JPH113974A - Semiconductor integrated circuit device and manufacture thereof - Google Patents

Semiconductor integrated circuit device and manufacture thereof

Info

Publication number
JPH113974A
JPH113974A JP9153593A JP15359397A JPH113974A JP H113974 A JPH113974 A JP H113974A JP 9153593 A JP9153593 A JP 9153593A JP 15359397 A JP15359397 A JP 15359397A JP H113974 A JPH113974 A JP H113974A
Authority
JP
Japan
Prior art keywords
insulating film
semiconductor substrate
gate insulating
film
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9153593A
Other languages
Japanese (ja)
Inventor
Fumio Otsuka
文雄 大塚
Yusuke Nonaka
裕介 野中
Morio Nakamura
守男 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9153593A priority Critical patent/JPH113974A/en
Publication of JPH113974A publication Critical patent/JPH113974A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Element Separation (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a standby current in a semiconductor integrated circuit device, by a method wherein an interelement isolation region is formed by burying an insulating film in a groove formed in a semiconductor substrate, and the height of the surface of the insulating film on the regions of thin gate insulating films is formed almost flush with that of the surface of the substrate. SOLUTION: Thin gate insulating films 11 are formed on an internal circuit provided with a CMOSFET having a short gate length by a second thermal oxidation treatment, and a thick gate insulating film 12 is provided on an I/O circuit provided with a CMOSFET having a long gate length by first and second thermal oxidation treatments. An interelement isolation region for insulating electrically the adjacent MOSFETs from each other is formed by burying an insulating film 4 in a groove 3 formed in a semiconductor substrate 1. Moreover, in the internal circuit, the height of the surface of the film 4 buried in the groove 3 is formed in roughly the same height as that of the surface of the substrate 1, and the surface of the substrate 1 in the internal circuit is made lower than that of the substrate 1 in the I/O circuit. As a result, an electric field concentration in a semiconductor integrated circuit device due to a malformation of the film 4 is inhibited and a standby current in the device can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体集積回路装
置およびその製造方法に関し、特に、CMOSFET
(Complementary Metal Oxide Semiconductor Field Ef
fect Transistor )で構成された論理LSI(Large Sc
ale Integrated Circuit)を有する半導体集積回路装置
に適用して有効な技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated circuit device and a method of manufacturing the same, and more particularly, to a CMOSFET.
(Complementary Metal Oxide Semiconductor Field Ef
Logic Transistor (Large Sc)
The present invention relates to a technology that is effective when applied to a semiconductor integrated circuit device having an ale integrated circuit.

【0002】[0002]

【従来の技術】CMOS論理LSI、およびSRAM
(Static Random Access Memory )またはDRAM(Dy
namic Random Access Memory)を搭載したCMOS論理
LSIにおいては、内部回路と入出力回路との電源電圧
が異なる場合がある。例えば、高速化を狙ったCMOS
論理LSIでは、内部回路のMOSFETのゲート電極
の長さ(ゲート長)は入出力回路のMOSFETのゲー
ト長よりも短いので、内部回路のMOSFETのソース
領域、ドレイン領域を構成する半導体領域の耐圧を確保
するために、内部回路の電源電圧は入出力回路の電源電
圧よりも低く設定される。
2. Description of the Related Art CMOS logic LSI and SRAM
(Static Random Access Memory) or DRAM (Dy
In a CMOS logic LSI equipped with a dynamic random access memory (NRAM), the power supply voltages of the internal circuit and the input / output circuit may be different. For example, CMOS for high speed
In a logic LSI, since the length (gate length) of the gate electrode of the MOSFET in the internal circuit is shorter than the gate length of the MOSFET in the input / output circuit, the withstand voltage of the semiconductor region forming the source and drain regions of the MOSFET in the internal circuit is reduced. To ensure this, the power supply voltage of the internal circuit is set lower than the power supply voltage of the input / output circuit.

【0003】さらに、電源電圧の高い入出力回路のMO
SFETのゲート絶縁膜の厚さを電源電圧の低い内部回
路のMOSFETのゲート絶縁膜の厚さよりも厚くする
ことによって、ゲート絶縁膜の信頼度を確保している。
例えば、0.2μmの長さのゲート電極が設けられたCM
OSFETを内部回路に有するCMOS論理LSIで
は、内部回路の電源電圧は1.8V、入出力回路の電源電
圧は3.3Vであり、内部回路のMOSFETのゲート絶
縁膜の厚さは約4nm、入出力回路のMOSFETのゲ
ート絶縁膜の厚さは約8nmである。
Further, an MO of an input / output circuit having a high power supply voltage is used.
The reliability of the gate insulating film is ensured by making the thickness of the gate insulating film of the SFET larger than the thickness of the gate insulating film of the MOSFET of the internal circuit having a low power supply voltage.
For example, a CM provided with a gate electrode having a length of 0.2 μm
In a CMOS logic LSI having an OSFET in an internal circuit, the power supply voltage of the internal circuit is 1.8 V, the power supply voltage of the input / output circuit is 3.3 V, the thickness of the gate insulating film of the MOSFET in the internal circuit is about 4 nm, and the input voltage is about 4 nm. The thickness of the gate insulating film of the MOSFET in the output circuit is about 8 nm.

【0004】ところで、厚さの異なる2種類のゲート絶
縁膜をシリコン単結晶で構成される半導体基板上に形成
する方法としては、まず、半導体基板の主面上の素子間
分離領域にLOCOS(Local Oxidation of Silicon)
酸化膜を形成した後、半導体基板に1回目の熱酸化処理
を施して半導体基板の表面に第1の酸化シリコン膜を形
成し、次いで、薄いゲート絶縁膜が形成される領域の第
1の酸化シリコン膜をウエットエッチングによって除去
し、次いで、再び、半導体基板に2回目の熱酸化処理を
施して半導体基板の表面に第2の酸化シリコン膜を形成
する方法が採用されている。
As a method of forming two types of gate insulating films having different thicknesses on a semiconductor substrate composed of silicon single crystal, first, a LOCOS (Local) is formed in an element isolation region on a main surface of the semiconductor substrate. Oxidation of Silicon)
After forming the oxide film, a first thermal oxidation treatment is performed on the semiconductor substrate to form a first silicon oxide film on the surface of the semiconductor substrate, and then a first oxidation of a region where a thin gate insulating film is formed is performed. A method is employed in which the silicon film is removed by wet etching, and then the semiconductor substrate is again subjected to a second thermal oxidation treatment to form a second silicon oxide film on the surface of the semiconductor substrate.

【0005】すなわち、薄いゲート絶縁膜は2回目の熱
酸化処理で形成される第2の酸化シリコン膜によって構
成され、厚いゲート絶縁膜は1回目の熱酸化処理および
2回目の熱酸化処理で形成される第2の酸化シリコン膜
によって構成される。
That is, the thin gate insulating film is formed by the second silicon oxide film formed by the second thermal oxidation process, and the thick gate insulating film is formed by the first thermal oxidation process and the second thermal oxidation process. And a second silicon oxide film to be formed.

【0006】なお、薄いゲート絶縁膜が設けられたMO
SFETと厚いゲート絶縁膜が設けられたMOSFET
を有する半導体集積回路装置の例としては、日経マグロ
ウヒル社発行「日経マイクロデバイス」1996年3月
号、P54〜P59に記載されているDRAM混載ロジ
ックがある。
An MO having a thin gate insulating film is provided.
MOSFET with SFET and thick gate insulating film
As an example of a semiconductor integrated circuit device having a DRAM, there is a DRAM embedded logic described in “Nikkei Micro Device” issued by Nikkei McGraw-Hill Company, March 1996, pages P54 to P59.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、厚さの
異なるゲート絶縁膜を半導体基板上に形成する上記方法
では、薄いゲート絶縁膜が形成される領域の第1の酸化
シリコン膜をウエットエッチングによって除去する際、
素子間分離領域に形成されたLOCOS酸化膜が削れ
て、LOCOS酸化膜の端部でLOCOS酸化膜の上面
が半導体基板の表面よりも下がってしまう。
However, in the above method of forming gate insulating films having different thicknesses on a semiconductor substrate, the first silicon oxide film in a region where a thin gate insulating film is formed is removed by wet etching. When doing
The LOCOS oxide film formed in the element isolation region is shaved, and the upper surface of the LOCOS oxide film is lower than the surface of the semiconductor substrate at the end of the LOCOS oxide film.

【0008】このため、LOCOS酸化膜の端部に電界
が集中してMOSFETのドレイン電流(Ids)−ゲー
ト電圧(Vg )特性にキンク(Kink)が生じ、MOSF
ETがオフ状態でもスタンバイ電流が流れて消費電力が
増加するという問題が生じた。
[0008] Therefore, the concentration of electric field on the end portion of the LOCOS oxide film MOSFET drain current (I ds) - Kink (Kink) occurs in the gate voltage (V g) characteristics, MOSF
Even when the ET is off, there is a problem that the standby current flows and the power consumption increases.

【0009】本発明の目的は、薄いゲート絶縁膜が設け
られたMOSFETと厚いゲート絶縁膜が設けられたM
OSFETとを有する半導体集積回路装置において、ス
タンバイ電流を減少させて消費電力の増加を抑えること
ができる技術を提供することにある。
It is an object of the present invention to provide a MOSFET provided with a thin gate insulating film and a MOSFET provided with a thick gate insulating film.
It is an object of the present invention to provide a technology capable of suppressing an increase in power consumption by reducing a standby current in a semiconductor integrated circuit device having an OSFET.

【0010】本発明の前記ならびにその他の目的と新規
な特徴は、本明細書の記述および添付図面から明らかに
なるであろう。
The above and other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings.

【0011】[0011]

【課題を解決するための手段】本願において開示される
発明のうち、代表的なものの概要を簡単に説明すれば、
次のとおりである。すなわち、 (1)本発明の半導体集積回路装置は、薄いゲート絶縁
膜が設けられたMOSFETと厚いゲート絶縁膜が設け
られたMOSFETとを有しており、隣接する半導体素
子間を電気的に絶縁する素子間分離領域は、半導体基板
に形成された溝に埋め込まれた絶縁膜によって構成され
ており、薄いゲート絶縁膜が形成された領域での絶縁膜
の表面と半導体基板の表面とがほぼ同じ高さである。
SUMMARY OF THE INVENTION Among the inventions disclosed in the present application, the outline of a representative one will be briefly described.
It is as follows. (1) The semiconductor integrated circuit device of the present invention includes a MOSFET provided with a thin gate insulating film and a MOSFET provided with a thick gate insulating film, and electrically insulates adjacent semiconductor elements. The element isolation region is formed by an insulating film embedded in a groove formed in the semiconductor substrate, and the surface of the insulating film in the region where the thin gate insulating film is formed is almost the same as the surface of the semiconductor substrate. Height.

【0012】(2)本発明の半導体集積回路装置の製造
方法は、まず、半導体基板上に第1の窒化シリコン膜を
堆積した後、第1の窒化シリコン膜および半導体基板を
順次加工して半導体基板の素子間分離領域に溝を形成す
る。次に、半導体基板上に絶縁膜を堆積した後、薄いゲ
ート絶縁膜が形成される領域の溝の上に第2の窒化シリ
コン膜を形成し、次いで、第2の窒化シリコン膜および
絶縁膜の表面を研磨して、上記溝に絶縁膜を埋め込む。
次に、第1、第2の窒化シリコン膜を除去した後に、半
導体基板に第1の熱酸化処理を施して、半導体基板の表
面に第1の酸化シリコン膜を形成した後、薄いゲート絶
縁膜が形成される領域の第1の酸化シリコン膜を除去
し、次いで、半導体基板に第2の熱酸化処理を施して、
半導体基板の表面に第2の酸化シリコン膜を形成するこ
とにより、第2の熱酸化処理によって形成される薄いゲ
ート絶縁膜、ならびに第1の熱酸化処理および第2の熱
酸化処理によって形成される厚いゲート絶縁膜を設ける
ものである。
(2) In the method of manufacturing a semiconductor integrated circuit device according to the present invention, first, a first silicon nitride film is deposited on a semiconductor substrate, and then the first silicon nitride film and the semiconductor substrate are sequentially processed. A groove is formed in the element isolation region of the substrate. Next, after depositing an insulating film on the semiconductor substrate, a second silicon nitride film is formed over the groove in the region where the thin gate insulating film is formed, and then the second silicon nitride film and the insulating film are formed. The surface is polished, and an insulating film is embedded in the groove.
Next, after removing the first and second silicon nitride films, a first thermal oxidation treatment is performed on the semiconductor substrate to form a first silicon oxide film on the surface of the semiconductor substrate, and then a thin gate insulating film is formed. Removing the first silicon oxide film in the region where is formed, and then subjecting the semiconductor substrate to a second thermal oxidation process,
Forming a second silicon oxide film on a surface of a semiconductor substrate to form a thin gate insulating film formed by a second thermal oxidation process, and a thin gate insulating film formed by a first thermal oxidation process and a second thermal oxidation process A thick gate insulating film is provided.

【0013】上記した手段によれば、第2の窒化シリコ
ン膜および絶縁膜の表面を研磨して、半導体基板に設け
られた溝に絶縁膜を埋め込む際、溝が形成されていない
半導体基板の表面には第1の窒化シリコン膜が残る。こ
こで、第2の窒化シリコン膜が上記研磨時のストッパと
なるので、上記第1の窒化シリコン膜の厚さは、薄いゲ
ート絶縁膜が形成される領域では厚く、厚いゲート絶縁
膜が形成される領域では薄くなる。
According to the above means, when the surfaces of the second silicon nitride film and the insulating film are polished and the insulating film is buried in the grooves provided in the semiconductor substrate, the surface of the semiconductor substrate where the grooves are not formed is formed. The first silicon nitride film remains. Here, since the second silicon nitride film serves as a stopper during the polishing, the thickness of the first silicon nitride film is large in a region where a thin gate insulating film is formed, and a thick gate insulating film is formed. Area becomes thinner.

【0014】従って、この後、第1の窒化シリコン膜を
除去すると、薄いゲート絶縁膜が形成される領域では、
溝に埋め込まれた絶縁膜の表面は半導体基板の表面より
も高くなり、また、厚いゲート絶縁膜が形成される領域
では、溝に埋め込まれた絶縁膜の表面と半導体基板の表
面とがほぼ同じ高さとなる。
Therefore, after that, when the first silicon nitride film is removed, in a region where a thin gate insulating film is formed,
The surface of the insulating film buried in the groove is higher than the surface of the semiconductor substrate, and in the region where the thick gate insulating film is formed, the surface of the insulating film buried in the groove is almost the same as the surface of the semiconductor substrate. And height.

【0015】さらに、この後、半導体基板に第1の熱酸
化処理を施して半導体基板の表面に第1の酸化シリコン
膜を形成し、次いで、薄いゲート絶縁膜が形成される領
域の第1の酸化シリコン膜を除去しても、溝に埋め込ま
れた絶縁膜は局所的に薄くならず、薄いゲート絶縁膜が
形成される領域の溝に埋め込まれた絶縁膜の表面と半導
体基板の表面とがほぼ同じ高さとなる。
Further, after that, a first thermal oxidation treatment is performed on the semiconductor substrate to form a first silicon oxide film on the surface of the semiconductor substrate, and then a first silicon oxide film in a region where a thin gate insulating film is formed is formed. Even if the silicon oxide film is removed, the insulating film buried in the groove does not become locally thin, and the surface of the insulating film buried in the groove in the region where the thin gate insulating film is formed and the surface of the semiconductor substrate are removed. They are almost the same height.

【0016】従って、素子間分離領域を構成する絶縁膜
の形状不良が起因の電界集中が抑えられて、MOSFE
TのIds−Vg 特性でのキンクの発生を防ぐことができ
るので、MOSFETがオフ状態でのスタンバイ電流は
減少し消費電力の増加を抑えることができる。
Accordingly, the electric field concentration due to the defective shape of the insulating film constituting the element isolation region is suppressed, and the MOSFE
Since it is possible to prevent the occurrence of kink in the I ds -V g characteristics of the T, MOSFET is the standby current in the off state it is possible to suppress an increase in reduced power consumption.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0018】図1は、本発明の一実施の形態であるCM
OS論理LSIの内部回路および入出力回路を示す半導
体基板の要部断面図である。なお、実施の形態を説明す
るための全図において同一機能を有するものは同一の符
号を付し、その繰り返しの説明は省略する。
FIG. 1 shows a CM according to an embodiment of the present invention.
FIG. 3 is a cross-sectional view of a principal part of a semiconductor substrate, illustrating an internal circuit and an input / output circuit of an OS logic LSI. In all the drawings for describing the embodiments, components having the same function are denoted by the same reference numerals, and the repeated description thereof will be omitted.

【0019】図1に示すように、ゲート長の短いCMO
SFETを有する内部回路では、第2の熱酸化処理によ
って形成される、例えば約4nmの厚さの薄いゲート絶
縁膜11が設けられており、ゲート長の長いCMOSF
ETを有する入出力回路では、第1の熱酸化処理および
第2の熱酸化処理によって形成される、例えば約8nm
の厚さの厚いゲート絶縁膜12が設けられている。ま
た、隣接するMOSFET間を互いに電気的に絶縁する
ために設けられる素子間分離領域は、半導体基板1に形
成された溝3に埋め込まれた絶縁膜4によって構成され
ている。さらに、内部回路においては溝3に埋め込まれ
た絶縁膜4の表面と半導体基板1の表面とがほぼ同じ高
さであり、また、内部回路の半導体基板1の表面は入出
力回路の半導体基板1の表面よりも低く、その標高差
(h)は30nm以下である。
As shown in FIG. 1, a CMO having a short gate length is used.
In an internal circuit having an SFET, a thin gate insulating film 11 having a thickness of, for example, about 4 nm, which is formed by a second thermal oxidation process, is provided.
In an input / output circuit having ET, for example, about 8 nm formed by the first thermal oxidation process and the second thermal oxidation process.
A gate insulating film 12 having a large thickness is provided. An element isolation region provided for electrically insulating adjacent MOSFETs from each other is constituted by an insulating film 4 buried in a groove 3 formed in the semiconductor substrate 1. Further, in the internal circuit, the surface of the insulating film 4 buried in the groove 3 and the surface of the semiconductor substrate 1 are substantially at the same height, and the surface of the semiconductor substrate 1 of the internal circuit is And the height difference (h) is 30 nm or less.

【0020】本実施の形態であるCMOS論理LSIの
内部回路および入出力回路の製造方法を図2〜図7に示
す半導体基板の要部断面図を用いて説明する。
A method of manufacturing the internal circuit and the input / output circuit of the CMOS logic LSI according to the present embodiment will be described with reference to the cross-sectional views of the main parts of the semiconductor substrate shown in FIGS.

【0021】まず、図2に示すように、n型シリコン単
結晶で構成される半導体基板1上に第1の窒化シリコン
膜2を堆積した後、パターニングされたフォトレジスト
をマスクにして、この第1の窒化シリコン膜2をエッチ
ングし、半導体素子が形成される活性領域のみに第1の
窒化シリコン膜2を残す。次いで、第1の窒化シリコン
膜が除去された半導体基板1に溝3を形成する。窒化シ
リコン膜2の厚さは、例えば70nmであり、溝3の深
さは、例えば0.35μmである。
First, as shown in FIG. 2, a first silicon nitride film 2 is deposited on a semiconductor substrate 1 made of an n-type silicon single crystal, and then, using a patterned photoresist as a mask, The first silicon nitride film 2 is etched to leave the first silicon nitride film 2 only in the active region where the semiconductor element is formed. Next, a trench 3 is formed in the semiconductor substrate 1 from which the first silicon nitride film has been removed. The thickness of the silicon nitride film 2 is, for example, 70 nm, and the depth of the groove 3 is, for example, 0.35 μm.

【0022】次に、半導体基板1上に厚さ350〜50
0nmの絶縁膜4、例えば酸化シリコン膜を堆積した
後、内部回路の半導体基板1に設けられた溝3の上のみ
に、例えば170nmの厚さの第2の窒化シリコン膜5
を形成する。この第2の窒化シリコン膜5は、後に絶縁
膜4の表面を研磨する際の平坦性を向上するために設け
られる。
Next, a thickness of 350 to 50
After depositing an insulating film 4 having a thickness of 0 nm, for example, a silicon oxide film, a second silicon nitride film 5 having a thickness of, for example, 170 nm is formed only on the groove 3 provided in the semiconductor substrate 1 of the internal circuit.
To form The second silicon nitride film 5 is provided to improve flatness when polishing the surface of the insulating film 4 later.

【0023】次に、図3に示すように、化学的機械研磨
(Chemical Mechanical Polishing)法によって第2の
窒化シリコン膜5および絶縁膜4の表面を第1の窒化シ
リコン膜2が露出するまで研磨することによって、溝3
を絶縁膜4で埋め込み、溝3に埋め込まれた絶縁膜4に
よって素子間分離領域を構成する。なお、内部回路に設
けられた第2の窒化シリコン膜5が上記研磨時のストッ
パとなるので、内部回路での第1の窒化シリコン膜2は
厚く、入出力回路での第1の窒化シリコン膜2は薄くな
る。
Next, as shown in FIG. 3, the surfaces of the second silicon nitride film 5 and the insulating film 4 are polished by a chemical mechanical polishing method until the first silicon nitride film 2 is exposed. By doing, groove 3
Is embedded in the insulating film 4, and the insulating film 4 embedded in the trench 3 forms an element isolation region. Since the second silicon nitride film 5 provided in the internal circuit serves as a stopper during the above polishing, the first silicon nitride film 2 in the internal circuit is thick and the first silicon nitride film in the input / output circuit. 2 becomes thinner.

【0024】次いで、図4に示すように、熱リン酸によ
って窒化シリコン膜2を除去する。ここで、内部回路で
は溝3に埋め込まれた絶縁膜4の表面は半導体基板1の
表面よりも高くなり、入出力回路では溝3に埋め込まれ
た絶縁膜4の表面は半導体基板1の表面とほぼ同じ高さ
となる。この後、半導体基板1に不純物のイオン打ち込
み法を用いた自己整合法でp型ウエル6とn型ウエル7
を形成する。
Next, as shown in FIG. 4, the silicon nitride film 2 is removed by hot phosphoric acid. Here, in the internal circuit, the surface of the insulating film 4 buried in the groove 3 is higher than the surface of the semiconductor substrate 1, and in the input / output circuit, the surface of the insulating film 4 buried in the groove 3 is in contact with the surface of the semiconductor substrate 1. They are almost the same height. Thereafter, the p-type well 6 and the n-type well 7 are
To form

【0025】次に、図示はしないが、p型ウエル6とn
型ウエル7のそれぞれのチャネル領域へp型不純物(例
えば、ボロン(B))を導入してしきい値電圧制御層を
形成した後、第1の熱酸化処理を半導体基板1に施して
p型ウエル6とn型ウエル7の表面に約5nmの厚さの
第1の酸化シリコン膜8を形成する。
Next, although not shown, the p-type wells 6 and n
After a p-type impurity (for example, boron (B)) is introduced into each channel region of the mold well 7 to form a threshold voltage control layer, a first thermal oxidation process is performed on the semiconductor substrate 1 to form a p-type impurity. A first silicon oxide film 8 having a thickness of about 5 nm is formed on the surfaces of the well 6 and the n-type well 7.

【0026】次に、図5に示すように、入出力回路にフ
ォトレジスト9を形成し、フォトレジスト9をマスクに
して、フッ酸(HF)を含んだ水溶液で内部回路の第1
の酸化シリコン膜8および絶縁膜4の表面をエッチング
する。
Next, as shown in FIG. 5, a photoresist 9 is formed on the input / output circuit, and using the photoresist 9 as a mask, the first circuit of the internal circuit is treated with an aqueous solution containing hydrofluoric acid (HF).
Of silicon oxide film 8 and insulating film 4 are etched.

【0027】次いで、図6に示すように、フォトレジス
ト9を除いた後、第2の熱酸化処理を半導体基板1に施
して、内部回路のp型ウエル6とn型ウエル7の表面に
約4nmの厚さの第2の酸化シリコン膜10aを形成
し、入出力回路のp型ウエル6の表面に約8nmの厚さ
の第2の酸化シリコン膜10bを形成する。
Next, as shown in FIG. 6, after the photoresist 9 is removed, a second thermal oxidation treatment is performed on the semiconductor substrate 1 so that the surface of the p-type well 6 and the n-type well 7 of the internal circuit is A second silicon oxide film 10a having a thickness of 4 nm is formed, and a second silicon oxide film 10b having a thickness of about 8 nm is formed on the surface of the p-type well 6 of the input / output circuit.

【0028】すなわち、内部回路の薄いゲート絶縁膜1
1は、第2の熱酸化処理によって形成される第2の酸化
シリコン膜10aによって構成され、入出力回路の厚い
ゲート絶縁膜12は、第1の熱酸化処理および第2の熱
酸化処理によって形成される第2の酸化シリコン膜10
bによって構成される。
That is, the thin gate insulating film 1 of the internal circuit
Reference numeral 1 denotes a second silicon oxide film 10a formed by a second thermal oxidation process, and a thick gate insulating film 12 of an input / output circuit is formed by a first thermal oxidation process and a second thermal oxidation process. Second silicon oxide film 10 to be formed
b.

【0029】次に、図7に示すように、半導体基板1上
にCVD(Chemical Vapor Deposition )法によってリ
ン(P)が導入された多結晶シリコン膜を堆積した後、
パターニングされたフォトレジストをマスクにして、こ
の多結晶シリコン膜をエッチングし、多結晶シリコン膜
によって構成されるゲート電極13を形成する。
Next, as shown in FIG. 7, a polycrystalline silicon film into which phosphorus (P) is introduced is deposited on the semiconductor substrate 1 by a CVD (Chemical Vapor Deposition) method.
Using the patterned photoresist as a mask, the polycrystalline silicon film is etched to form a gate electrode 13 composed of the polycrystalline silicon film.

【0030】次に、ゲート電極13をマスクにしてp型
ウエル6にn型不純物(例えば、P)を導入し、nチャ
ネル型MISFETのソース領域、ドレイン領域の一部
を構成する低濃度のn- 型半導体領域14を形成する。
同様に、ゲート電極13をマスクにしてn型ウエル7に
p型不純物(例えば、フッ化ボロン(BF2 ))を導入
し、pチャネル型MISFETのソース領域、ドレイン
領域の一部を構成する低濃度のp- 型半導体領域15を
形成する。
Next, using the gate electrode 13 as a mask, an n-type impurity (for example, P) is introduced into the p-type well 6 to form a low-concentration n which forms part of a source region and a drain region of the n-channel MISFET. Forming the type semiconductor region 14;
Similarly, a p-type impurity (for example, boron fluoride (BF 2 )) is introduced into the n-type well 7 using the gate electrode 13 as a mask, and a low-level impurity that forms part of the source region and the drain region of the p-channel MISFET is formed. A p-type semiconductor region 15 having a concentration is formed.

【0031】次に、半導体基板1上にCVD法で堆積し
た酸化シリコン膜をRIE(Reactive Ion Etching)法
でエッチングして、ゲート電極13の側壁にサイドウォ
ールスペーサ16を形成する。
Next, the silicon oxide film deposited on the semiconductor substrate 1 by the CVD method is etched by the RIE (Reactive Ion Etching) method to form a sidewall spacer 16 on the side wall of the gate electrode 13.

【0032】次に、ゲート電極13およびサイドウォー
ルスペーサ16をマスクにして、p型ウエル6にn型不
純物(例えば、砒素(As))を導入し、nチャネル型
MISFETのソース領域、ドレイン領域の他の一部を
構成する高濃度のn+ 型半導体領域17を形成する。同
様に、ゲート電極13およびサイドウォールスペーサ1
6をマスクにして、n型ウエル7にp型不純物(例え
ば、BF2 )を導入し、pチャネル型MISFETのソ
ース領域、ドレイン領域の他の一部を構成する高濃度の
+ 型半導体領域18を形成する。
Next, using the gate electrode 13 and the sidewall spacer 16 as a mask, an n-type impurity (for example, arsenic (As)) is introduced into the p-type well 6 to form a source region and a drain region of the n-channel MISFET. A high-concentration n + -type semiconductor region 17 constituting another part is formed. Similarly, the gate electrode 13 and the sidewall spacer 1
6 is used as a mask, a p-type impurity (for example, BF 2 ) is introduced into the n-type well 7, and a high-concentration p + -type semiconductor region constituting another part of the source region and the drain region of the p-channel MISFET 18 are formed.

【0033】次に、厚さ30〜50nmのチタン膜(図
示せず)をスパッタリング法またはCVD法によって半
導体基板1上に堆積する。その後、窒素雰囲気中で60
0〜700℃の温度で熱処理(第1アニール)を行な
う。この第1アニールによって、高抵抗のチタンシリサ
イド膜(TiSix (0<x<2))をnチャネル型M
ISFETのゲート電極13の表面およびn+ 型半導体
領域17の表面、ならびにpチャネル型MISFETの
ゲート電極13の表面およびp+ 型半導体領域18の表
面に形成する。
Next, a titanium film (not shown) having a thickness of 30 to 50 nm is deposited on the semiconductor substrate 1 by a sputtering method or a CVD method. Then, in a nitrogen atmosphere, 60
Heat treatment (first annealing) is performed at a temperature of 0 to 700 ° C. This first annealing, a high-resistance titanium silicide layer (TiSi x (0 <x < 2)) n -channel type M
It is formed on the surface of the gate electrode 13 of the ISFET and the surface of the n + -type semiconductor region 17 and on the surface of the gate electrode 13 and the surface of the p + -type semiconductor region 18 of the p-channel MISFET.

【0034】次に、未反応のチタン膜をH2 2 :NH
4 OH:H2 O液で除去した後、窒素雰囲気中で800
〜900℃の温度で熱処理(第2アニール)を行ない、
上記高抵抗のチタンシリサイド膜を低抵抗のチタンシリ
サイド膜(TiSi2 )19に変える。
Next, the unreacted titanium film is replaced with H 2 O 2 : NH
After removal with 4 OH: H 2 O solution, 800
Heat treatment (second annealing) at a temperature of ~ 900 ° C;
The high-resistance titanium silicide film is changed to a low-resistance titanium silicide film (TiSi 2 ) 19.

【0035】その後、半導体基板1上に窒化シリコン膜
20および層間絶縁膜21を順次堆積した後、層間絶縁
膜21および窒化シリコン膜20を順次エッチングして
コンタクトホール22を開孔した後、層間絶縁膜21上
に堆積した金属膜(図示せず)をエッチングして配線層
23を形成することにより、前記図1に示したCMOS
論理LSIの内部回路および入出力回路が完成する。
After that, a silicon nitride film 20 and an interlayer insulating film 21 are sequentially deposited on the semiconductor substrate 1, and then the interlayer insulating film 21 and the silicon nitride film 20 are sequentially etched to form a contact hole 22. By etching a metal film (not shown) deposited on the film 21 to form the wiring layer 23, the CMOS shown in FIG.
The internal circuit and the input / output circuit of the logic LSI are completed.

【0036】なお、本実施の形態では、第1の窒化シリ
コン膜2を除去した後、半導体基板1に不純物イオンを
打ち込みp型ウエル6およびn型ウエル7形成したが、
不純物イオンを打ち込む際、半導体基板1に生じる欠陥
を防止するため、第1の窒化シリコン膜2を除去した
後、半導体基板1の表面に約10nmのスルー酸化シリ
コン膜を形成し、このスルー酸化シリコン膜を通して半
導体基板1に不純物イオンを打ち込んでもよい。
In this embodiment, the p-type well 6 and the n-type well 7 are formed by implanting impurity ions into the semiconductor substrate 1 after removing the first silicon nitride film 2.
In order to prevent defects occurring in the semiconductor substrate 1 when implanting impurity ions, after removing the first silicon nitride film 2, a through silicon oxide film of about 10 nm is formed on the surface of the semiconductor substrate 1. Impurity ions may be implanted into the semiconductor substrate 1 through the film.

【0037】また、第2の酸化シリコン膜10a,10
bを形成した後、酸化窒素(N2 OまたはNO)雰囲気
中で半導体基板1に熱処理を施して、半導体基板1と第
2の酸化シリコン膜10a,10bとの界面に窒素を導
入し、ホットエレクトロン耐性を向上してもよい。
The second silicon oxide films 10a, 10a
After the formation of b, the semiconductor substrate 1 is subjected to a heat treatment in a nitrogen oxide (N 2 O or NO) atmosphere, nitrogen is introduced into the interface between the semiconductor substrate 1 and the second silicon oxide films 10a and 10b, and hot The electron resistance may be improved.

【0038】また、ゲート電極13を形成した後、nチ
ャネル型MOSFETのゲート電極13を構成する多結
晶シリコン膜にn型の不純物、例えばPを導入してnゲ
ートを形成し、また、pチャネル型MOSFETのゲー
ト電極13を構成する多結晶シリコン膜にp型の不純
物、例えばボロン(B)を導入してpゲートを形成し
て、表面チャネルとしてもよい。
After the gate electrode 13 is formed, an n-type impurity such as P is introduced into the polycrystalline silicon film constituting the gate electrode 13 of the n-channel MOSFET to form an n-gate. A p-type impurity, for example, boron (B) may be introduced into the polycrystalline silicon film forming the gate electrode 13 of the type MOSFET to form a p-gate, thereby forming a surface channel.

【0039】このように、本実施の形態によれば、内部
回路に形成された第1の酸化シリコン膜8をエッチング
する際、溝3に埋め込まれた絶縁膜4の表面もエッチン
グされるが、溝3に埋め込まれた絶縁膜4は局所的に薄
くならず、さらに、絶縁膜4の表面と半導体基板1の表
面とがほぼ同じ高さとなる。従って、素子間分離領域を
構成する絶縁膜4の形状不良が起因の電界集中が抑えら
れて、MOSFETのIds−Vg 特性でのキンクの発生
を防ぐことができるので、MOSFETがオフ状態での
スタンバイ電流は減少し消費電力の増加を抑えることが
できる。
As described above, according to the present embodiment, when the first silicon oxide film 8 formed in the internal circuit is etched, the surface of the insulating film 4 embedded in the groove 3 is also etched. The insulating film 4 buried in the groove 3 is not locally thinned, and the surface of the insulating film 4 and the surface of the semiconductor substrate 1 have substantially the same height. Thus, defective shape of the insulating film 4 constituting the device isolation region is suppressed electric field concentration caused, it is possible to prevent the occurrence of kink in the I ds -V g characteristics of the MOSFET, MOSFET is in the OFF state Standby current is reduced, and an increase in power consumption can be suppressed.

【0040】以上、本発明者によってなされた発明を発
明の実施の形態に基づき具体的に説明したが、本発明は
前記実施の形態に限定されるものではなく、その要旨を
逸脱しない範囲で種々変更可能であることはいうまでも
ない。
Although the invention made by the inventor has been specifically described based on the embodiments of the present invention, the present invention is not limited to the above embodiments, and various modifications may be made without departing from the gist of the invention. Needless to say, it can be changed.

【0041】[0041]

【発明の効果】本願によって開示される発明のうち、代
表的なものによって得られる効果を簡単に説明すれば、
以下のとおりである。
Advantageous effects obtained by typical ones of the inventions disclosed by the present application will be briefly described as follows.
It is as follows.

【0042】本発明によれば、薄いゲート絶縁膜が設け
られたMOSFETと厚いゲート絶縁膜が設けられたM
OSFETとを有する半導体集積回路装置において、素
子間分離領域を構成する絶縁膜の形状不良が起因の電界
集中が抑えられて、MOSFETのIds−Vg 特性にキ
ンクが発生するのを防ぐことができるので、スタンバイ
電流を減少させて消費電力の増加を抑えることができ
る。
According to the present invention, a MOSFET provided with a thin gate insulating film and a MOSFET provided with a thick gate insulating film are provided.
In the semiconductor integrated circuit device having a OSFET, is possible to prevent the shape defect of the insulating film of the device isolation region is suppressed electric field concentration caused kink occurs in I ds -V g characteristics of the MOSFET Therefore, the standby current can be reduced and the increase in power consumption can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態であるCMOS論理LS
Iの内部回路および入出力回路を示す半導体基板の要部
断面図である。
FIG. 1 shows a CMOS logic LS according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of a main part of a semiconductor substrate showing an internal circuit and an input / output circuit of I.

【図2】本発明の一実施の形態であるCMOS論理LS
Iの内部回路および入出力回路の製造方法を示す半導体
基板の要部断面図である。
FIG. 2 is a diagram illustrating a CMOS logic LS according to an embodiment of the present invention;
FIG. 9 is a cross-sectional view of a principal part of a semiconductor substrate, illustrating a method for manufacturing an internal circuit and an input / output circuit of I.

【図3】本発明の一実施の形態であるCMOS論理LS
Iの内部回路および入出力回路の製造方法を示す半導体
基板の要部断面図である。
FIG. 3 is a diagram illustrating a CMOS logic LS according to an embodiment of the present invention;
FIG. 9 is a cross-sectional view of a principal part of a semiconductor substrate, illustrating a method for manufacturing an internal circuit and an input / output circuit of I.

【図4】本発明の一実施の形態であるCMOS論理LS
Iの内部回路および入出力回路の製造方法を示す半導体
基板の要部断面図である。
FIG. 4 is a diagram illustrating a CMOS logic LS according to an embodiment of the present invention;
FIG. 9 is a cross-sectional view of a principal part of a semiconductor substrate, illustrating a method for manufacturing an internal circuit and an input / output circuit of I.

【図5】本発明の一実施の形態であるCMOS論理LS
Iの内部回路および入出力回路の製造方法を示す半導体
基板の要部断面図である。
FIG. 5 is a diagram illustrating a CMOS logic LS according to an embodiment of the present invention;
FIG. 9 is a cross-sectional view of a principal part of a semiconductor substrate, illustrating a method for manufacturing an internal circuit and an input / output circuit of I.

【図6】本発明の一実施の形態であるCMOS論理LS
Iの内部回路および入出力回路の製造方法を示す半導体
基板の要部断面図である。
FIG. 6 is a diagram illustrating a CMOS logic LS according to an embodiment of the present invention;
FIG. 9 is a cross-sectional view of a principal part of a semiconductor substrate, illustrating a method for manufacturing an internal circuit and an input / output circuit of I.

【図7】本発明の一実施の形態であるCMOS論理LS
Iの内部回路および入出力回路の製造方法を示す半導体
基板の要部断面図である。
FIG. 7 shows a CMOS logic LS according to an embodiment of the present invention;
FIG. 9 is a cross-sectional view of a principal part of a semiconductor substrate, illustrating a method for manufacturing an internal circuit and an input / output circuit of I.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 第1の窒化シリコン膜 3 溝 4 絶縁膜 5 第2の窒化シリコン膜 6 p型ウエル 7 n型ウエル 8 第1の酸化シリコン膜 9 フォトレジスト 10a 第2の酸化シリコン膜 10b 第2の酸化シリコン膜 11 薄いゲート絶縁膜 12 厚いゲート絶縁膜 13 ゲート電極 14 n- 型半導体領域 15 p- 型半導体領域 16 サイドウォールスペーサ 17 n+ 型半導体領域 18 p+ 型半導体領域 19 チタンシリサイド膜 20 窒化シリコン膜 21 層間絶縁膜 22 コンタクトホール 23 配線層 h 内部回路の半導体基板の表面と入出力回路の半導体
基板の表面との標高差
Reference Signs List 1 semiconductor substrate 2 first silicon nitride film 3 groove 4 insulating film 5 second silicon nitride film 6 p-type well 7 n-type well 8 first silicon oxide film 9 photoresist 10a second silicon oxide film 10b second Silicon oxide film 11 thin gate insulating film 12 thick gate insulating film 13 gate electrode 14 n − type semiconductor region 15 p − type semiconductor region 16 sidewall spacer 17 n + type semiconductor region 18 p + type semiconductor region 19 titanium silicide film 20 Silicon nitride film 21 Interlayer insulating film 22 Contact hole 23 Wiring layer h Altitude difference between the surface of the semiconductor substrate of the internal circuit and the surface of the semiconductor substrate of the input / output circuit

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 薄いゲート絶縁膜が設けられたMOSF
ETと厚いゲート絶縁膜が設けられたMOSFETとを
有する半導体集積回路装置であって、隣接する半導体素
子間を電気的に絶縁する素子間分離領域は、半導体基板
に形成された溝に埋め込まれた絶縁膜によって構成され
ており、前記薄いゲート絶縁膜が形成された領域での前
記絶縁膜の表面と前記半導体基板の表面とがほぼ同じ高
さであることを特徴とする半導体集積回路装置。
1. A MOSF provided with a thin gate insulating film
A semiconductor integrated circuit device having an ET and a MOSFET provided with a thick gate insulating film, wherein an element isolation region electrically insulating adjacent semiconductor elements is embedded in a groove formed in a semiconductor substrate. A semiconductor integrated circuit device comprising an insulating film, wherein a surface of the insulating film and a surface of the semiconductor substrate in a region where the thin gate insulating film is formed have substantially the same height.
【請求項2】 請求項1記載の半導体集積回路装置にお
いて、前記薄いゲート絶縁膜が形成された領域の前記半
導体基板の表面と、前記厚いゲート絶縁膜が形成された
領域の前記半導体基板の表面との標高差が30nm以下
であることを特徴とする半導体集積回路装置。
2. The semiconductor integrated circuit device according to claim 1, wherein a surface of said semiconductor substrate in a region where said thin gate insulating film is formed and a surface of said semiconductor substrate in a region where said thick gate insulating film is formed. A semiconductor integrated circuit device having an altitude difference of 30 nm or less.
【請求項3】 請求項1記載の半導体集積回路装置にお
いて、前記薄いゲート絶縁膜と前記半導体基板との界面
および前記厚いゲート絶縁膜と前記半導体基板との界面
に窒素が導入されていることを特徴とする半導体集積回
路装置。
3. The semiconductor integrated circuit device according to claim 1, wherein nitrogen is introduced into an interface between said thin gate insulating film and said semiconductor substrate and an interface between said thick gate insulating film and said semiconductor substrate. A semiconductor integrated circuit device characterized by the above-mentioned.
【請求項4】 請求項1記載の半導体集積回路装置にお
いて、前記薄いゲート絶縁膜が設けられたMOSFET
および前記厚いゲート絶縁膜が設けられたMOSFET
は、それぞれ表面チャネル型MOSFETまたは埋め込
みチャネル型MOSFETであることを特徴とする半導
体集積回路装置。
4. The MOSFET according to claim 1, wherein said thin gate insulating film is provided.
And MOSFET provided with the thick gate insulating film
Are surface channel type MOSFETs or buried channel type MOSFETs, respectively.
【請求項5】 薄いゲート絶縁膜が設けられたMOSF
ETと厚いゲート絶縁膜が設けられたMOSFETとを
有する半導体集積回路装置の製造方法であって、(a) 半
導体基板の素子間分離領域に溝を形成した後、前記溝に
絶縁膜を埋め込む工程と、(b) 前記半導体基板に第1の
熱酸化処理を施して、前記半導体基板の表面に第1の酸
化シリコン膜を形成する工程と、(c) 前記薄いゲート絶
縁膜が形成される領域の前記第1の酸化シリコン膜を除
去する工程と、(d) 前記半導体基板に第2の熱酸化処理
を施して、前記半導体基板の表面に第2の酸化シリコン
膜を形成する工程とを有することを特徴とする半導体集
積回路装置の製造方法。
5. A MOSF provided with a thin gate insulating film
A method for manufacturing a semiconductor integrated circuit device having an ET and a MOSFET provided with a thick gate insulating film, comprising: (a) forming a groove in an element isolation region of a semiconductor substrate and then embedding an insulating film in the groove; (B) performing a first thermal oxidation treatment on the semiconductor substrate to form a first silicon oxide film on a surface of the semiconductor substrate; and (c) a region where the thin gate insulating film is formed. Removing the first silicon oxide film, and (d) forming a second silicon oxide film on the surface of the semiconductor substrate by performing a second thermal oxidation treatment on the semiconductor substrate. A method for manufacturing a semiconductor integrated circuit device.
【請求項6】 薄いゲート絶縁膜が設けられたMOSF
ETと厚いゲート絶縁膜が設けられたMOSFETとを
有する半導体集積回路装置の製造方法であって、(a) 半
導体基板上に第1の窒化シリコン膜を堆積した後、前記
第1の窒化シリコン膜および前記半導体基板を順次加工
して前記半導体基板の素子間分離領域に溝を形成する工
程と、(b) 前記半導体基板上に絶縁膜を堆積した後、前
記薄いゲート絶縁膜が形成される領域の前記溝の上に第
2の窒化シリコン膜を形成する工程と、(c) 前記第2の
窒化シリコン膜および前記絶縁膜の表面を研磨して、前
記溝に前記絶縁膜を埋め込む工程と、(d) 前記半導体基
板に第1の熱酸化処理を施して、前記半導体基板の表面
に第1の酸化シリコン膜を形成する工程と、(e) 前記薄
いゲート絶縁膜が形成される領域の前記第1の酸化シリ
コン膜を除去する工程と、(f) 前記半導体基板に第2の
熱酸化処理を施して、前記半導体基板の表面に第2の酸
化シリコン膜を形成する工程とを有することを特徴とす
る半導体集積回路装置の製造方法。
6. A MOSF provided with a thin gate insulating film
A method for manufacturing a semiconductor integrated circuit device having an ET and a MOSFET provided with a thick gate insulating film, comprising: (a) depositing a first silicon nitride film on a semiconductor substrate, And forming a groove in an element isolation region of the semiconductor substrate by sequentially processing the semiconductor substrate, and (b) a region where the thin gate insulating film is formed after depositing an insulating film on the semiconductor substrate. Forming a second silicon nitride film on the groove, and (c) polishing the surfaces of the second silicon nitride film and the insulating film to bury the insulating film in the groove; (d) performing a first thermal oxidation treatment on the semiconductor substrate to form a first silicon oxide film on the surface of the semiconductor substrate; and (e) forming a first silicon oxide film on a region where the thin gate insulating film is formed. Removing the first silicon oxide film; (F) said performing a second thermal oxidation treatment on the semiconductor substrate, the manufacturing method of a semiconductor integrated circuit device characterized by a step of forming a second silicon oxide film on the semiconductor substrate surface.
【請求項7】 請求項5または6記載の半導体集積回路
装置の製造方法において、前記絶縁膜は酸化シリコン膜
であることを特徴とする半導体集積回路装置の製造方
法。
7. The method for manufacturing a semiconductor integrated circuit device according to claim 5, wherein said insulating film is a silicon oxide film.
JP9153593A 1997-06-11 1997-06-11 Semiconductor integrated circuit device and manufacture thereof Pending JPH113974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9153593A JPH113974A (en) 1997-06-11 1997-06-11 Semiconductor integrated circuit device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9153593A JPH113974A (en) 1997-06-11 1997-06-11 Semiconductor integrated circuit device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH113974A true JPH113974A (en) 1999-01-06

Family

ID=15565890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9153593A Pending JPH113974A (en) 1997-06-11 1997-06-11 Semiconductor integrated circuit device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH113974A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020007848A (en) * 2000-07-19 2002-01-29 박종섭 Semiconductor Device and Method for Fabricating the Same
US6380020B1 (en) 1999-06-08 2002-04-30 Nec Corporation Method for fabricating a semiconductor device having a device isolation insulating film
JP2005353892A (en) * 2004-06-11 2005-12-22 Seiko Epson Corp Semiconductor substrate, semiconductor device and its manufacturing method
CN108352690A (en) * 2015-10-12 2018-07-31 住友电装株式会社 The relay block that height for vehicle power distribution unit reduces

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6380020B1 (en) 1999-06-08 2002-04-30 Nec Corporation Method for fabricating a semiconductor device having a device isolation insulating film
KR20020007848A (en) * 2000-07-19 2002-01-29 박종섭 Semiconductor Device and Method for Fabricating the Same
JP2005353892A (en) * 2004-06-11 2005-12-22 Seiko Epson Corp Semiconductor substrate, semiconductor device and its manufacturing method
CN108352690A (en) * 2015-10-12 2018-07-31 住友电装株式会社 The relay block that height for vehicle power distribution unit reduces

Similar Documents

Publication Publication Date Title
US6818496B2 (en) Silicon on insulator DRAM process utilizing both fully and partially depleted devices
US7709324B2 (en) Method for forming a gate within a trench including the use of a protective film
US7935595B2 (en) Method for manufacturing semiconductor device
JP2003523629A (en) Method for eliminating stress-induced dislocations in CMOS devices
JP2001015612A (en) Manufacture of semiconductor integrated circuit device
JP2005026586A (en) Semiconductor device and its manufacturing method
JP2004014830A (en) Semiconductor device and its manufacturing method
US6541321B1 (en) Method of making transistors with gate insulation layers of differing thickness
JP2003017555A (en) Semiconductor integrated circuit device and method of manufacturing same
JPWO2003049188A1 (en) Semiconductor integrated circuit device and manufacturing method thereof
JP2002506579A (en) Method of forming side dielectric insulated semiconductor device and MOS semiconductor device manufactured by this method
US6511887B1 (en) Method for making FET gate oxides with different thicknesses using a thin silicon nitride layer and a single oxidation step
KR101054320B1 (en) Method for manufacturing semiconductor device
US6737315B2 (en) Method of manufacturing semiconductor device including steps of forming both insulating film and epitaxial semiconductor on substrate
JPH113974A (en) Semiconductor integrated circuit device and manufacture thereof
JP2008021935A (en) Electronic device and manufacturing method thereof
JP2000200836A (en) Semiconductor device and manufacture thereof
JPH1187697A (en) Manufacture of semiconductor, manufacture of semiconductor memory, and semiconductor device
JP2000150665A (en) Semiconductor integrated circuit device and its manufacture
JP2002270824A (en) Method of manufacturing semiconductor integrated circuit device
JP2001085531A (en) Manufacture of semiconductor integrated circuit
JPH09129760A (en) Semiconductor device and its manufacturing method
JP2000150878A (en) Manufacture of semiconductor integrated circuit device
KR100379516B1 (en) method for manufacturing in a semiconductor device
KR100390240B1 (en) Manufacturing method for semiconductor device