structure is formed from the light receiving unit and the hole accumulating unit.
[0014]
A charge transfer unit 5 is formed on one side of the light receiving sensor unit 3 via a read gate 4, and another charge transfer unit 5 is formed on the other side via a channel stop 6. The signal charge obtained by photoelectric conversion by the light receiving sensor unit 3 with such a configuration is read out to the charge transfer unit 5 through the read gate 4 and further transferred by the charge transfer unit 5. It has become.
Further, an insulating film 7 made of SiO 2 formed by a thermal oxidation method, a CVD method or the like is provided on the surface portion of the silicon substrate 2. Instead a single layer film made of SiO 2 film for the insulating film 7, or a stacked film of a so-called ONO structure composed of three layers of SiO 2 film -SiN film -SiO 2 film.
[0015]
A transfer electrode 8 made of the first polysilicon is formed on the insulating film 7 at a position almost immediately above the charge transfer portion 5, and the second polysilicon is partially overlapped with the transfer electrode 8. Another transfer electrode (not shown) is formed. On the surface of the transfer electrodes 8, that is, on its upper surface and side surfaces, covering the transfer electrodes 8, comprising further a SiO 2 covering the insulating film 7 on the light-receiving sensor section 3 facing between the transfer electrodes 8 and 8 layers An insulating film 9 is formed.
[0016]
A light shielding film 10 made of aluminum (Al), tungsten (W), or the like is formed on the interlayer film 9 so as to cover the transfer electrode 8. This light-shielding film 10 is formed with an overhanging portion 10a that projects to the position directly above the light receiving sensor portion 3 in order to suppress smear, and in a state where most of the portion directly above the light receiving sensor portion 3 faces outward, that is, A rectangular opening 11 is formed immediately above the light receiving sensor 3 in a state surrounded by the protruding portion 10a.
[0017]
On the light shielding film 10, BPSG (boron phosphorus silicate glass) covering the light shielding film 10 and the high-density plasma -SiO 2 (HDP-SiO 2) SiO 2 system, a refractive index of about 1.45 like material A planarizing film 12 made of is formed. The planarizing film 12 is formed with a hole 13 at a position immediately above the light receiving sensor unit 3. The hole 13 communicates with the opening 11 of the light shielding film 10 and is formed so that the inner surface thereof is substantially flush with the inner surface of the opening 11.
[0018]
A first transparent film 14 having a refractive index larger than that of the planarizing film 12 is provided on the inner surfaces of the hole 13 and the opening 11. In this example, the first transparent film 14 is made of a silicon nitride film (hereinafter referred to as a P-SiN film) formed by a plasma CVD method, and has a refractive index of about 2.0. Therefore, in the inner surface portion of the hole portion 13, there is a large refractive index difference at the interface between the planarizing film 12 and the first transparent film 14, thereby causing large refraction at the interface.
[0019]
Specifically, the light that enters the first transparent film 14 and reaches the interface between the first transparent film 14 and the planarizing film 12 as it is is the incident angle θ 1 , that is, the incident light. When the angle θ 1 formed by the normal to the interface is larger than 46.5 °, the incident light is totally reflected at the interface.
[0020]
In other words, in Snell's law expressed by
n 1 · sin θ 1 = n 2 · sin θ 2 (Snell's law)
n 1 is the refractive index (2.0) of the first transparent film 14, n 2 is the refractive index (1.45) of the planarizing film 12, and light is totally reflected when the refraction angle θ 2 exceeds 90 °. Then, by substituting 90 ° into θ 2 and further setting n 1 = 2.0 and n 2 = 1.45,
2.0 × sin θ 1 = 1.45 × sin 90 °,
Since sin 90 ° = 1, sin θ 1 = 1.45 / 2.0,
From this, θ 1 = 46.5 °, which is a critical angle for total reflection, is obtained.
[0021]
A second transparent film 15 having a refractive index smaller than that of the first transparent film 14 is provided on the inner surface of the first transparent film 14 in the hole 13 and the opening 11 so as to cover the inner surface. ing. In this example, the second transparent film 15 is made of a silicon oxynitride film (hereinafter referred to as a P-SiON film) formed by a plasma CVD method, and its refractive index is adjusted to about 1.8. .
Further, a third transparent film 16 is provided on the inner surface of the second transparent film 15 so as to cover the inner surface and fill the hole 13 and the opening 11. The third transparent film 16 is also composed of a silicon oxynitride film (hereinafter referred to as a P-SiON film) formed by plasma CVD in this example, and the refractive index of the third transparent film 16 is about 1. It has been adjusted to 6.
[0022]
Here, the adjustment of the refractive index of the P-SiON film is performed by appropriately adjusting the flow ratio of SiH 4 , NH 3 , and N 2 O that are the source gases. That is, when SiH 4 is used as a reference, increasing the NH 3 flow rate ratio increases the refractive index, and increasing the N 2 O flow rate ratio decreases the refractive index. This is because when NH 3 in the raw material increases, the number of Si—N bonds in the obtained P—SiON increases, while when the amount of N 2 O in the raw material increases, the number of Si—O bonds in the obtained P—SiON increases. is there.
Therefore, the relationship between the flow rate ratio of these source gases and the refractive index of P-SiON obtained is obtained in advance by experiments and simulations, and when forming the second transparent film 15 and the third transparent film 16, The conditions may be appropriately selected according to the desired refractive index.
[0023]
In the second transparent film 15 and the third transparent film 16 as described above, the refractive indexes thereof are the first transparent film 14 (n = 2.0) and the second transparent film 15 (n = 1. 8) Since the third transparent film 16 (n = 1.6) gradually decreases in order, the interface between the first transparent film 14 and the second transparent film 15, the second transparent film 15 and the second transparent film 15 The refraction is caused by the difference in the refractive index of each film at the interface with the three transparent films 16.
That is, when the light incident on the third transparent film 16 enters the second transparent film 15 and the light incident on the second transparent film 15 enters the first transparent film 14, The light is refracted to the inner surface side of the hole 13 or the inner surface side of the opening portion 11 at each interface according to the law, while the light incident on the second transparent film 15 enters the third transparent film 16 and also enters the first transparent film. When the light incident on 14 enters the second transparent film 15, it is refracted toward the center of the opening 11 at each interface.
[0024]
The film thicknesses of the first transparent film 14, the second transparent film 15, and the third transparent film 16 are not particularly limited, but the inner dimensions of the hole 13 and the opening 11 are several μm. Therefore, it is preferable that the thickness is about 300 μm to 500 μm. This is because if the thickness is less than 300 μm, the uniformity of the film quality may be impaired. On the other hand, if the thickness exceeds 500 μm, the film thickness may be uneven. This is because there is a possibility that sensitivity unevenness occurs between the pixels and the sensitivity characteristics deteriorate.
[0025]
On the planarizing film 12, the first transparent film 14, the second transparent film 15, and the third transparent film 16 formed in the hole 13 and the opening 11 are covered with P-SiN or the like. A passivation film 17 is provided.
Further, a color filter layer 18 made of a resin or the like is formed on the passivation film 17, and an on-chip lens 19 made of a convex transparent resin or the like is formed on the color filter layer 18. The on-chip lens 19 is formed of a material such as a resin having a refractive index of about 1.5 to 1.6. The on-chip lens 19 is incident on the light receiving sensor unit 3 by guiding incident light into the hole 13. It is for making it happen.
[0026]
In order to fabricate the solid-state imaging device 1 having such a configuration, as shown in FIG. 2A, up to the transfer electrode 8 was formed by the same method as in the prior art, and an interlayer insulating film 9 was formed covering this. Thereafter, a light shielding material film 19 for forming the light shielding film 10 is formed. The light shielding material film 19 can be formed as the same layer as the wiring in the peripheral circuit of the solid-state imaging device 1.
Next, BPSG is deposited as a material of the planarizing film 12 by a CVD method or the like so as to cover the light shielding material film 20 as shown in FIG. The unevenness formed by the transfer electrodes 8 and 8 is flattened by reflow treatment (heat treatment).
[0027]
Next, as shown in FIG. 2C, a resist pattern 22 is formed on the planarizing film 14 by a known resist technique and lithography technique. Subsequently, as shown in FIG. 3A, the planarization layer 21 and the light shielding material film 20 are etched using the resist pattern 22 as a mask to form a hole 13 in the planarization layer 21 to form the planarization layer 21. Is formed as a planarizing film 12, and an opening 11 is formed in the light shielding material film 20 to make the light shielding material film 20 a light shielding film 10.
Here, the planarization layer 21 and the light shielding material film 20 need not be etched using the same resist pattern 22 and the same etchant. For example, the planarization layer 21 and the light shielding material film 20 are separated from each other. The etchant may be formed of another resist pattern. That is, in the present invention, the etching of the planarizing layer 21 and the light shielding material film 20 may be performed continuously under the same conditions or discontinuously under different conditions. There is no particular limitation as long as the inner surfaces of the opening 11 and the opening 11 are substantially flush with each other.
[0028]
When the hole 13 and the opening 11 are formed in this way, the P-SiN film 23 having a refractive index of about 2.0 is formed to a predetermined thickness so as to cover the inner surfaces thereof as shown in FIG. Then, a P-SiON film 24 having a refractive index of about 1.8 is formed to a predetermined thickness so as to cover the inner surface of the P-SiN film 23, and further, the inner surface of the P-SiON film 24 is covered. A P-SiON film 25 having a refractive index of about 1.6 is formed in a state where the hole 13 and the opening 11 are embedded.
Note that the refractive indexes of the P-SiON films 24 and 25 are adjusted by appropriately adjusting the flow ratio of SiH 4 , NH 3 , and N 2 O that are the source gases as described above.
[0029]
Next, portions of the P-SiON film 25, the P-SiON film 24, and the P-SiN film 23 formed on the planarizing film 12 as shown in FIG. 3C are etched back or CMP ( Chemical mechanical polishing method), thereby leaving each film only in the hole 13 and the opening 11, and leaving the remaining portions in the third transparent film 16, the second transparent film 15, and the first The transparent film 14 is used.
[0030]
Next, as shown in FIG. 1, a passivation film 17 made of a P-SiN film is formed, and further a color filter layer 18 is formed by a dyeing method or a color resist coating, and then an on-chip lens 19 is formed, and solid-state imaging is performed. Element 1 is obtained. Here, the on-chip lens 19 is formed by depositing a heat-meltable transparent resin or high-density SiN that can be CVD without heating at room temperature, and further providing a resist on the upper portion, and then performing a thermal reflow treatment on the resist. Etch-back transfer or the like is used in which a convex lens shape having a desired curvature is formed, and the deposited layer is etched using this as a mask, and the resist is removed to obtain the on-chip lens 19.
[0031]
In the solid-state imaging device 1 obtained in this way, the light incident on the surface of the light-receiving sensor unit 3 out of the light condensed by the on-chip lens 19 is the color filter layer 18 and the passivation film. 17, enters the third transparent film 16, the second transparent film 15, or the first transparent film 14 in the hole portion 13, and further passes through the opening portion 11 to pass through the interlayer film 9 and the insulating film 7. And reaches the light receiving sensor unit 3 where photoelectric conversion is performed.
[0032]
In addition, the light incident on the surface of the light receiving sensor unit 3 among the light condensed by the on-chip lens 19 is incident on the interface between the third transparent film 16 and the second transparent film 15, the second As described above, the light is refracted at the interface between the transparent film 15 and the first transparent film 14. Of the light refracted at these interfaces, the light that reaches the interface between the first transparent film 14 and the planarizing film 12 particularly has an incident angle with the normal of the interface exceeding a predetermined angle. Then, the light is totally reflected again, returned to the center of the hole 13 or the opening 11, and is incident on the light receiving sensor 3 as it is.
In addition, the light that has been collected by the on-chip lens 19 and incident on the surface of the light receiving sensor unit 3 obliquely reaches the interface between the first transparent film 14 and the opening 11 of the light shielding film 10. The light is totally reflected from the inner surface of the opening 11 and returned to the opening 11 to enter the light-receiving sensor unit 3.
[0033]
Therefore, in this solid-state imaging device 1, total reflection at the interface between the planarizing film 12 and the first transparent film 14, and the first transparent film 14, the second transparent film 15, and the third transparent film. By refraction at the interface between the films 16, light incident obliquely on the surface of the light receiving sensor unit 3 can be efficiently condensed on the light receiving sensor unit 3, thereby improving sensitivity. Can be planned.
Further, in such a manufacturing method of the solid-state imaging device 1, the solid-state imaging device 1 shown in FIG. 1 can be easily and reliably formed, and the thickness of the planarizing film 12 is increased. As a result, the height (depth) of the interface between the planarizing film 12 and the first transparent film 14 that makes total reflection can be easily expanded, and the light collection efficiency can be further increased.
[0034]
In the embodiment, the light shielding film 10 is provided to prevent light from entering the transfer electrode 8. However, the present invention is not limited to this, and the planarizing film 12 and the first transparent film 14 are not limited thereto. It is also possible to prevent the light incident on the transfer electrode 8 from entering the transfer electrode 8 by surely totally reflecting the light incident here at the interface. Here, in order to surely totally reflect light at the interface between the planarizing film 12 and the first transparent film 14 in this way, for example, the height (depth) of these interfaces is increased (deep). What is necessary is just to enlarge a total reflection surface or enlarge the refractive index difference of the planarization film | membrane 12 and the 1st transparent film 14.
Thus, if light is reliably totally reflected at the interface between the planarizing film 12 and the first transparent film 14 without providing a light shielding film, when the light shielding film is formed of aluminum, for example, It can be prevented that the opening shape and size of the light receiving sensor portions 3 are slightly different due to the grains, and that slight sensitivity unevenness is generated between the light receiving sensor portions including the irregular reflection component.
[0035]
In the above embodiment, the first transparent film 14, the second transparent film 15, and the third transparent film 16 are formed in the hole 13 and the opening 11, but the present invention is limited to this. In the case where the light shielding film 10 is provided, only the first transparent film 14 may be provided so that the light is totally reflected at the interface between the first transparent film 14 and the planarizing film 12. When the light shielding film 10 is not provided, at least a second transparent film 15 is provided in addition to the first transparent film 14 so that light is reliably totally reflected at the interface between the first transparent film 14 and the planarizing film 12. You can do it.
[0036]
【The invention's effect】
As described above, in the first solid-state imaging device according to the present invention, light guided to the interface side between the first transparent film and the planarization film is transmitted at the interface between the first transparent film and the planarization film. For example, the first transparent film and the flattening film are totally reflected due to a difference in refractive index, thereby returning light into the hole and entering the light receiving sensor part. The light incident obliquely with respect to the light can be efficiently collected on the light receiving sensor unit, and thus the sensitivity can be improved.
[0037]
The second solid-state imaging device according to the present invention totally reflects, for example, light reaching the interface between the first transparent film and the planarizing film due to a difference in refractive index between the first transparent film and the planarizing film. Further, the light reaching the interface between the first transparent film and the opening of the light shielding film is totally reflected by the inner surface of the opening and returned into the opening, and is incident on the light receiving sensor. Also, light incident obliquely with respect to the surface of the light receiving sensor portion can be efficiently condensed on the light receiving sensor portion, thereby improving sensitivity.
[0038]
The manufacturing method of the solid-state imaging device according to the present invention can form the second solid-state imaging device according to the present invention easily and reliably, and makes the total reflection by increasing the thickness of the planarizing film. The height (depth) of the interface between the planarizing film and the first transparent film can be easily increased to increase the total reflectivity by the interface.
[Brief description of the drawings]
FIG. 1 is a side sectional view of an essential part showing a schematic configuration of an embodiment of a solid-state imaging device of the present invention.
FIGS. 2A to 2C are side cross-sectional views for explaining a manufacturing method of the solid-state imaging device shown in FIG.
FIGS. 3A to 3C are views for explaining a method of manufacturing the solid-state imaging device shown in FIG. 1, and a side of a main part for explaining steps subsequent to FIG. It is sectional drawing.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Solid-state image sensor, 2 ... Silicon substrate (base | substrate), 3 ... Light-receiving sensor part, 5 ... Charge transfer part, 7 ... Insulating film, 8 ... Transfer electrode, 10 ... Light shielding film, 11 ... Opening part, 12 ... Planarization Membrane, 13 ... hole, 14 ... first transparent film, 15 ... second transparent film, 16 ... third transparent film, 20 ... light shielding material film

Claims (6)

基体の表層部に設けられて光電変換をなす受光センサ部を備えてなり、
前記受光センサ部の直上位置の一部に孔部を形成した状態で平坦化膜が設けられ、
前記孔部の内面上に該内面を覆って前記平坦化膜より屈折率が大きい第1の透明膜が設けられ、
さらにこの第1の透明膜の内面上に該内面覆って第1の透明膜より屈折率が小さい第2の透明膜が設けられてなる
ことを特徴とする固体撮像素子。
Comprising a light receiving sensor portion for photoelectric conversion provided on the surface layer portion of the substrate ;
A planarizing film is provided in a state where a hole is formed in a part of the position directly above the light receiving sensor part ,
A first transparent film having a refractive index larger than that of the planarizing film is provided on the inner surface of the hole, covering the inner surface;
Furthermore, a second transparent film having a refractive index smaller than that of the first transparent film is provided on the inner surface of the first transparent film so as to cover the inner surface.
基体の表層部に設けられて光電変換をなす受光センサ部と、前記基体上に絶縁膜を介して設けられた転送電極とを備えてなり、
前記転送電極上を覆い、かつ前記受光センサ部の直上位置の一部に孔部を形成した状態で平坦化膜が設けられ、
前記孔部の内面上に該内面を覆って前記平坦化膜より屈折率が大きい第1の透明膜が設けられ、
さらにこの第1の透明膜の内面上に該内面覆って第1の透明膜より屈折率が小さい第2の透明膜が設けられてなる
ことを特徴とする固体撮像素子。
Comprising a light receiving sensor part for photoelectric conversion provided on the surface layer part of the base, and a transfer electrode provided on the base via an insulating film ;
A flattening film is provided in a state of covering the transfer electrode and forming a hole in a part of the position directly above the light receiving sensor part,
A first transparent film having a refractive index larger than that of the planarizing film is provided on the inner surface of the hole, covering the inner surface;
Furthermore, a second transparent film having a refractive index smaller than that of the first transparent film is provided on the inner surface of the first transparent film so as to cover the inner surface.
基体の表層部に設けられて光電変換をなす受光センサ部と、該受光センサ部の直上位置の一部に開口部を形成した状態で設けられた遮光膜とを備えてなり、
前記遮光膜上を覆い、かつ前記開口部に連通する孔部をその内面が前記開口部の内面に略面一となるようにして形成した状態で平坦化膜が設けられ、
前記孔部および開口部の内面上に該内面を覆って前記平坦化膜より屈折率が大きい第1の透明膜が設けられ、
前記第1の透明膜の内面上に該内面を覆って第1の透明膜より屈折率が小さい第2の透明膜が設けられてなる
ことを特徴とする固体撮像素子。
A light receiving sensor portion that is provided on the surface layer portion of the substrate and performs photoelectric conversion, and a light shielding film provided in a state in which an opening is formed in a part of the position immediately above the light receiving sensor portion ,
A flattening film is provided in a state of covering the light shielding film and forming a hole communicating with the opening so that the inner surface thereof is substantially flush with the inner surface of the opening,
A first transparent film having a refractive index larger than that of the planarizing film is provided on the inner surfaces of the hole and the opening;
A solid-state imaging device, wherein a second transparent film having a refractive index smaller than that of the first transparent film is provided on the inner surface of the first transparent film.
基体の表層部に設けられて光電変換をなす受光センサ部と、前記基体上に絶縁膜を介して設けられた転送電極と、該転送電極を覆い、かつ受光センサ部の直上位置の一部に開口部を形成した状態で設けられた遮光膜とを備えてなり、
前記遮光膜上を覆い、かつ前記開口部に連通する孔部をその内面が前記開口部の内面に略面一となるようにして形成した状態で平坦化膜が設けられ、
前記孔部および開口部の内面上に該内面を覆って前記平坦化膜より屈折率が大きい第1の透明膜が設けられ、
前記第1の透明膜の内面上に該内面を覆って第1の透明膜より屈折率が小さい第2の透明膜が設けられてなる
ことを特徴とする固体撮像素子。
A light receiving sensor unit for photoelectric conversion provided on the surface layer of the base, a transfer electrode provided on the base via an insulating film , and a part of the position directly above the light receiving sensor that covers the transfer electrode A light shielding film provided in a state where the opening is formed,
A flattening film is provided in a state of covering the light shielding film and forming a hole communicating with the opening so that the inner surface thereof is substantially flush with the inner surface of the opening,
A first transparent film having a refractive index larger than that of the planarizing film is provided on the inner surfaces of the hole and the opening;
A solid-state imaging device, wherein a second transparent film having a refractive index smaller than that of the first transparent film is provided on the inner surface of the first transparent film.
基体の表層部に設けられて光電変換をなす受光センサ部と、該受光センサ部の直上位置の一部に開口部を形成した状態で設けられた遮光膜とを備えてなる固体撮像素子の製造方法であって、
前記基体上に遮光材料膜を形成する工程と、
前記遮光材料膜上に平坦化膜材料を成膜し、かつ該平坦化膜材料を平坦化して平坦化膜を形成する工程と、
前記受光センサ部の一部の直上位置にある前記平坦化膜と遮光膜とをエッチングすることにより該平坦化膜に形成される孔部の内面と遮光膜に形成される開口部の内面とが略面一になるようにこれら平坦化膜の孔部と遮光膜の開口部とを形成する工程と、
前記孔部および開口部の内面上に該内面を覆って前記平坦化膜より屈折率が大きい第1の透明膜を形成する工程と、
前記第1の透明膜の内面上に該内面を覆って第1の透明膜より屈折率が小さい第2の透明膜を形成する工程と、を備えた
ことを特徴とする固体撮像素子の製造方法。
Production of a solid-state imaging device comprising a light- receiving sensor portion that is provided on a surface layer portion of a substrate and performs photoelectric conversion, and a light-shielding film that is provided in a state where an opening is formed in a portion immediately above the light-receiving sensor portion A method,
Forming a light shielding material film on the substrate;
Forming a planarizing film material on the light shielding material film and planarizing the planarizing film material to form a planarizing film;
By etching the flattening film and the light shielding film located immediately above a part of the light receiving sensor part, an inner surface of a hole formed in the flattening film and an inner surface of an opening formed in the light shielding film are formed. Forming the holes of the planarization film and the opening of the light shielding film so as to be substantially flush with each other;
Forming a first transparent film having a refractive index larger than that of the planarizing film, covering the inner surface of the hole and the opening;
And a step of forming a second transparent film having a refractive index smaller than that of the first transparent film on the inner surface of the first transparent film so as to cover the inner surface. .
基体の表層部に設けられて光電変換をなす受光センサ部と、前記基体上に絶縁膜を介して設けられた転送電極と、該転送電極を覆い、かつ受光センサ部の直上位置の一部に開口部を形成した状態で設けられた遮光膜とを備えてなる固体撮像素子の製造方法であって、
前記転送電極を覆った状態に遮光材料膜を形成する工程と、
前記遮光材料膜上に平坦化膜材料を成膜し、かつ該平坦化膜材料を平坦化して平坦化膜を形成する工程と、
前記受光センサ部の一部の直上位置にある前記平坦化膜と遮光膜とをエッチングすることにより該平坦化膜に形成される孔部の内面と遮光膜に形成される開口部の内面とが略面一になるようにこれら平坦化膜の孔部と遮光膜の開口部とを形成する工程と、
前記孔部および開口部の内面上に該内面を覆って前記平坦化膜より屈折率が大きい第1の透明膜を形成する工程と、
前記第1の透明膜の内面上に該内面を覆って第1の透明膜より屈折率が小さい第2の透明膜を形成する工程と、を備えた
ことを特徴とする固体撮像素子の製造方法。
A light receiving sensor unit for photoelectric conversion provided on the surface layer of the base, a transfer electrode provided on the base via an insulating film , and a part of the position directly above the light receiving sensor that covers the transfer electrode A manufacturing method of a solid-state imaging device comprising a light shielding film provided in a state where an opening is formed,
Forming a light shielding material film in a state of covering the transfer electrode;
Forming a planarizing film material on the light shielding material film and planarizing the planarizing film material to form a planarizing film;
By etching the flattening film and the light shielding film located immediately above a part of the light receiving sensor part, an inner surface of a hole formed in the flattening film and an inner surface of an opening formed in the light shielding film are formed. Forming the holes of the planarization film and the opening of the light shielding film so as to be substantially flush with each other;
Forming a first transparent film having a refractive index larger than that of the planarizing film, covering the inner surface of the hole and the opening;
And a step of forming a second transparent film having a refractive index smaller than that of the first transparent film on the inner surface of the first transparent film so as to cover the inner surface. .
JP28325697A 1997-10-16 1997-10-16 Solid-state imaging device and manufacturing method thereof Expired - Fee Related JP3677970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28325697A JP3677970B2 (en) 1997-10-16 1997-10-16 Solid-state imaging device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28325697A JP3677970B2 (en) 1997-10-16 1997-10-16 Solid-state imaging device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11121725A JPH11121725A (en) 1999-04-30
JP3677970B2 true JP3677970B2 (en) 2005-08-03

Family

ID=17663106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28325697A Expired - Fee Related JP3677970B2 (en) 1997-10-16 1997-10-16 Solid-state imaging device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3677970B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068658A (en) * 1999-08-27 2001-03-16 Sony Corp Solid state image sensor and fabrication thereof
KR100578644B1 (en) * 2004-05-06 2006-05-11 매그나칩 반도체 유한회사 Cmos image sensor having prism and fabricating method thereof
JP4779320B2 (en) * 2004-08-10 2011-09-28 ソニー株式会社 Solid-state imaging device and manufacturing method thereof
JP2007201047A (en) 2006-01-25 2007-08-09 Matsushita Electric Ind Co Ltd Solid-state image pickup device and manufacturing method thereof
JP2010123745A (en) * 2008-11-19 2010-06-03 Sony Corp Solid-state imaging device and camera
JP4873001B2 (en) 2008-12-10 2012-02-08 ソニー株式会社 Solid-state imaging device and manufacturing method thereof, electronic apparatus, and semiconductor device
JP5446485B2 (en) 2009-06-10 2014-03-19 ソニー株式会社 Solid-state imaging device, manufacturing method thereof, and imaging apparatus
JP2011040647A (en) * 2009-08-17 2011-02-24 Hitachi Ltd Solid-state imaging device
EP2487717B1 (en) 2011-02-09 2014-09-17 Canon Kabushiki Kaisha Photoelectric conversion element, photoelectric conversion apparatus and image sensing system
JP5712746B2 (en) * 2011-04-06 2015-05-07 セイコーエプソン株式会社 Sensing device and electronic device
JP6262496B2 (en) * 2013-11-08 2018-01-17 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
JP6425427B2 (en) * 2014-06-16 2018-11-21 キヤノン株式会社 Photoelectric conversion device, method of manufacturing the same, imaging system

Also Published As

Publication number Publication date
JPH11121725A (en) 1999-04-30

Similar Documents

Publication Publication Date Title
JP3620237B2 (en) Solid-state image sensor
KR100540421B1 (en) Semiconductor device and method of producing the same
TWI399849B (en) Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic apparatus
US7382011B2 (en) Solid-state image sensing device equipped with inner lens
JP2833941B2 (en) Solid-state imaging device and method of manufacturing the same
US6362498B2 (en) Color image sensor with embedded microlens array
US7888159B2 (en) Image sensor having curved micro-mirrors over the sensing photodiode and method for fabricating
JPH11284158A (en) Solid image pick-up element and manufacture of solid image pick-up element
JP4939206B2 (en) Image sensor and manufacturing method thereof
JP4281132B2 (en) Solid-state image sensor
US6348361B1 (en) CMOS image sensor having enhanced photosensitivity and method for fabricating the same
JPH1140787A (en) Manufacture of solid-state image pick-up element
JP3677970B2 (en) Solid-state imaging device and manufacturing method thereof
JP4923357B2 (en) Method for manufacturing solid-state imaging device
US7595217B2 (en) Method of manufacturing a CMOS image sensor
JP3959734B2 (en) Solid-state imaging device and manufacturing method thereof
JP2002359363A (en) Solid-state image pickup device and its manufacturing method
KR20010047339A (en) Method for fabricating image sensor having oxide microlens
JPH11103036A (en) Solid-state image-pickup element
JP2014154834A (en) Solid-state imaging element
JP2005033074A (en) Solid state imaging device and its manufacturing method
US20060039044A1 (en) Self-aligned image sensor and method for fabricating the same
JPH10326885A (en) Solid-state image-pickup element
JP2007201163A (en) Solid-state imaging element, and manufacturing method thereof
JPH11284162A (en) Solid-state imaging element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050502

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees