JP2005353892A - Semiconductor substrate, semiconductor device and its manufacturing method - Google Patents

Semiconductor substrate, semiconductor device and its manufacturing method Download PDF

Info

Publication number
JP2005353892A
JP2005353892A JP2004173949A JP2004173949A JP2005353892A JP 2005353892 A JP2005353892 A JP 2005353892A JP 2004173949 A JP2004173949 A JP 2004173949A JP 2004173949 A JP2004173949 A JP 2004173949A JP 2005353892 A JP2005353892 A JP 2005353892A
Authority
JP
Japan
Prior art keywords
element isolation
trench
region
isolation region
drive voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004173949A
Other languages
Japanese (ja)
Inventor
Masaru Hirano
優 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2004173949A priority Critical patent/JP2005353892A/en
Publication of JP2005353892A publication Critical patent/JP2005353892A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor substrate with a trench-embedded element isolation region, capable of suppressing a leakage current due to crystal defects in the device of a low-drive voltage and securing the field inversion withstand voltage of the device of a high-drive voltage. <P>SOLUTION: An oxide film 13 is embedded in the trench 12 of a prescribed depth on a silicon substrate 11, and element isolation regions 141 and 142 are formed. The element isolation region 141 is formed in a device region A1 to which a first drive voltage is supplied. The element isolation region 142 is formed in a device region A2 to which a second drive voltage lower than the first drive voltage is supplied. In the element isolation region 142, the height of the embedded oxide film 13 is lower than the one in the element isolation region 141. Thus, by comparison, in the same volume part of the trench 12, the volume of the embedded oxide film 13 is smaller in the element isolation region 142 than that in the element isolation region 141. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、駆動電圧が異なるデバイスが混在した半導体装置の製造に係り、特にSTI(Shallow Trench Isolation)を製造する工程を備えた半導体基板、半導体装置及びその製造方法に関する。   The present invention relates to the manufacture of a semiconductor device in which devices having different drive voltages are mixed, and more particularly to a semiconductor substrate, a semiconductor device, and a method of manufacturing the same, which include a step of manufacturing STI (Shallow Trench Isolation).

半導体装置は、高集積化、高性能化あるいは多機能化を達成するため、駆動電圧が異なるデバイスを複数用いて構成されるものがある。特に半導体記憶装置等は、半導体チップ内に高耐圧用MOSトランジスタ、それに比べて低耐圧用のMOSトランジスタが混在している。デバイスの高集積化、微細化に伴い、素子分離領域は、トレンチ(溝)に絶縁物(酸化膜)が埋め込まれる構造、STI(Shallow Trench Isolation)が用いられるようになってきている。   Some semiconductor devices are configured by using a plurality of devices having different drive voltages in order to achieve high integration, high performance, or multiple functions. Particularly in a semiconductor memory device or the like, high breakdown voltage MOS transistors and low breakdown voltage MOS transistors are mixed in a semiconductor chip. Along with the high integration and miniaturization of devices, STI (Shallow Trench Isolation), a structure in which an insulator (oxide film) is buried in a trench (groove), has been used.

上記STI構造に関し、トレンチに埋め込まれ平坦化された酸化膜は、半導体基板内全域において、トレンチ底部から半導体基板上のアクティブ領域まで略均等な高さで統一されている。すなわち、アクティブ領域に対する酸化膜の埋め込み深さ(高さ)は、デバイスの駆動電圧によらず略一定である。   With respect to the STI structure, the planarized oxide film embedded in the trench is unified at a substantially uniform height from the bottom of the trench to the active region on the semiconductor substrate throughout the semiconductor substrate. That is, the buried depth (height) of the oxide film with respect to the active region is substantially constant regardless of the drive voltage of the device.

STIは、その構造上、半導体基板のシリコンとトレンチに埋め込まれる酸化膜の熱膨張係数の違いから、製造工程中の熱履歴で基板内応力が大きくなる(STIストレス)。これにより、トレンチの上部縁部付近や底部縁部付近で転位が生じ、結晶欠陥を発生させることが知られている。結晶欠陥は金属不純物等を捕獲し易く、接合リークの増大を招く。   Due to the structure of STI, the stress in the substrate increases due to the thermal history during the manufacturing process due to the difference in thermal expansion coefficient between silicon of the semiconductor substrate and the oxide film embedded in the trench (STI stress). As a result, it is known that dislocations are generated near the upper edge and the bottom edge of the trench, and crystal defects are generated. Crystal defects easily capture metal impurities and the like, and increase junction leakage.

従来、STI等、埋め込み素子分離における基板内結晶欠陥を低減する技術として、埋め込み酸化膜の膜質を工夫する。例えば、所定範囲のアスペクト比を有するトレンチに有機シリコン系CVD法により酸化膜を埋め込む。平坦化の前または後において1100℃〜1350℃の熱処理を施す。これにより、環状構造分離がなされ、5員環以上の環構造、4員環以下の環構造を所定の割合で含む膜構造とする(例えば、特許文献1参照)。
特開平9−205140号公報(第7、第8頁、図1)
Conventionally, the quality of the buried oxide film is devised as a technique for reducing crystal defects in the substrate in buried element isolation, such as STI. For example, an oxide film is embedded in a trench having an aspect ratio in a predetermined range by an organic silicon CVD method. A heat treatment at 1100 ° C. to 1350 ° C. is performed before or after planarization. Thereby, the ring structure is separated, and a film structure including a ring structure having a 5-membered ring or more and a ring structure having a 4-membered ring or less in a predetermined ratio (for example, see Patent Document 1).
JP-A-9-205140 (7th, 8th page, FIG. 1)

STI構造において、トレンチ深さ、及び、トレンチへ埋め込み平坦化された酸化膜のアクティブ領域に対する高さは、主に駆動電圧の高いデバイスのフィールド反転耐圧によって決定されていた。そのため、駆動電圧の低いデバイスにとっては必要以上にSTIストレスの高い構造となる。従来技術のように埋め込み酸化膜の膜質を工夫するにしても、トレンチへの酸化膜埋め込み状態は、主に駆動電圧の高いデバイスのフィールド反転耐圧に合わせて形成される。駆動電圧の低いデバイスにおいては、極僅かな欠陥でも性能に影響しかねない。よって、駆動電圧の低いデバイスにおいて必要以上の酸化膜埋め込み状態で素子分離を構成することは有益ではない。改善の余地がある。   In the STI structure, the depth of the trench and the height of the oxide film buried and planarized in the trench with respect to the active region are mainly determined by the field inversion breakdown voltage of the device having a high drive voltage. Therefore, it becomes a structure with higher STI stress than necessary for a device with a low driving voltage. Even if the film quality of the buried oxide film is devised as in the prior art, the oxide film buried state in the trench is mainly formed in accordance with the field inversion breakdown voltage of the device having a high drive voltage. In devices with a low drive voltage, even minor defects can affect performance. Therefore, it is not useful to configure element isolation in an oxide film buried state more than necessary in a device having a low driving voltage. There is room for improvement.

本発明は上記のような事情を考慮してなされたもので、駆動電圧の低いデバイスでの結晶欠陥によるリーク電流を抑え、かつ、駆動電圧の高いデバイスのフィールド反転耐圧を確保することのできるトレンチ埋め込み素子分離領域を有する半導体基板、半導体装置及びその製造方法を提供しようとするものである。   The present invention has been made in consideration of the above-described circumstances, and is a trench capable of suppressing a leakage current due to crystal defects in a device having a low driving voltage and ensuring a field inversion breakdown voltage of a device having a high driving voltage. An object of the present invention is to provide a semiconductor substrate having a buried element isolation region, a semiconductor device, and a manufacturing method thereof.

本発明に係る半導体基板は、基板上に絶縁物が埋め込まれる素子分離領域を備え、第1の駆動電圧が与えられるデバイス領域に設けられた、第1の素子分離領域と、前記第1の駆動電圧より低い第2の駆動電圧が与えられるデバイス領域に設けられた、前記第1の素子分離領域よりも埋め込まれる前記絶縁物の高さが低い第2の素子分離領域と、を含む。   The semiconductor substrate according to the present invention includes an element isolation region in which an insulator is embedded on the substrate, the first element isolation region provided in a device region to which a first drive voltage is applied, and the first drive And a second element isolation region provided in a device region to which a second drive voltage lower than the voltage is applied and having a lower height of the insulator embedded than the first element isolation region.

上記本発明に係る半導体基板によれば、第1の素子分離領域よりも、基板に埋め込まれる絶縁物の高さが低い第2の素子分離領域を形成する。これにより、第1の駆動電圧より低い第2の駆動電圧が与えられるデバイス領域において、埋め込まれる絶縁物の基板への応力が緩和される。   According to the semiconductor substrate of the present invention, the second element isolation region is formed in which the height of the insulator embedded in the substrate is lower than that of the first element isolation region. Thereby, in the device region to which the second drive voltage lower than the first drive voltage is applied, the stress on the substrate of the embedded insulator is relaxed.

本発明に係る半導体基板は、基板に形成された所定深さのトレンチに絶縁物が埋め込まれる素子分離領域を備え、第1の駆動電圧が与えられるデバイス領域に設けられた、第1の素子分離領域と、前記第1の駆動電圧より低い第2の駆動電圧が与えられるデバイス領域に設けられた、同じ容積のトレンチで比較して前記第1の素子分離領域よりも埋め込まれる前記絶縁物の体積が小さい第2の素子分離領域と、を含む。   The semiconductor substrate according to the present invention includes an element isolation region in which an insulator is embedded in a trench having a predetermined depth formed in the substrate, and is provided in a device region to which a first drive voltage is applied. The volume of the insulator embedded in the first element isolation region compared with the trench of the same volume provided in the region and the device region to which the second drive voltage lower than the first drive voltage is applied And a second element isolation region having a small size.

上記本発明に係る半導体基板によれば、基板に形成される同じ容積のトレンチで比較して、第1の素子分離領域よりも埋め込まれる絶縁物の体積が小さい第2の素子分離領域を形成する。これにより、第1の駆動電圧より低い第2の駆動電圧が与えられるデバイス領域において、埋め込まれる絶縁物の基板への応力が緩和される。   According to the semiconductor substrate of the present invention, the second element isolation region in which the volume of the insulator embedded is smaller than that of the first element isolation region is formed as compared with the trench having the same volume formed in the substrate. . Thereby, in the device region to which the second drive voltage lower than the first drive voltage is applied, the stress on the substrate of the embedded insulator is relaxed.

なお、上記それぞれ本発明に係る半導体基板において、前記第1の素子分離領域により囲まれた基板上の一素子領域より前記第2の素子分離領域により囲まれた基板上の一素子領域の方が小面積であることを特徴とする。すなわち、サイズの小さい素子に関し、素子分離領域に関する結晶欠陥の防止が重要である。   In each of the semiconductor substrates according to the present invention, one element region on the substrate surrounded by the second element isolation region is more than one element region on the substrate surrounded by the first element isolation region. It is characterized by a small area. That is, it is important to prevent a crystal defect related to the element isolation region for a small-sized element.

また、前記トレンチに埋め込まれる絶縁物は、前記第1、第2の駆動電圧に限らず、前記第1の駆動電圧またはそれより低いその他の所定の駆動電圧が与えられるデバイス領域にそれぞれ必要な埋め込み高さに調整することも考えられる。   Further, the insulator embedded in the trench is not limited to the first and second driving voltages, but is embedded in a device region to which the first driving voltage or other predetermined driving voltage lower than the first driving voltage is applied. It is also possible to adjust the height.

本発明に係る半導体装置は、半導体基板上に絶縁物が埋め込まれる素子分離領域を備え、第1の駆動電圧が与えられるデバイス領域に設けられた、第1の素子分離領域と、前記第1の駆動電圧より低い第2の駆動電圧が与えられるデバイス領域に設けられた、前記第1の素子分離領域よりも埋め込まれる前記絶縁物の高さが低い第2の素子分離領域と、前記第1の素子分離領域に囲まれた半導体基板上に第1のゲート長及び幅を有して設けられた第1のMOS型素子と、前記第2の素子分離領域に囲まれた半導体基板上に前記第1のMOS型素子より小さい第2のゲート長及び幅を有して設けられた第2のMOS型素子と、を含む。   A semiconductor device according to the present invention includes an element isolation region in which an insulator is embedded on a semiconductor substrate, the first element isolation region provided in a device region to which a first drive voltage is applied, and the first element isolation region A second element isolation region provided in a device region to which a second drive voltage lower than the drive voltage is applied, and having a lower height of the insulator embedded than the first element isolation region; A first MOS type element provided with a first gate length and a width on a semiconductor substrate surrounded by the element isolation region, and the first MOS type element provided on the semiconductor substrate surrounded by the second element isolation region. And a second MOS type element provided with a second gate length and width smaller than one MOS type element.

上記本発明に係る半導体装置によれば、第1の素子分離領域よりも、基板に埋め込まれる絶縁物の高さが低い第2の素子分離領域を形成する。第1の駆動電圧より低い第2の駆動電圧が与えられるデバイス領域において、埋め込まれる絶縁物の基板への応力が緩和される。第2の素子分離領域に囲まれた半導体基板上に、第1のMOS型素子より小さい第2のゲート長及び幅を有した第2のMOS型素子を設ける。つまり、より結晶欠陥の影響を受け易い小さいサイズの第2のMOS型素子に対する信頼性が向上する。   According to the semiconductor device of the present invention, the second element isolation region in which the height of the insulator embedded in the substrate is lower than that of the first element isolation region is formed. In the device region to which the second driving voltage lower than the first driving voltage is applied, the stress on the substrate of the embedded insulator is relaxed. A second MOS type element having a second gate length and width smaller than the first MOS type element is provided on the semiconductor substrate surrounded by the second element isolation region. That is, the reliability of the second MOS type element having a small size that is more susceptible to crystal defects is improved.

なお、前記第2のMOS型素子は、素子分離領域において埋め込まれる前記絶縁物上面と同等のレベルもしくは、より下のレベルの前記半導体基板中に拡散層の濃度ピークを有する。すなわち、第2のMOS型素子の信頼性を得るための構成である。
また、前記第2のMOS型素子は、素子分離領域において埋め込まれる前記絶縁物上面と同等のレベルもしくは、より下のレベルの前記半導体基板中に拡散層の濃度ピークを有し、前記第1、第2のMOS型素子共にゲート電極及び拡散層がシリサイド化されている。第2のMOS型素子におけるシリサイド構造の信頼性を得るための構成である。
The second MOS type element has a diffusion layer concentration peak in the semiconductor substrate at a level equivalent to or lower than the upper surface of the insulator buried in the element isolation region. That is, this is a configuration for obtaining the reliability of the second MOS type element.
The second MOS type element has a diffusion layer concentration peak in the semiconductor substrate at a level equivalent to or lower than the upper surface of the insulator buried in the element isolation region. In both the second MOS type elements, the gate electrode and the diffusion layer are silicided. This is a configuration for obtaining the reliability of the silicide structure in the second MOS type element.

本発明に係る半導体装置の製造方法は、半導体基板上に素子分離用のトレンチを形成する工程と、前記トレンチに絶縁物を埋め込む工程と、を含み、前記トレンチの深さは第1の駆動電圧が与えられるデバイス領域に合わせて設定され、前記トレンチに埋め込まれる絶縁物は、前記第1の駆動電圧または前記第1の駆動電圧より低いその他の所定の駆動電圧が与えられるデバイス領域にそれぞれ必要な埋め込み高さに調整する。   A method of manufacturing a semiconductor device according to the present invention includes a step of forming a trench for element isolation on a semiconductor substrate and a step of embedding an insulator in the trench, and the depth of the trench is a first driving voltage. The insulator embedded in the trench is necessary for the device region to which the first driving voltage or another predetermined driving voltage lower than the first driving voltage is applied. Adjust to the embedding height.

上記本発明に係る半導体装置の製造方法によれば、第1の駆動電圧より低い所定の駆動電圧が与えられるデバイス領域のトレンチに埋め込まれる絶縁膜の量を最適化し、フィールド反転耐圧を確保しつつ、基板に埋め込まれる絶縁物の、基板への応力緩和を図る。   According to the semiconductor device manufacturing method of the present invention, the amount of the insulating film embedded in the trench of the device region to which a predetermined drive voltage lower than the first drive voltage is applied is optimized, and the field inversion breakdown voltage is secured. The stress embedded in the substrate is reduced by the insulator embedded in the substrate.

本発明に係る半導体装置の製造方法は、半導体基板上に素子分離用のトレンチを形成する工程と、前記トレンチに絶縁膜を埋め込む工程と、前記トレンチに埋め込まれた絶縁膜のうち、第1の駆動電圧が与えられるデバイス領域に設けられる部分は耐エッチング部材で保護し、前記第1の駆動電圧より低い第2の駆動電圧が与えられるデバイス領域に設けられる部分は前記絶縁膜の上部を所定厚さ除去するエッチング工程と、前記第1の駆動電圧が与えられるデバイス領域の前記半導体基板と前記第2の駆動電圧が与えられるデバイス領域の前記半導体基板にそれぞれサイズの異なるMOS型素子を形成する工程と、を含む。   The method for manufacturing a semiconductor device according to the present invention includes a step of forming a trench for element isolation on a semiconductor substrate, a step of embedding an insulating film in the trench, and a first among the insulating films embedded in the trench. The portion provided in the device region to which the driving voltage is applied is protected by an etching-resistant member, and the portion provided in the device region to which the second driving voltage lower than the first driving voltage is provided has a predetermined thickness on the upper portion of the insulating film. An etching process to remove, and a process of forming MOS type elements having different sizes on the semiconductor substrate in the device region to which the first drive voltage is applied and the semiconductor substrate in the device region to which the second drive voltage is applied And including.

上記本発明に係る半導体装置の製造方法によれば、第1の駆動電圧より低い第2の駆動電圧が与えられるデバイス領域のトレンチに埋め込まれた絶縁膜に対して選択的なエッチングを施す。これにより、基板に埋め込まれる絶縁物の、基板への応力緩和を図る。MOS型素子のサイズによっては、より結晶欠陥の影響を受け易いMOS型素子に対する信頼性を向上させる。   According to the semiconductor device manufacturing method of the present invention, selective etching is performed on the insulating film embedded in the trench in the device region to which the second drive voltage lower than the first drive voltage is applied. Thus, stress relaxation of the insulator embedded in the substrate to the substrate is achieved. Depending on the size of the MOS type element, the reliability of the MOS type element that is more susceptible to crystal defects is improved.

なお、上記本発明に係る半導体装置の製造方法において、前記素子分離用のトレンチを形成する工程は、前記半導体基板上に酸化膜及び窒化膜の積層のマスクパターンを形成する工程と、前記マスクパターンに従って異方性エッチングし、前記トレンチを形成する工程と、前記トレンチ上部縁部の前記酸化膜を奥行き方向に所定量エッチング除去する工程と、熱処理を伴って前記トレンチ内壁を酸化し前記トレンチの上部縁部及び底部縁部に丸みを付ける工程と、を含む。結晶欠陥の原因となり易いトレンチの上部縁部及び底部縁部のストレスを緩和するため、適当な丸みを付ける。
また、前記絶縁膜の上部を所定厚さ除去するエッチング工程の後に、前記トレンチ上部の露出した半導体基板部分を酸化する工程をさらに含むようにしてもよい。
In the method of manufacturing a semiconductor device according to the present invention, the step of forming the element isolation trench includes a step of forming a mask pattern of a stack of an oxide film and a nitride film on the semiconductor substrate, and the mask pattern. Performing the anisotropic etching to form the trench, the step of etching and removing the oxide film at the upper edge of the trench by a predetermined amount, and oxidizing the inner wall of the trench with heat treatment to form the upper portion of the trench Rounding the edge and bottom edge. Appropriate rounding is applied to relieve stress at the top and bottom edges of the trench that are likely to cause crystal defects.
In addition, after the etching process for removing the upper portion of the insulating film to a predetermined thickness, a process for oxidizing the exposed semiconductor substrate portion above the trench may be further included.

発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION

図1は、本発明の一実施形態に係る半導体基板の要部構成を示す断面図である。シリコン基板11上に所定深さのトレンチ12が形成されている。このトレンチ12に絶縁物である酸化膜13が埋め込まれ、素子分離領域141,142が形成されている。ここで、素子分離領域141は、基板11中、第1の駆動電圧が与えられるデバイス領域A1に形成されるものである。素子分離領域142は、基板11中、第1の駆動電圧よりも低い第2の駆動電圧が与えられるデバイス領域A2に形成されるものである。素子分離領域142は、素子分離領域141よりも埋め込まれる酸化膜13の高さが低い。これにより、トレンチ12の同じ容積部分で比較すると、素子分離領域142の方が素子分離領域141よりも埋め込まれる酸化膜13の体積が小さい。また、デバイス領域A1とA2で一素子領域B1,B2の面積を比べると、デバイス領域A2における一素子領域B2の面積の方が小さくなる。   FIG. 1 is a cross-sectional view showing the main configuration of a semiconductor substrate according to an embodiment of the present invention. A trench 12 having a predetermined depth is formed on the silicon substrate 11. An oxide film 13 which is an insulator is buried in the trench 12 to form element isolation regions 141 and 142. Here, the element isolation region 141 is formed in the device region A <b> 1 to which the first drive voltage is applied in the substrate 11. The element isolation region 142 is formed in the device region A2 in the substrate 11 where a second drive voltage lower than the first drive voltage is applied. In the element isolation region 142, the height of the buried oxide film 13 is lower than that of the element isolation region 141. As a result, when compared with the same volume portion of the trench 12, the volume of the oxide film 13 in which the element isolation region 142 is embedded is smaller than that of the element isolation region 141. Further, when the areas of the one element regions B1 and B2 are compared between the device regions A1 and A2, the area of the one element region B2 in the device region A2 is smaller.

トレンチ12の深さは、高い方の第1の駆動電圧が与えられるデバイス領域A1のフィールド反転耐圧に合わせて設定されるものである。このトレンチ12を最上部まですべて酸化膜13で充填すると、相当のストレス(基板11への応力)が加わる。これは、半導体装置製造の過程での熱工程によってもストレスの加わり方は変わる。デバイス領域A1では、高い駆動電圧が与えられ、極僅かな結晶欠陥によるリークにそれほど影響しない。しかし、デバイス領域A2は、極僅かな結晶欠陥によるリークに影響し易い低い駆動電圧が与えられ、サイズも小さい素子で構成されるとすれば、STIストレスがあまりかからない構成が望ましい。また、デバイス領域A2は、フィールド反転耐圧についてもデバイス領域A1よりも小さくてよい。そこで、デバイス領域A2における素子分離領域142は、トレンチ12の最上部まで酸化膜13を充填しない構成をとる。素子分離領域142は、素子分離領域141に比べて埋め込まれる酸化膜13の高さが低く、体積が小さくなり、基板11に対する応力も低減される。これにより、素子分離領域142は、素子分離領域141よりも結晶欠陥の起こり難い構造となる。   The depth of the trench 12 is set in accordance with the field inversion breakdown voltage of the device region A1 to which the higher first driving voltage is applied. When this trench 12 is filled up to the top with the oxide film 13, considerable stress (stress on the substrate 11) is applied. This is because the stress is applied differently depending on the thermal process in the process of manufacturing the semiconductor device. In the device region A1, a high drive voltage is applied, and the leak due to a very few crystal defects is not so much affected. However, if the device region A2 is provided with a low drive voltage that easily affects leakage due to very few crystal defects and is composed of an element with a small size, it is desirable that the device region A2 does not require much STI stress. In addition, the device region A2 may be smaller than the device region A1 in terms of field inversion withstand voltage. Therefore, the element isolation region 142 in the device region A2 has a configuration in which the oxide film 13 is not filled up to the top of the trench 12. In the element isolation region 142, the height of the buried oxide film 13 is lower than that of the element isolation region 141, the volume is reduced, and the stress on the substrate 11 is also reduced. Thus, the element isolation region 142 has a structure in which crystal defects are less likely to occur than the element isolation region 141.

図2〜図4は、それぞれ上記図1の構成の製造方法を工程順に示す断面図である。
図2に示すように、シリコン基板11上にCVD法を用いるなどして酸化膜21及び窒化膜22を所定厚さ形成する。酸化膜21は10nm程度、窒化膜22は20nm程度の厚さとする。次に、酸化膜21及び窒化膜22に対しフォトリソグラフィ技術を用いて図示しないレジストパターンを形成し、そのパターンに従って異方性エッチングする。これにより、基板11のトレンチ形成予定部が露出した酸化膜21及び窒化膜22によるマスクパターンを形成する。このマスクパターンに従って異方性エッチングし、例えば300〜700nmから選択される所定深さのトレンチ12を形成する。上記異方性エッチングはプラズマを伴うドライエッチングでフッ素系のエッチングガスを用いる。次に、フッ酸を用いたウエットエッチングによって、酸化膜21を例えば30nm程度、奥行き方向に除去して、アンダーカット23を形成する。
2 to 4 are cross-sectional views showing the manufacturing method of the configuration shown in FIG. 1 in the order of steps.
As shown in FIG. 2, an oxide film 21 and a nitride film 22 are formed on the silicon substrate 11 with a predetermined thickness by using a CVD method or the like. The oxide film 21 has a thickness of about 10 nm, and the nitride film 22 has a thickness of about 20 nm. Next, a resist pattern (not shown) is formed on the oxide film 21 and the nitride film 22 by using a photolithography technique, and anisotropic etching is performed according to the pattern. Thereby, a mask pattern is formed by the oxide film 21 and the nitride film 22 where the trench formation planned portion of the substrate 11 is exposed. Anisotropic etching is performed according to this mask pattern to form a trench 12 having a predetermined depth selected from, for example, 300 to 700 nm. The anisotropic etching is dry etching with plasma and uses a fluorine-based etching gas. Next, the undercut 23 is formed by removing the oxide film 21 in the depth direction by, for example, about 30 nm by wet etching using hydrofluoric acid.

次に、図3に示すように、窒化膜22をマスクとした1000〜1100℃のドライ酸化雰囲気にて、トレンチ内壁に厚さ20nm〜30nmの酸化膜24を形成する。これにより、トレンチ12の上部縁部TE及び底部縁部BEに丸みを持たせる。次に、高密度プラズマを伴うCVD技術を利用して緻密なプラズマ酸化膜を堆積する。成膜条件は、圧力が1Pa程度のSiHガスプラズマ雰囲気において、約1分間で、厚さ700〜800nm程度堆積する。これにより、トレンチ12を基板11上方のレベルまで酸化膜13で埋める。 Next, as shown in FIG. 3, an oxide film 24 having a thickness of 20 nm to 30 nm is formed on the inner wall of the trench in a dry oxidation atmosphere at 1000 to 1100 ° C. using the nitride film 22 as a mask. Thereby, the upper edge TE and the bottom edge BE of the trench 12 are rounded. Next, a dense plasma oxide film is deposited using a CVD technique involving high-density plasma. As the film forming conditions, the film is deposited in a thickness of about 700 to 800 nm in about 1 minute in a SiH 4 gas plasma atmosphere having a pressure of about 1 Pa. As a result, the trench 12 is filled with the oxide film 13 to a level above the substrate 11.

次に、図4に示すように、窒化膜22をマスクとしたCMP(化学的機械的研磨)技術によって、酸化膜13を除去及び平坦化する。これにより、素子分離領域141が形成される。その後、高い方の第1の駆動電圧が与えられるデバイス領域A1を覆うレジストパターン25を形成する。次に、エッチバック工程を経る。例えば、フッ素系のガスプラズマによるドライエッチングである。エッチング速度の小さい条件で数百nm、例えば200nm程度エッチングすることにより、デバイス領域A2の素子分離領域142が形成される。   Next, as shown in FIG. 4, the oxide film 13 is removed and planarized by a CMP (chemical mechanical polishing) technique using the nitride film 22 as a mask. Thereby, the element isolation region 141 is formed. Thereafter, a resist pattern 25 is formed to cover the device region A1 to which the higher first drive voltage is applied. Next, an etch back process is performed. For example, dry etching using fluorine-based gas plasma. The element isolation region 142 of the device region A2 is formed by etching about several hundred nm, for example, about 200 nm under a condition with a low etching rate.

次に、熱リン酸を用いたウエットエッチングによって、窒化膜22を除去する。さらにフッ酸を用いたウエットエッチングによって、酸化膜21をエッチング除去し、基板11を露出させる。これにより、基板11に埋め込まれる酸化膜13の高さが異なる素子分離領域141,142を有する、前記図1のような構成を得る。   Next, the nitride film 22 is removed by wet etching using hot phosphoric acid. Further, the oxide film 21 is removed by wet etching using hydrofluoric acid to expose the substrate 11. As a result, the structure as shown in FIG. 1 is obtained, having element isolation regions 141 and 142 having different heights of the oxide film 13 embedded in the substrate 11.

上記実施形態及び方法によれば、駆動電圧の高いデバイスのフィールド反転耐圧を確保する素子分離領域141が形成される。さらに、この素子分離領域141に比べて、基板11に埋め込まれる酸化膜13の高さが低い素子分離領域142が形成される。この素子分離領域142は、デバイス領域A1に与えられる第1の駆動電圧より低い第2の駆動電圧が与えられるデバイス領域A2において用いられる。すなわち、半導体装置製造の過程での熱工程による素子分離領域に起因する結晶欠陥の防止がより重要な箇所において利用され、効果を発揮する。素子分離領域142により、駆動電圧の低いデバイスでの結晶欠陥によるリーク電流を抑え、かつ、素子分離領域141では駆動電圧の高いデバイスのフィールド反転耐圧を確保することができる。   According to the embodiment and the method, the element isolation region 141 that secures the field inversion breakdown voltage of the device having a high driving voltage is formed. Further, an element isolation region 142 in which the height of the oxide film 13 embedded in the substrate 11 is lower than that of the element isolation region 141 is formed. The element isolation region 142 is used in the device region A2 to which a second drive voltage lower than the first drive voltage applied to the device region A1 is applied. That is, the prevention of crystal defects caused by the element isolation region due to the thermal process in the process of manufacturing the semiconductor device is utilized in a more important place, and the effect is exhibited. The element isolation region 142 can suppress a leakage current due to crystal defects in a device with a low drive voltage, and the element isolation region 141 can secure a field inversion breakdown voltage of a device with a high drive voltage.

図5は、本発明の第2実施形態に係る半導体装置の要部構成を示す断面図である。前記第1実施形態で示した図1の半導体基板において、それぞれの素子領域にMOSトランジスタが構成されている。MOSトランジスタ51,52は、基板(またはウェル)11と逆導電型の拡散層(ソース/ドレイン)を有して構成される。第1の駆動電圧より低い第2の駆動電圧が与えられるデバイス領域A2に形成されるMOSトランジスタ52は、第1の駆動電圧が与えられるデバイス領域A1に形成されるMOSトランジスタ51に比べてサイズが小さい。すなわち、MOSトランジスタ52のゲート長及びゲート幅は、MOSトランジスタ51のそれに比べて小さくなっている。それに応じてゲート酸化膜の厚さを異ならせるようにしてもよい。MOSトランジスタ52に関し、ソース/ドレイン拡散層662の濃度ピークは、素子分離領域142において埋め込まれる酸化膜13上面と同等のレベルもしくは、より下のレベルの基板11中に存在することが望ましい。これにより、シリサイド化への信頼性が得られる。   FIG. 5 is a cross-sectional view showing the main configuration of a semiconductor device according to the second embodiment of the present invention. In the semiconductor substrate of FIG. 1 shown in the first embodiment, a MOS transistor is formed in each element region. The MOS transistors 51 and 52 are configured to have a substrate (or well) 11 and a diffusion layer (source / drain) having a reverse conductivity type. The MOS transistor 52 formed in the device region A2 to which the second drive voltage lower than the first drive voltage is applied has a size compared to the MOS transistor 51 formed in the device region A1 to which the first drive voltage is applied. small. That is, the gate length and gate width of the MOS transistor 52 are smaller than those of the MOS transistor 51. Accordingly, the thickness of the gate oxide film may be varied. Regarding the MOS transistor 52, the concentration peak of the source / drain diffusion layer 662 is desirably present in the substrate 11 at a level equivalent to or lower than the upper surface of the oxide film 13 embedded in the element isolation region 142. Thereby, the reliability to silicidation is obtained.

図6〜図8は、それぞれ本発明の第3実施形態に係る半導体装置及びその製造方法の要部を工程順に示す断面図である。前記図1及び図5の構成と同様の箇所には同一の符号を付す。
図6に示すように、前記図1の半導体基板11において、だいたい700℃〜850℃の範囲の水蒸気雰囲気でのウェット酸化工程を行い、およそ10nm程度の薄いプレ酸化膜を形成する。これにより、トレンチ12の上部縁部TEの形状をさらに丸め整える。次に、1000℃〜1100℃の範囲のドライ酸化雰囲気中で再度プレ酸化膜を形成する。これにより、30nm前後の総合的な犠牲用の酸化膜61を形成する。高温のドライ酸化でトレンチ12の上部縁部TEの丸みは増し、また、トレンチ12底部縁部BE並びにトレンチ12を形作る基板11の壁にかかる応力緩和に寄与する。
6 to 8 are cross-sectional views showing the main part of the semiconductor device and the manufacturing method thereof according to the third embodiment of the present invention in the order of steps. The same reference numerals are given to the same portions as those in the configuration of FIGS.
As shown in FIG. 6, in the semiconductor substrate 11 of FIG. 1, a wet oxidation process is performed in a steam atmosphere in a range of about 700.degree. C. to 850.degree. C. to form a thin pre-oxide film of about 10 nm. As a result, the shape of the upper edge TE of the trench 12 is further rounded. Next, a pre-oxide film is formed again in a dry oxidation atmosphere in the range of 1000 ° C. to 1100 ° C. Thereby, a comprehensive sacrificial oxide film 61 of about 30 nm is formed. High temperature dry oxidation increases the roundness of the upper edge TE of the trench 12 and contributes to stress relaxation on the bottom edge BE of the trench 12 and the walls of the substrate 11 forming the trench 12.

酸化膜61越しに、複数回のフォトリソグラフィ工程及びイオン注入工程を経て図示しないウェルやチャネル領域を形成する。犠牲用の酸化膜61は、上記のような工程を経ることによって、複数回のフォトリソグラフィ工程/イオン注入に伴うレジストの剥離に耐え得る酸化膜質となる。また、素子領域上の基板の平坦度が良好となる。また、特に素子分離領域142近傍の素子領域における酸化膜抜け防止、丸み付けに寄与する。   A well and a channel region (not shown) are formed through the oxide film 61 through a plurality of photolithography processes and ion implantation processes. The sacrificial oxide film 61 has an oxide film quality that can withstand resist peeling caused by a plurality of photolithography processes / ion implantations through the above processes. Further, the flatness of the substrate on the element region is improved. In particular, this contributes to prevention of oxide film omission and rounding in the element region near the element isolation region 142.

次に、図7に示すように、犠牲用の酸化膜61を剥離し、ゲート酸化膜621,622を形成する。ゲート酸化膜621,622の膜厚がそれぞれ違う場合、一方のゲート酸化膜を全域に形成し、次に、マスク部材を利用して他のゲート酸化膜が必要な領域のみ剥離して新たに他方のゲート酸化膜を作り直す。次に、所定パターンのゲート電極631,632を形成する。LDD(Lightly Doped Drain )構造とするためソース/ドレインのエクステンション領域641,642形成後、サイドウォール(スペーサ)651,652を形成し、ソース/ドレイン拡散層661,662を形成する。これにより、前記図5のような構成を得る。   Next, as shown in FIG. 7, the sacrificial oxide film 61 is peeled off, and gate oxide films 621 and 622 are formed. When the thicknesses of the gate oxide films 621 and 622 are different, one gate oxide film is formed over the entire area, and then only a region where the other gate oxide film is necessary is peeled off using the mask member, and the other is newly added. Rebuild the gate oxide film. Next, gate electrodes 631 and 632 having a predetermined pattern are formed. After forming source / drain extension regions 641 and 642 to form an LDD (Lightly Doped Drain) structure, sidewalls (spacers) 651 and 652 are formed, and source / drain diffusion layers 661 and 662 are formed. Thereby, the configuration as shown in FIG. 5 is obtained.

次に、図8に示すように、サリサイドプロセスを用いて、ゲート電極631,632上部、ソース/ドレイン拡散層661,662上部にシリサイド層67を形成する。これにより、低抵抗化を図る構成とする。   Next, as shown in FIG. 8, silicide layers 67 are formed on the gate electrodes 631 and 632 and on the source / drain diffusion layers 661 and 662 by using a salicide process. Thus, the resistance is reduced.

上記実施形態及び方法によれば、駆動電圧の高いMOSトランジスタ51のフィールド反転耐圧を確保する素子分離領域141、それよりも駆動電圧の低いMOSトランジスタ52のフィールド反転耐圧を確保する素子分離領域142が形成される。また、MOSトランジスタ51より駆動電圧の低いMOSトランジスタ52は、フィールド反転耐圧も低くなり、MOSトランジスタ51よりも結晶欠陥によるリーク電流に影響される。よって、MOSトランジスタ52の形成される領域では、素子分離領域141に比べて、トレンチ12の深さは同じでも基板11に埋め込まれる酸化膜13の高さが低く、体積の小さくなる素子分離領域142が形成される。これにより、熱工程を伴う半導体装置製造の過程で結晶欠陥、転移欠陥派生防止の効果が大きくなり、素子分離領域に起因する結晶欠陥の防止がより重要なMOSトランジスタ52において信頼性が向上する。   According to the embodiment and the method described above, the element isolation region 141 that secures the field inversion withstand voltage of the MOS transistor 51 having a high drive voltage and the element isolation region 142 that secures the field inversion withstand voltage of the MOS transistor 52 having a lower drive voltage are provided. It is formed. In addition, the MOS transistor 52 having a lower driving voltage than the MOS transistor 51 has a lower field inversion breakdown voltage, and is more affected by a leakage current due to crystal defects than the MOS transistor 51. Therefore, in the region where the MOS transistor 52 is formed, the height of the oxide film 13 embedded in the substrate 11 is lower and the volume of the device isolation region 142 is smaller than that of the device isolation region 141 even though the depth of the trench 12 is the same. Is formed. As a result, the effect of preventing the derivation of crystal defects and transition defects is increased in the process of manufacturing a semiconductor device involving a thermal process, and the reliability is improved in the MOS transistor 52 where prevention of crystal defects caused by the element isolation region is more important.

なお、上記トレンチ12に埋め込まれる酸化膜13は、第1、第2の駆動電圧に限らず、第1の駆動電圧またはそれより低いその他の所定の駆動電圧が与えられるデバイス領域にそれぞれ必要な埋め込み高さに調整することも考えられる。つまり、酸化膜13の埋め込み高さの種類が3以上の半導体基板、半導体装置も考えられる。   The oxide film 13 embedded in the trench 12 is not limited to the first and second driving voltages, but is embedded in each device region to which the first driving voltage or other predetermined driving voltage lower than the first driving voltage is applied. It is also possible to adjust the height. That is, a semiconductor substrate or a semiconductor device in which the buried height of the oxide film 13 is 3 or more can be considered.

以上説明したように本発明によれば、駆動電圧が高い方の素子分離領域に関するトレンチ及び絶縁物の埋め込み形態と、駆動電圧が低い方の素子分離領域を同様に合わせることをしない。トレンチの深さは同じでもトレンチの最上部まで絶縁物を充填しない構成をとる。これにより、素子分離のための絶縁物の埋め込み体積が小さくなり、基板に対する応力も低減される。このような素子分離領域を、より結晶欠陥の影響を受け易い小さいサイズの素子を構成する素子分離に利用する。この結果、駆動電圧の低いデバイスでの結晶欠陥によるリーク電流を抑え、かつ、駆動電圧の高いデバイスのフィールド反転耐圧を確保することのできるトレンチ埋め込み素子分離領域を有する半導体基板、半導体装置及びその製造方法を提供することができる。   As described above, according to the present invention, the trench and insulator embedding form related to the element isolation region having the higher drive voltage and the element isolation region having the lower drive voltage are not matched in the same manner. Even if the depth of the trench is the same, an insulator is not filled up to the top of the trench. Thereby, the embedded volume of the insulator for element isolation is reduced, and the stress on the substrate is also reduced. Such an element isolation region is used for element isolation that constitutes a small-sized element that is more susceptible to crystal defects. As a result, a semiconductor substrate having a trench embedded element isolation region that can suppress a leakage current due to crystal defects in a device with a low driving voltage and can secure a field inversion withstand voltage of a device with a high driving voltage, and a semiconductor device and its manufacture A method can be provided.

一実施形態に係る半導体基板の要部構成を示す断面図。Sectional drawing which shows the principal part structure of the semiconductor substrate which concerns on one Embodiment. 図1の構成の製造方法を工程順に示す第1断面図。The 1st sectional view showing the manufacturing method of the composition of Drawing 1 in order of a process. 図2に続く第2断面図。The 2nd sectional view following Drawing 2. 図3に続く第3断面図。FIG. 4 is a third sectional view following FIG. 3. 第2実施形態に係る半導体装置の要部構成を示す断面図。Sectional drawing which shows the principal part structure of the semiconductor device which concerns on 2nd Embodiment. 第3実施形態の半導体装置及び製造方法要部を工程順に示す第1断面図。The 1st sectional view showing the semiconductor device and manufacturing method principal part of a 3rd embodiment in order of a process. 図6に続く第2断面図。The 2nd sectional view following Drawing 6. 図7に続く第3断面図。FIG. 8 is a third sectional view following FIG. 7.

符号の説明Explanation of symbols

11…シリコン基板、12…トレンチ、13,21,24、61…酸化膜、141,142…素子分離領域、22…窒化膜、23…アンダーカット、25…レジストパターン、51,52…MOSトランジスタ、621,622…ゲート酸化膜、631,632…ゲート電極、641,642…エクステンション領域、651,652…サイドウォール(スペーサ)、661,662…ソース/ドレイン拡散層、67…シリサイド層、TE…トレンチ上部縁部,TB…トレンチ底部縁部。A1,A2…デバイス領域、B1,B2…一素子領域。   DESCRIPTION OF SYMBOLS 11 ... Silicon substrate, 12 ... Trench, 13, 21, 24, 61 ... Oxide film, 141, 142 ... Element isolation region, 22 ... Nitride film, 23 ... Undercut, 25 ... Resist pattern, 51, 52 ... MOS transistor, 621, 622 ... gate oxide film, 631, 632 ... gate electrode, 641, 642 ... extension region, 651, 652 ... sidewall (spacer), 661, 662 ... source / drain diffusion layer, 67 ... silicide layer, TE ... trench Top edge, TB ... Trench bottom edge. A1, A2 ... Device region, B1, B2 ... One element region.

Claims (10)

基板上に絶縁物が埋め込まれる素子分離領域を備え、
第1の駆動電圧が与えられるデバイス領域に設けられた、第1の素子分離領域と、
前記第1の駆動電圧より低い第2の駆動電圧が与えられるデバイス領域に設けられた、前記第1の素子分離領域よりも埋め込まれる前記絶縁物の高さが低い第2の素子分離領域と、
を含む半導体基板。
Comprising an element isolation region in which an insulator is embedded on the substrate;
A first element isolation region provided in a device region to which a first drive voltage is applied;
A second element isolation region provided in a device region to which a second drive voltage lower than the first drive voltage is applied, and having a lower height of the insulator embedded than the first element isolation region;
Including a semiconductor substrate.
基板に形成された所定深さのトレンチに絶縁物が埋め込まれる素子分離領域を備え、
第1の駆動電圧が与えられるデバイス領域に設けられた、第1の素子分離領域と、
前記第1の駆動電圧より低い第2の駆動電圧が与えられるデバイス領域に設けられた、同じ容積のトレンチで比較して前記第1の素子分離領域よりも埋め込まれる前記絶縁物の体積が小さい第2の素子分離領域と、
を含む半導体基板。
An element isolation region in which an insulator is embedded in a trench having a predetermined depth formed in the substrate,
A first element isolation region provided in a device region to which a first drive voltage is applied;
Compared with a trench having the same volume provided in a device region to which a second drive voltage lower than the first drive voltage is applied, the volume of the insulator embedded in the device isolation region is smaller than that in the first element isolation region. Two element isolation regions;
Including a semiconductor substrate.
前記第1の素子分離領域により囲まれた基板上の一素子領域より前記第2の素子分離領域により囲まれた基板上の一素子領域の方が小面積である請求項1または2記載の半導体基板。 3. The semiconductor according to claim 1, wherein the one element region on the substrate surrounded by the second element isolation region has a smaller area than the one element region on the substrate surrounded by the first element isolation region. substrate. 半導体基板上に絶縁物が埋め込まれる素子分離領域を備え、
第1の駆動電圧が与えられるデバイス領域に設けられた、第1の素子分離領域と、
前記第1の駆動電圧より低い第2の駆動電圧が与えられるデバイス領域に設けられた、前記第1の素子分離領域よりも埋め込まれる前記絶縁物の高さが低い第2の素子分離領域と、
前記第1の素子分離領域に囲まれた半導体基板上に第1のゲート長及び幅を有して設けられた第1のMOS型素子と、
前記第2の素子分離領域に囲まれた半導体基板上に前記第1のMOS型素子より小さい第2のゲート長及び幅を有して設けられた第2のMOS型素子と、
を含む半導体装置。
Comprising an element isolation region in which an insulator is embedded on a semiconductor substrate;
A first element isolation region provided in a device region to which a first drive voltage is applied;
A second element isolation region provided in a device region to which a second drive voltage lower than the first drive voltage is applied, and having a lower height of the insulator embedded than the first element isolation region;
A first MOS type element provided with a first gate length and width on a semiconductor substrate surrounded by the first element isolation region;
A second MOS type element provided on the semiconductor substrate surrounded by the second element isolation region and having a second gate length and width smaller than the first MOS type element;
A semiconductor device including:
前記第2のMOS型素子は、素子分離領域において埋め込まれる前記絶縁物上面と同等のレベルもしくは、より下のレベルの前記半導体基板中に拡散層の濃度ピークを有する請求項4記載の半導体装置。 5. The semiconductor device according to claim 4, wherein the second MOS type element has a diffusion layer concentration peak in the semiconductor substrate at a level equivalent to or lower than the upper surface of the insulator buried in the element isolation region. 前記第2のMOS型素子は、素子分離領域において埋め込まれる前記絶縁物上面と同等のレベルもしくは、より下のレベルの前記半導体基板中に拡散層の濃度ピークを有し、前記第1、第2のMOS型素子共にゲート電極及び拡散層がシリサイド化されている請求項4記載の半導体装置。 The second MOS type element has a concentration peak of a diffusion layer in the semiconductor substrate at a level equivalent to or lower than the upper surface of the insulator buried in the element isolation region. 5. The semiconductor device according to claim 4, wherein the gate electrode and the diffusion layer are silicided in both of the MOS type elements. 半導体基板上に素子分離用のトレンチを形成する工程と、
前記トレンチに絶縁物を埋め込む工程と、を含み、
前記トレンチの深さは第1の駆動電圧が与えられるデバイス領域に合わせて設定され、前記トレンチに埋め込まれる絶縁物は、前記第1の駆動電圧または前記第1の駆動電圧より低いその他の所定の駆動電圧が与えられるデバイス領域にそれぞれ必要な埋め込み高さに調整する半導体装置の製造方法。
Forming a trench for element isolation on a semiconductor substrate;
Embedding an insulator in the trench,
The depth of the trench is set in accordance with a device region to which a first driving voltage is applied, and the insulator embedded in the trench is the first driving voltage or another predetermined voltage lower than the first driving voltage. A method for manufacturing a semiconductor device, wherein a device region to which a drive voltage is applied is adjusted to a required embedded height.
半導体基板上に素子分離用のトレンチを形成する工程と、
前記トレンチに絶縁膜を埋め込む工程と、
前記トレンチに埋め込まれた絶縁膜のうち、第1の駆動電圧が与えられるデバイス領域に設けられる部分は耐エッチング部材で保護し、前記第1の駆動電圧より低い第2の駆動電圧が与えられるデバイス領域に設けられる部分は前記絶縁膜の上部を所定厚さ除去するエッチング工程と、
前記第1の駆動電圧が与えられるデバイス領域の前記半導体基板と前記第2の駆動電圧が与えられるデバイス領域の前記半導体基板にそれぞれサイズの異なるMOS型素子を形成する工程と、
を含む半導体装置の製造方法。
Forming a trench for element isolation on a semiconductor substrate;
Embedding an insulating film in the trench;
Of the insulating film embedded in the trench, a portion provided in a device region to which a first driving voltage is applied is protected by an etching resistant member, and a device to which a second driving voltage lower than the first driving voltage is applied The portion provided in the region is an etching process for removing a predetermined thickness of the upper part of the insulating film;
Forming MOS-type elements having different sizes on the semiconductor substrate in the device region to which the first drive voltage is applied and the semiconductor substrate in the device region to which the second drive voltage is applied;
A method of manufacturing a semiconductor device including:
前記素子分離用のトレンチを形成する工程は、前記半導体基板上に酸化膜及び窒化膜の積層のマスクパターンを形成する工程と、前記マスクパターンに従って異方性エッチングし、前記トレンチを形成する工程と、前記トレンチ上部縁部の前記酸化膜を奥行き方向に所定量エッチング除去する工程と、熱処理を伴って前記トレンチ内壁を酸化し前記トレンチの上部縁部及び底部縁部に丸みを付ける工程と、を含む請求項5記載の半導体装置の製造方法。 The step of forming the element isolation trench includes the steps of: forming a mask pattern of a stack of an oxide film and a nitride film on the semiconductor substrate; and forming the trench by anisotropic etching according to the mask pattern; A step of etching and removing a predetermined amount of the oxide film on the upper edge of the trench in a depth direction, and a step of oxidizing the inner wall of the trench with heat treatment and rounding the upper edge and the bottom edge of the trench. A method for manufacturing a semiconductor device according to claim 5. 前記絶縁膜の上部を所定厚さ除去するエッチング工程の後に、前記トレンチ上部の露出した半導体基板部分を酸化する工程をさらに含む請求項5または6記載の半導体装置の製造方法。 7. The method of manufacturing a semiconductor device according to claim 5, further comprising a step of oxidizing the exposed semiconductor substrate portion above the trench after the etching step of removing the upper portion of the insulating film by a predetermined thickness.
JP2004173949A 2004-06-11 2004-06-11 Semiconductor substrate, semiconductor device and its manufacturing method Withdrawn JP2005353892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004173949A JP2005353892A (en) 2004-06-11 2004-06-11 Semiconductor substrate, semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004173949A JP2005353892A (en) 2004-06-11 2004-06-11 Semiconductor substrate, semiconductor device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005353892A true JP2005353892A (en) 2005-12-22

Family

ID=35588088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004173949A Withdrawn JP2005353892A (en) 2004-06-11 2004-06-11 Semiconductor substrate, semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005353892A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027502A (en) * 2005-07-19 2007-02-01 Renesas Technology Corp Semiconductor device
JP2008010444A (en) * 2006-06-27 2008-01-17 Nec Corp Semiconductor device and manufacturing method thereof
JP2008053518A (en) * 2006-08-25 2008-03-06 Sony Corp Semiconductor device
JP2008124172A (en) * 2006-11-10 2008-05-29 Fujitsu Ltd Semiconductor device and its manufacturing method
JP2009027131A (en) * 2007-06-20 2009-02-05 Toshiba Corp Semiconductor device and method of manufacturing the same
JP2009071168A (en) * 2007-09-14 2009-04-02 Toshiba Corp Nonvolatile semiconductor storage device and manufacturing method thereof
US8232608B2 (en) 2008-07-15 2012-07-31 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing semiconductor device
US8937368B2 (en) 2010-11-19 2015-01-20 Panasonic Corporation Semiconductor device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251266A (en) * 1988-08-12 1990-02-21 Fuji Electric Co Ltd Mis type semiconductor device
JPH113974A (en) * 1997-06-11 1999-01-06 Hitachi Ltd Semiconductor integrated circuit device and manufacture thereof
JP2000068387A (en) * 1998-08-06 2000-03-03 Siemens Ag Method for forming pair of mosfets in different electrically insulating region of silicon substrate
JP2000150662A (en) * 1998-09-08 2000-05-30 Denso Corp Semiconductor device and manufacture thereof
JP2000243856A (en) * 1999-02-22 2000-09-08 Motorola Inc Forming method of semiconductor device
JP2000349164A (en) * 1999-06-08 2000-12-15 Nec Corp Manufacture of semiconductor device with element isolation insulating film
JP2001015612A (en) * 1999-04-26 2001-01-19 Hitachi Ltd Manufacture of semiconductor integrated circuit device
JP2001168184A (en) * 1999-12-09 2001-06-22 Nec Corp Semiconductor integrated circuit device, method for separating element thereof and manufacturing method thereof
JP2004039734A (en) * 2002-07-01 2004-02-05 Fujitsu Ltd Method of forming element separating film

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251266A (en) * 1988-08-12 1990-02-21 Fuji Electric Co Ltd Mis type semiconductor device
JPH113974A (en) * 1997-06-11 1999-01-06 Hitachi Ltd Semiconductor integrated circuit device and manufacture thereof
JP2000068387A (en) * 1998-08-06 2000-03-03 Siemens Ag Method for forming pair of mosfets in different electrically insulating region of silicon substrate
JP2000150662A (en) * 1998-09-08 2000-05-30 Denso Corp Semiconductor device and manufacture thereof
JP2000243856A (en) * 1999-02-22 2000-09-08 Motorola Inc Forming method of semiconductor device
JP2001015612A (en) * 1999-04-26 2001-01-19 Hitachi Ltd Manufacture of semiconductor integrated circuit device
JP2000349164A (en) * 1999-06-08 2000-12-15 Nec Corp Manufacture of semiconductor device with element isolation insulating film
JP2001168184A (en) * 1999-12-09 2001-06-22 Nec Corp Semiconductor integrated circuit device, method for separating element thereof and manufacturing method thereof
JP2004039734A (en) * 2002-07-01 2004-02-05 Fujitsu Ltd Method of forming element separating film

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027502A (en) * 2005-07-19 2007-02-01 Renesas Technology Corp Semiconductor device
JP2008010444A (en) * 2006-06-27 2008-01-17 Nec Corp Semiconductor device and manufacturing method thereof
JP2008053518A (en) * 2006-08-25 2008-03-06 Sony Corp Semiconductor device
JP2008124172A (en) * 2006-11-10 2008-05-29 Fujitsu Ltd Semiconductor device and its manufacturing method
JP2009027131A (en) * 2007-06-20 2009-02-05 Toshiba Corp Semiconductor device and method of manufacturing the same
JP2009071168A (en) * 2007-09-14 2009-04-02 Toshiba Corp Nonvolatile semiconductor storage device and manufacturing method thereof
US7855116B2 (en) 2007-09-14 2010-12-21 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and manufacturing method thereof
US8232608B2 (en) 2008-07-15 2012-07-31 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing semiconductor device
US8937368B2 (en) 2010-11-19 2015-01-20 Panasonic Corporation Semiconductor device
JP5799235B2 (en) * 2010-11-19 2015-10-21 パナソニックIpマネジメント株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
JP2004134718A (en) Semiconductor element and its manufacturing method
JP2009021569A (en) Semiconductor device having sti structure and method of manufacturing the same
JP2010050202A (en) Semiconductor device and its manufacturing method
JP2004023106A (en) Semiconductor device and its manufacturing method
JP5121102B2 (en) Manufacturing method of semiconductor device
JP2009158677A (en) Method of manufacturing semiconductor device and method of manufacturing semiconductor device for hybrid transistor
US7851328B2 (en) STI stress modulation with additional implantation and natural pad sin mask
JP2005353892A (en) Semiconductor substrate, semiconductor device and its manufacturing method
JP2007194333A (en) Method for manufacturing semiconductor device
JP2005175299A (en) Semiconductor device and its manufacturing method
JP2008294445A (en) Semiconductor element having sti structure, and method of manufacturing the same
JP2007019191A (en) Semiconductor device and its manufacturing method
JP2006108439A (en) Semiconductor device
US20090140332A1 (en) Semiconductor device and method of fabricating the same
JP2012028562A (en) Method of manufacturing semiconductor device
JP2006310524A (en) Semiconductor device and its manufacturing method
KR100875170B1 (en) Recess gate of semiconductor device and method for forming thereof
JP5130677B2 (en) Manufacturing method of semiconductor devices
US7148108B2 (en) Method of manufacturing semiconductor device having step gate
JP2007234740A (en) Manufacturing method of semiconductor device
JP2004179301A (en) Manufacturing method of semiconductor integrated circuit device
US20080227266A1 (en) Method of STI corner rounding using nitridation and high temperature thermal processing
JP2011040422A (en) Semiconductor substrate, semiconductor device and method of manufacturing the semiconductor device
JP4989076B2 (en) Manufacturing method of semiconductor device
JP2009177063A (en) Method for manufacturing semiconductor device and semiconductor device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070403

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110628