JPH1139647A - Magnetic recording medium, its production and magnetic storage device - Google Patents
Magnetic recording medium, its production and magnetic storage deviceInfo
- Publication number
- JPH1139647A JPH1139647A JP19674797A JP19674797A JPH1139647A JP H1139647 A JPH1139647 A JP H1139647A JP 19674797 A JP19674797 A JP 19674797A JP 19674797 A JP19674797 A JP 19674797A JP H1139647 A JPH1139647 A JP H1139647A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- recording medium
- nitrogen
- magnetic recording
- protective layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Magnetic Record Carriers (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、磁気記憶装置と、
これを用いる磁気記録媒体及びその製造方法に係わり、
特に1平方インチあたり2ギガビット以上の記録密度を
有し、かつ、信頼性の高い磁気記憶装置とこれを実現す
るための磁気記録媒体及びその製造方法に関する。[0001] The present invention relates to a magnetic storage device,
Related to a magnetic recording medium using the same and a method for manufacturing the same,
In particular, the present invention relates to a highly reliable magnetic storage device having a recording density of 2 gigabits per square inch or more, a magnetic recording medium for realizing the same, and a method of manufacturing the same.
【0002】[0002]
【従来の技術】従来から知られている磁気ディスク用保
護膜は、黒鉛状ターゲットのスパッタリングで形成した
材料から成り、化学的に安定で摩擦係数が小さく、摺動
時に摩耗粉を発生し難いなど保護膜に適した性質を有す
るが、黒鉛状の炭素を多く含む。このため、硬度や耐摩
耗性を更に高めることは困難である。これに対して、炭
素のみから成る上記保護膜に他の元素を添加することに
より黒鉛状構造の生成を阻止し、緻密化をはかるなどの
対策が提案されている。添加する元素としては、炭素と
共有結合する水素,硼素,窒素,フッ素,ケイ素の他、
金属,金属酸化物や金属窒化物が提案されている。とく
に、窒素を添加した炭素系保護膜は、窒素と炭素による
多重結合の平均エネルギーが炭素と炭素の場合よりも高
く、また、炭素と窒素が単結合した構造のうちβ−C3
N4はダイヤモンドに匹敵する高硬度の材料になること
が予測されているなど、保護膜として高い性能をもつこ
とが期待されている。具体的に例示すると、特開平5−2
25556号や特開平7−320256号などがある。2. Description of the Related Art A conventionally known protective film for a magnetic disk is made of a material formed by sputtering a graphite-like target, is chemically stable, has a low coefficient of friction, and hardly generates abrasion powder during sliding. It has properties suitable for a protective film, but contains a large amount of graphite-like carbon. For this reason, it is difficult to further increase hardness and wear resistance. On the other hand, measures have been proposed to prevent the formation of a graphite-like structure by adding another element to the above-mentioned protective film made of only carbon, thereby achieving densification. As elements to be added, hydrogen, boron, nitrogen, fluorine, silicon, which are covalently bonded to carbon,
Metals, metal oxides and metal nitrides have been proposed. In particular, a carbon-based protective film to which nitrogen is added has an average energy of multiple bonds of nitrogen and carbon higher than that of carbon and carbon, and has a β-C 3
N 4 is expected to have high performance as a protective film, for example, it is predicted that N 4 will be a material having a hardness as high as that of diamond. To be more specific, Japanese Patent Application Laid-Open No. 5-2
No. 25556 and JP-A-7-320256.
【0003】[0003]
【発明が解決しようとする課題】上記の特開平5−22555
6 号に述べられたものは黒鉛状の炭素を多く含む材料に
窒素を添加することで保護層を強固にし、耐久性の向上
をはかったものである。しかし、磁気ヘッドの軽量化,
低浮上化及び保護膜の薄膜化が進む現状では、保護膜の
耐久性を支配する要因として、機械的強度よりも保護膜
表面と潤滑剤の化学的作用の方が重要になっており、保
護膜の内部よりも表面の構造や化学的な性質が重要な要
素となってきた。このことから、保護層の機械的な強度
を上げるだけでは磁気ディスクの耐久性を向上できない
という問題がある。SUMMARY OF THE INVENTION The above-mentioned Japanese Patent Application Laid-Open No. Hei 5-22555
The one described in No. 6 is to improve the durability by strengthening the protective layer by adding nitrogen to a graphite-like material rich in carbon. However, the weight reduction of the magnetic head,
In the current situation of low flying height and thinning of the protective film, the chemical action of the protective film surface and the lubricant is more important than the mechanical strength as a factor governing the durability of the protective film. The surface structure and chemical properties have become more important factors than the inside of the film. Therefore, there is a problem that the durability of the magnetic disk cannot be improved only by increasing the mechanical strength of the protective layer.
【0004】一方、上記の特開平7−320256 号に述べら
れたものは窒素元素を添加したことによる潤滑剤結合力
の強化をはかったものであるが、窒素を添加しても潤滑
層との界面にあたる保護膜表面の化学構造を最適化しい
ないと磁気ディスクの耐久性を向上する効果が少ないと
いう問題点がある。On the other hand, Japanese Patent Application Laid-Open No. 7-320256 described above is intended to enhance the bonding force of a lubricant by adding a nitrogen element. Unless the chemical structure of the surface of the protective film corresponding to the interface is optimized, there is a problem that the effect of improving the durability of the magnetic disk is small.
【0005】以上のことから、本発明の目的は保護膜の
表面における化学的性質に着目し、窒素を添加した炭素
系保護膜を対象に、潤滑剤との結合力の強化に最も適し
た表面の化学組成を提供することにある。In view of the above, an object of the present invention is to focus on the chemical properties of the surface of the protective film, and focus on a carbon-based protective film to which nitrogen has been added. In providing the chemical composition of
【0006】[0006]
【課題を解決するための手段】上記目的を達成するた
め、本発明の磁気記録媒体は、基材上に磁性層と該磁性
層に形成された保護膜を有し、該保護膜が少なくとも炭
素,窒素,酸素を含む皮膜から成り、該皮膜の窒素/炭
素の原子数比が0.05〜0.3で、かつ、該皮膜の表面
における酸素/窒素の原子数比が0.5〜2.0の範囲内
にあることを特徴とする。In order to achieve the above object, a magnetic recording medium of the present invention has a magnetic layer on a base material and a protective film formed on the magnetic layer, and the protective film has at least carbon. , Nitrogen and oxygen, the atomic ratio of nitrogen / carbon of the coating is 0.05 to 0.3 and the atomic ratio of oxygen / nitrogen on the surface of the coating is 0.5 to 2 .0.
【0007】また、上記目的を達成するための本発明の
磁気記録媒体は、基材上に磁性層と、該磁性層上に形成
された保護層とを順次積層した磁気記録媒体において、
該保護層が少なくとも炭素,窒素,酸素から成り、表面
にニトロ基を有することを特徴とする。In order to achieve the above object, a magnetic recording medium according to the present invention is a magnetic recording medium in which a magnetic layer and a protective layer formed on the magnetic layer are sequentially laminated on a base material.
The protective layer comprises at least carbon, nitrogen and oxygen, and has a nitro group on the surface.
【0008】さらに、上記目的を達成するための本発明
の磁気記録媒体は、基材上に磁性層と、該磁性層上に形
成された保護層とを順次積層した磁気記録媒体におい
て、該保護層が少なくとも炭素,窒素,酸素から成り、
表面の中心線平均粗さRaが1nm以下であることを特
徴とする。ここで、中心線平均粗さの定義は、日本工業
規格(JIS−B0601)の規定に準拠する。Further, in order to achieve the above object, a magnetic recording medium according to the present invention is a magnetic recording medium comprising: a magnetic layer on a substrate; and a protective layer formed on the magnetic layer. The layer comprises at least carbon, nitrogen and oxygen,
The center line average roughness Ra of the surface is 1 nm or less. Here, the definition of the center line average roughness conforms to the provisions of the Japanese Industrial Standards (JIS-B0601).
【0009】上記目的を達成するための磁気記憶装置
は、磁気記録媒体と、これを記録方向に駆動する駆動部
と、記録部と再生部から成る磁気ヘッドと、上記磁気ヘ
ッドを上記磁気記録媒体に対して相対運動させる手段
と、上記磁気ヘッドへの信号入力と該磁気ヘッドからの
出力信号再生を行うための記録再生信号処理手段を有す
る磁気記憶装置において、前記磁気ヘッドの再生部が磁
気抵抗効果型磁気ヘッドで構成され、かつ、前記磁気記
録媒体が少なくとも炭素,窒素,酸素を含み、窒素/炭
素の原子数比が0.05〜0.3で、かつ、該皮膜の表面
における酸素/窒素の原子数比が0.5〜2.0の範囲内
にある前記保護層を備えたことを特徴とする。A magnetic storage device for achieving the above object is a magnetic recording medium, a drive unit for driving the magnetic recording medium in a recording direction, a magnetic head including a recording unit and a reproducing unit, and a magnetic recording medium. And a read / write signal processing means for performing a signal input to the magnetic head and reproducing an output signal from the magnetic head. Effect type magnetic head, wherein the magnetic recording medium contains at least carbon, nitrogen and oxygen, the atomic ratio of nitrogen / carbon is 0.05 to 0.3, and the ratio of oxygen / The semiconductor device according to claim 1, further comprising the protective layer having an atomic ratio of nitrogen in a range of 0.5 to 2.0.
【0010】上記目的を達成するための磁気記憶装置
は、磁気記録媒体と、これを記録方向に駆動する駆動部
と、記録部と再生部から成る磁気ヘッドと、上記磁気ヘ
ッドを上記磁気記録媒体に対して相対運動させる手段
と、上記磁気ヘッドへの信号入力と該磁気ヘッドからの
出力信号再生を行うための記録再生信号処理手段を有す
る磁気記憶装置において、前記磁気ヘッドが浮上面レー
ルの面積が1.25mm2以下で質量が2mg以下の磁気ヘッ
ドスライダー上に形成され、かつ、前記磁気記録媒体が
少なくとも炭素,窒素,酸素を含み、窒素/炭素の原子
数比が0.05 〜0.3 で、かつ、該皮膜の表面におけ
る酸素/窒素の原子数比が0.5〜2.0の範囲内にある
前記保護層を備えたことを特徴とする。[0010] A magnetic storage device for achieving the above object is a magnetic recording medium, a driving unit for driving the magnetic recording medium in a recording direction, a magnetic head comprising a recording unit and a reproducing unit, and a magnetic recording medium. A magnetic storage device comprising: means for moving relative to the magnetic head; and recording and reproduction signal processing means for performing signal input to the magnetic head and reproduction of an output signal from the magnetic head. Is formed on a magnetic head slider having a mass of 1.25 mm 2 or less and a mass of 2 mg or less, and the magnetic recording medium contains at least carbon, nitrogen and oxygen, and has a nitrogen / carbon atomic ratio of 0.05 to 0.5. 3 and wherein the protective layer has an atomic ratio of oxygen / nitrogen on the surface of the coating in the range of 0.5 to 2.0.
【0011】上記目的を達成するための本発明の磁気記
録媒体の製造方法は、基材表面に磁性層を形成する工程
と、前記磁性層表面に少なくとも炭素,窒素,酸素から
なる保護層を形成する工程と、該保護層の表面を大気中
で紫外線照射することを特徴とする。In order to achieve the above object, a method of manufacturing a magnetic recording medium according to the present invention comprises a step of forming a magnetic layer on the surface of a base material and a step of forming a protective layer comprising at least carbon, nitrogen and oxygen on the surface of the magnetic layer And irradiating the surface of the protective layer with ultraviolet light in the air.
【0012】また、上記目的を達成するための本発明の
磁気記録媒体の製造方法は、基材表面に磁性層を形成す
る工程と、前記磁性層表面に少なくとも炭素,窒素,酸
素からなる保護層を形成する工程と、該保護層の表面を
酸素雰囲気下でプラズマ処理をすることを特徴とする。According to another aspect of the present invention, there is provided a method of manufacturing a magnetic recording medium, comprising the steps of: forming a magnetic layer on a surface of a substrate; and forming a protective layer comprising at least carbon, nitrogen and oxygen on the surface of the magnetic layer. And a step of subjecting the surface of the protective layer to a plasma treatment in an oxygen atmosphere.
【0013】次に、上記構成について機能的に説明す
る。Next, the above configuration will be functionally described.
【0014】上記構成の磁気記録媒体は、保護層と潤滑
層の界面に当たる保護膜の表面に電気陰性度の大きな窒
素と酸素が加わって強い電子吸引性基を形成し、潤滑剤
分子の末端が保護膜の表面と強く結合する。とくに、芳
香環や共役二重結合に窒素,酸素からなるニトロ基など
が結合すれば、π電子の移動により一層の強い電子吸引
性基になり、さらに潤滑剤と強く結合し、磁気ディスク
の耐久性の向上に寄与する。このような窒素や酸素によ
る電子吸引性基は、大気中における酸素との反応によっ
て形成されるが、成膜の方式及び条件を整えたり、表面
処理を施すなどして酸素/窒素の原子数比を最適化すれ
ば、さらに潤滑剤との結合力が強固になる。In the magnetic recording medium having the above structure, a strong electron-withdrawing group is formed by adding nitrogen and oxygen having a high electronegativity to the surface of the protective film corresponding to the interface between the protective layer and the lubricating layer. Strongly binds to the surface of the protective film. In particular, when a nitro group consisting of nitrogen and oxygen is bonded to an aromatic ring or a conjugated double bond, the transfer of π electrons becomes a stronger electron-withdrawing group, and is further strongly bonded to a lubricant. It contributes to the improvement of performance. Such an electron-withdrawing group formed by nitrogen or oxygen is formed by a reaction with oxygen in the atmosphere. However, by adjusting the film forming method and conditions or performing surface treatment, the atomic ratio of oxygen / nitrogen is adjusted. Is optimized, the bonding force with the lubricant is further strengthened.
【0015】例えば、表面の化学組成の最適化には酸素
プラズマや紫外線照射による表面処理も有効な手段であ
る。しかも、酸素プラズマ処理や紫外線を照射すれば、
酸素ラジカルやオゾンとの反応により有機コンタミネー
ションを除去したり、アッシング或いはフォトエッチン
グにより凹凸を緩和するのにも効果がある。For example, surface treatment by oxygen plasma or ultraviolet irradiation is also an effective means for optimizing the chemical composition of the surface. Moreover, if oxygen plasma treatment or UV irradiation is used,
It is also effective in removing organic contamination by reaction with oxygen radicals and ozone, and in reducing unevenness by ashing or photoetching.
【0016】しかし、窒素と酸素を含む場合でも表面の
化学状態によっては、潤滑剤分子が分解し易くなるな
ど、耐久性が劣化することもある。従って、磁気ディス
クの耐久性を向上させるためには保護層の表面元素比率
を必要に応じて最適化することが望ましい。使用される
潤滑剤は特に限定されないが、パーフロロポリエチル,
パーフロロポリエーテル,パーフロロカルボン酸等のフ
ッ素系ポリマーが好適である。However, even when nitrogen and oxygen are contained, depending on the chemical state of the surface, the durability may be deteriorated such that the lubricant molecules are easily decomposed. Therefore, in order to improve the durability of the magnetic disk, it is desirable to optimize the surface element ratio of the protective layer as necessary. The lubricant used is not particularly limited.
Fluoropolymers such as perfluoropolyether and perfluorocarboxylic acid are preferred.
【0017】[0017]
【発明の実施の形態】以下、本発明に係わる磁気記録媒
体およびその製造方法の実施の形態を図面を用いて説明
する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a magnetic recording medium according to the present invention and a method for manufacturing the same will be described with reference to the drawings.
【0018】図1は本発明の特徴を最もよく表している
ハードディスク用磁気記録媒体の断面図、図2は本発明
の実施例に示すドラッグ試験での保護層の化学組成と摺
動回数の関係図、図3は本発明の一実施例に示す高周波
マグネトロン方式により高ガス圧力下のスパッタ蒸着で
形成した窒素/炭素の原子数比が0.48 の保護層のラ
マンスペクトル図、図4は本発明の一実施例に示す高周
波マグネトロン方式により低ガス圧力下のスパッタ蒸着
で形成した窒素/炭素の原子数比が0.055の保護層
のラマンスペクトル図、図5は本実施例に示すドラッグ
試験で寿命が150k回以上であったサンプルにおける
原子数比の関係図、図6は本発明の磁気記録媒体を備え
た磁気記憶装置の構成図、表1はX線光電子分光法によ
り測定した本実施例の代表的な保護層の表面元素比率で
ある。FIG. 1 is a cross-sectional view of a magnetic recording medium for a hard disk, which best illustrates the features of the present invention. FIG. 2 is a relationship between the chemical composition of a protective layer and the number of times of sliding in a drag test according to an embodiment of the present invention. FIG. 3 is a Raman spectrum diagram of a protective layer having a nitrogen / carbon atomic ratio of 0.48 formed by sputter deposition under a high gas pressure by a high-frequency magnetron method according to an embodiment of the present invention, and FIG. FIG. 5 is a Raman spectrum diagram of a protective layer having an atomic ratio of nitrogen / carbon of 0.055 formed by sputter deposition under a low gas pressure by a high-frequency magnetron method according to an embodiment of the present invention, and FIG. FIG. 6 is a diagram showing the relationship between the atomic ratios of the samples having a life of 150 k times or more, FIG. An example A surface element ratio representative protecting layer.
【0019】図1に本発明の実施例の代表的な磁気記録
媒体の構成を示す。この磁気記録媒体は、非磁性基体の
磁気ディスク基板1上にCr下地層2と、CoCr系合
金からなる磁性層3と、炭素に窒素,酸素を含む保護層
4と、パーフロロポリエチル系の潤滑層5を順次積層し
た多層膜から構成される。FIG. 1 shows the configuration of a typical magnetic recording medium according to an embodiment of the present invention. This magnetic recording medium has a Cr underlayer 2, a magnetic layer 3 made of a CoCr-based alloy, a protective layer 4 containing nitrogen and oxygen in carbon, and a perfluoropolyethyl-based It is composed of a multilayer film in which the lubricating layers 5 are sequentially laminated.
【0020】この磁気記録媒体は下記の実施例1〜3に
示す方式の黒鉛状ターゲットのスパッタ蒸着により、保
護層の窒素/炭素及び表面における酸素/窒素の原子数
比の異なるサンプルとして形成した。膜厚はいずれの場
合も7nmとした。This magnetic recording medium was formed as a sample having different atomic ratios of nitrogen / carbon and oxygen / nitrogen on the surface of the protective layer by sputter deposition of a graphite target in the manner shown in Examples 1 to 3 below. The film thickness was 7 nm in each case.
【0021】更に、各実施例において保護層の表面にお
ける酸素/窒素の原子数比を変化させる目的で、酸素プ
ラズマ処理や大気中での紫外線照射も行った。酸素プラ
ズマ処理では酸素ガスを100mTorr導入した雰囲気に
おいて高周波電源により150Wの出力でプラズマを発生
し、サンプルを4分間放置した。紫外線の照射ではサン
プルの表面から50mmの位置に反射鏡を備えた高圧水銀
ランプを設け、10kWの電力で4分間の処理を行っ
た。このような表面処理を行うことにより保護層の表面
における酸素/窒素の原子数比が処理前の1.2 〜2倍
に向上した。Further, in each of the examples, oxygen plasma treatment and ultraviolet irradiation in the air were also performed in order to change the atomic ratio of oxygen / nitrogen on the surface of the protective layer. In the oxygen plasma treatment, plasma was generated at a power of 150 W from a high frequency power supply in an atmosphere in which oxygen gas was introduced at 100 mTorr, and the sample was left for 4 minutes. For irradiation with ultraviolet rays, a high-pressure mercury lamp equipped with a reflecting mirror was provided at a position 50 mm from the surface of the sample, and a treatment was performed at a power of 10 kW for 4 minutes. By performing such a surface treatment, the atomic ratio of oxygen / nitrogen on the surface of the protective layer was improved to 1.2 to 2 times that before the treatment.
【0022】(実施例1)本実施例では直流マグネトロ
ン電極を用いた反応性スパッタ蒸着法により表1の条件
で保護層を形成した。(Example 1) In this example, a protective layer was formed under the conditions shown in Table 1 by a reactive sputter deposition method using a DC magnetron electrode.
【0023】[0023]
【表1】 直流マグネトロン電極による反応性スパッタ蒸着条件 条件 ガス種 動作圧力 投入電力 1−1 Ar,N2(N2/Ar=0.05) 8mTorr 1.5kW 1−2 Ar,N2(N2/Ar=0.11) 8mTorr 1.5kW 1−3 Ar,N2(N2/Ar=0.25) 8mTorr 1.5kW 1−4 Ar,N2(N2/Ar=0.43) 8mTorr 1.5kW (比較例1)実施例1と同じ直流マグネトロン電極によ
るスパッタ蒸着法を用いて、窒素ガスを導入しない条件
により保護層を形成した。Table 1 Reactive sputter deposition conditions using a DC magnetron electrode Condition Gas type Operating pressure Input power 1-1 Ar, N 2 (N 2 /Ar=0.05) 8 mTorr 1.5 kW 1-2 Ar, N 2 (N 2 / Ar = 0.11) 8 mTorr 1.5 kW 1-3 Ar, N 2 (N 2 /Ar=0.25) 8 mTorr 1.5 kW 1-4 Ar, N 2 (N 2 /Ar=0.43) 8 mTorr 1.5 kW (Comparative Example 1) A protective layer was formed by the same sputter deposition method using a DC magnetron electrode as in Example 1 under the condition that nitrogen gas was not introduced.
【0024】(実施例2)本実施例では高周波マグネト
ロン電極を用いた反応性スパッタ蒸着法により表2の条
件で保護層を形成した。本実施例では成膜時の動作圧力
を30mTorr及び5mTorrとした。但し、動作圧力を5
mTorrとすると気相中の電子が不足して自発的に放電が
発生しないため、放電開始から1秒間の動作圧力は30
mTorrに設定した。Example 2 In this example, a protective layer was formed under the conditions shown in Table 2 by a reactive sputter deposition method using a high-frequency magnetron electrode. In this embodiment, the operating pressure during film formation was 30 mTorr and 5 mTorr. However, if the operating pressure is 5
When the pressure is set to mTorr, the discharge in the gas phase is insufficient and the discharge does not occur spontaneously.
Set to mTorr.
【0025】[0025]
【表2】 高周波マグネトロン電極による反応性スパッタ蒸着条件 条件 ガス種 動作圧力 投入電力 2−1 Ar,N2(N2/Ar=0.05) 30mTorr 1.0kW 2−2 Ar,N2(N2/Ar=0.11) 30mTorr 1.0kW 2−3 Ar,N2(N2/Ar=0.25) 30mTorr 1.0kW 2−4 Ar,N2(N2/Ar=0.43) 30mTorr 1.0kW 2−5 Ar,N2(N2/Ar=0.05) 5mTorr 1.0kW 2−6 Ar,N2(N2/Ar=0.11) 5mTorr 1.0kW 2−7 Ar,N2(N2/Ar=0.25) 5mTorr 1.0kW 2−8 Ar,N2(N2/Ar=0.43) 5mTorr 1.0kW (実施例3)本実施例では非対称マグネトロン電極を用
いた反応性スパッタ蒸着法により表3の条件で保護層を
形成した。本実施例で用いた非対称マグネトロン電極に
よるスパッタ蒸着はマグネトロン電極の磁石と配置を制
御し電極間に広がる磁束の効果を利用してプラズマを発
生したもので、基板に数十mA/cm2 のイオン電流が流
れた。Table 2 Reactive sputter deposition conditions using a high-frequency magnetron electrode Condition Gas type Operating pressure Input power 2-1 Ar, N 2 (N 2 /Ar=0.05) 30 mTorr 1.0 kW 2-2 Ar, N 2 (N 2 / Ar = 0.11) 30 mTorr 1.0 kW 2-3 Ar, N 2 (N 2 /Ar=0.25) 30 mTorr 1.0 kW 2-4 Ar, N 2 (N 2 /Ar=0.43) 30 mTorr 1.0 kW 2-5 Ar, N 2 (N 2 /Ar=0.05) 5 mTorr 1.0 kW 2-6 Ar, N 2 (N 2 /Ar=0.11) 5 mTorr 1.0 kW 2-7 Ar , N 2 (N 2 /Ar=0.25) 5 mTorr 1.0 kW 2-8 Ar, N 2 (N 2 /Ar=0.43) 5 mTorr 1.0 kW (Embodiment 3) In this embodiment, an asymmetric magnetron electrode is used. The protective layer was formed under the conditions shown in Table 3 by a reactive sputter deposition method using The sputter deposition using the asymmetric magnetron electrode used in the present embodiment is a method of controlling the magnet and the arrangement of the magnetron electrode and using the effect of the magnetic flux spreading between the electrodes to generate plasma, and the ions of several tens mA / cm 2 are formed on the substrate. Electric current flowed.
【0026】[0026]
【表3】 高周波マグネトロン電極による反応性スパッタ蒸着条件 条件 ガス種 動作圧力 投入電力 3−1 Ar,N2(N2/Ar=0.05) 8mTorr 1.5kW 3−2 Ar,N2(N2/Ar=0.11) 8mTorr 1.5kW 3−3 Ar,N2(N2/Ar=0.25) 8mTorr 1.5kW 3−4 Ar,N2(N2/Ar=0.43) 8mTorr 1.5kW 表4は実施例1〜3で形成した代表的な保護膜の表面元
素比率をX線光電子分光で測定した結果である。これら
の値は光電子取出角度を90度と30度として測定し
た。括弧内に示した数値は電子取出角度が30度の値で
あり、最表面付近での元素比率に相当する。Table 3 Reactive sputter deposition conditions using a high-frequency magnetron electrode Condition Gas type Operating pressure Input power 3-1 Ar, N 2 (N 2 /Ar=0.05) 8 mTorr 1.5 kW 3-2 Ar, N 2 (N 2 / Ar = 0.11) 8 mTorr 1.5 kW 3-3 Ar, N 2 (N 2 /Ar=0.25) 8 mTorr 1.5 kW 3-4 Ar, N 2 (N 2 /Ar=0.43) 8 mTorr 1.5 kW Table 4 shows the results obtained by measuring the surface element ratios of the representative protective films formed in Examples 1 to 3 by X-ray photoelectron spectroscopy. These values were measured at photoelectron take-out angles of 90 and 30 degrees. The values shown in parentheses are values at an electron extraction angle of 30 degrees, and correspond to the element ratio near the outermost surface.
【0027】[0027]
【表4】 [Table 4]
【0028】この結果、実施例2のサンプルのうち高ガ
ス圧力で形成した場合の窒素濃度が最も高く、約30at
%の値を示した。これは、高周波放電によりスパッタ蒸
着時に活性窒素分子が高い濃度で発生したことよる。実
施例2のサンプルでも成膜時の動作圧力を下げたもの
は、基板に発生した自己バイアスによるエッチング効果
により窒素濃度は15〜20at%であった。As a result, the nitrogen concentration of the sample of Example 2 formed at a high gas pressure was the highest and was about 30 at.
% Values. This is because active nitrogen molecules were generated at a high concentration during sputter deposition by high-frequency discharge. In the sample of Example 2, the nitrogen concentration was 15 to 20 at% due to the etching effect of the self-bias generated on the substrate when the operating pressure during film formation was lowered.
【0029】次に、これら実施例1〜3及び比較例1で
形成した保護層を備えた磁気ディスクにパーフロロポリ
エチル系潤滑剤を2nmの膜厚で塗布した。その後、
0.5気圧に減圧した雰囲気において磁気ヘッドを荷重
3gで押しつけ、1000rpmの回転数で高速のドッラ
グ試験を行った。Next, a 2 nm thick perfluoropolyethyl-based lubricant was applied to the magnetic disks provided with the protective layers formed in Examples 1 to 3 and Comparative Example 1. afterwards,
The magnetic head was pressed with a load of 3 g in an atmosphere reduced to 0.5 atm, and a high-speed drag test was performed at a rotation speed of 1000 rpm.
【0030】図2はドラッグ試験により保護層が破壊さ
れるまでの摺動回数をまとめた結果である。これから、
保護層の窒素/炭素の原子比率が0.05〜0.3のサン
プルでドラッグによる耐久寿命が著しく延びた。FIG. 2 shows the result of summarizing the number of times of sliding until the protective layer is broken by the drag test. from now on,
In the sample in which the atomic ratio of nitrogen / carbon in the protective layer was 0.05 to 0.3, the durability life by drag was remarkably increased.
【0031】一方、窒素/炭素の原子比率が0.30 を
超えるサンプルでは、ドラッグの開始と同時に保護層の
破壊が起こり、即座にクラッシュした。そこで、窒素/
炭素の原子数比が0.3 を超えるサンプルでラマンスペ
クトルを測定したところ、遊離した窒素化合物に起因す
る蛍光の放射が観測された。On the other hand, in the sample in which the atomic ratio of nitrogen / carbon exceeds 0.30, the protective layer was destroyed at the same time as the start of the drag, and immediately crashed. So, nitrogen /
When a Raman spectrum was measured for a sample having a carbon atom ratio exceeding 0.3, emission of fluorescence due to the released nitrogen compound was observed.
【0032】図3は窒素/炭素の原子数比が0.48 の
保護層で測定したラマンスペクトルであるが、遊離窒素
化合物から放出される蛍光によりバックグラウンドが大
きく傾斜した。このサンプルは高周波マグネトロン電極
により高ガス圧力下でスパッタ蒸着したもので、遊離窒
素化合物の存在により保護層の連続性が失われた為にド
ラッグによる寿命は著しく短かった。FIG. 3 is a Raman spectrum measured with a protective layer having a nitrogen / carbon atomic ratio of 0.48. The background was greatly inclined due to the fluorescence emitted from the free nitrogen compound. This sample was sputter-deposited under a high gas pressure using a high-frequency magnetron electrode, and the life due to drag was extremely short because the continuity of the protective layer was lost due to the presence of a free nitrogen compound.
【0033】しかし、高周波マグネトロンによる反応性
スパッタ蒸着でも動作圧力を低くして形成したサンプル
は、図4に示すようにラマンスペクトルの蛍光によるバ
ックグラウンドの傾斜が観測されず、窒素/炭素の原子
比率は0.2 以下であった。高周波放電でも動作圧力を
低くすれば基板に自己バイアスが発生し、スパッタ蒸着
時のイオン衝撃により遊離窒素化合物が分解するのでド
ラッグに対する耐久性は向上した。However, in the sample formed at a low operating pressure even by reactive sputter deposition using a high-frequency magnetron, as shown in FIG. 4, no background gradient due to the fluorescence of the Raman spectrum was observed, and the atomic ratio of nitrogen / carbon was observed. Was less than 0.2. If the operating pressure is lowered even in the high-frequency discharge, a self-bias is generated in the substrate, and the free nitrogen compound is decomposed by ion bombardment during sputter deposition, so that the durability against drag is improved.
【0034】一般に、膜厚10nm以下の保護膜を対象
にした軽量ヘッドによる低荷重のドラッグでは、耐摺動
特性を支配する主要因は、機械的強度ではなく保護膜表
面と潤滑剤の化学的作用である。それ故、保護膜の内部
よりも表面の構造や化学的な性質に着目する必要があ
る。従って、磁気ディスクの耐久性を向上させるには保
護層の機械的な強度を上げるだけでは不十分で、保護層
と潤滑層の界面にあたる保護膜表面の化学組成を最適化
する必要がある。In general, when dragging under a low load with a lightweight head for a protective film having a film thickness of 10 nm or less, the main factor controlling the sliding resistance is not the mechanical strength but the chemical strength of the protective film surface and the lubricant. Action. Therefore, it is necessary to pay more attention to the surface structure and chemical properties than to the inside of the protective film. Therefore, increasing the mechanical strength of the protective layer is not enough to improve the durability of the magnetic disk, and it is necessary to optimize the chemical composition of the protective film surface at the interface between the protective layer and the lubricating layer.
【0035】図5は、本実施例のドラッグ試験で寿命が
150k回以上であったサンプルの原子数比をプロット
した結果である。このように磁気ヘッドによるドラッグ
では、保護層と潤滑層の相互作用による効果が大きく、
保護層の窒素/炭素の原子数比に加えて、潤滑層と保護
層の界面にあたる保護膜表面の化学組成の違いによって
も寿命が変化した。その結果、ドラッグ回数が150k
回を超えたサンプルの窒素/炭素の原子数比は0.05
〜0.3であり、かつ、表面の酸素/窒素の原子数比は
0.5〜1.0の範囲内にあった。このようにドラッグに
対する耐久性の優れたサンプルのもうひとつの特徴とし
ては、テクスチャを施していない表面の中心線平均粗さ
が1nm以下と極めて平滑であった。FIG. 5 shows the result of plotting the atomic ratio of the sample having a life of 150 k times or more in the drag test of this embodiment. As described above, the drag by the magnetic head has a large effect due to the interaction between the protective layer and the lubricating layer,
In addition to the atomic ratio of nitrogen / carbon in the protective layer, the life also changed due to the difference in the chemical composition of the protective film surface at the interface between the lubricating layer and the protective layer. As a result, the number of drags is 150k
The nitrogen / carbon atomic ratio of the sample over 0.05 times
And the atomic ratio of oxygen / nitrogen on the surface was in the range of 0.5 to 1.0. Another characteristic of the sample having excellent resistance to drag as described above is that the center line average roughness of the untextured surface is extremely smooth at 1 nm or less.
【0036】(実施例4)図6の装置は磁気ヘッド6、
及びその駆動部7と、該磁気ヘッド8の記録再生信号処
理手段9と磁気記録媒体10とこれを回転させる駆動部
11とからなる周知の構造を持つ磁気記憶装置である。
磁気ヘッド6は記録用の電磁誘導型磁気ヘッド、再生用
の磁気抵抗効果型磁気ヘッドを併せ持つ複合型ヘッドで
ある。この磁気記憶装置に本発明の実施例1,2,3の
うちドラッグ回数が150k回を越した条件の磁気記録
媒体を組み込んで、ヘッド浮上量30nm、線記録密度
210kBPI、トラック密度9.6kTPI で記録再
生評価を行ったところ、何れの磁気記録媒体においても
1平方インチ当たり2ギガビットの記録密度に対し、良
好な記録再生特性が得られた。また、内周から外周まで
のヘッドシーク試験5万回後のビットエラー数は何れの
磁気記録媒体においても10ビット/面以下であり、M
TBFで15万時間が達成できた。(Embodiment 4) The apparatus shown in FIG.
And a drive unit 7, a recording / reproducing signal processing means 9 for the magnetic head 8, a magnetic recording medium 10, and a drive unit 11 for rotating the magnetic recording medium.
The magnetic head 6 is a composite type head having both an electromagnetic induction type magnetic head for recording and a magnetoresistive magnetic head for reproduction. In this magnetic storage device, the magnetic recording medium of the first, second, and third embodiments of the present invention in which the number of times of drag exceeds 150 k times is incorporated, and the head flying height is 30 nm, the linear recording density is 210 kBPI, and the track density is 9.6 kTPI. When the recording / reproducing evaluation was performed, good recording / reproducing characteristics were obtained for all magnetic recording media with a recording density of 2 gigabits per square inch. The number of bit errors after 50,000 head seek tests from the inner circumference to the outer circumference is 10 bits / surface or less in any magnetic recording medium.
TBF achieved 150,000 hours.
【0037】次に、磁気ヘッド12として浮上面レール
の面積が1.25 平方mm以下で質量が2mg以下の磁気ヘ
ッドスライダー上に形成されたものを用いて、ヘッド浮
上量30nm、線記録密度210kBPI、トラック密
度9.6kTPI で記録再生評価を行った。この場合
も、本発明の実施例に示すドラッグ試験で寿命が150
k回以上の磁気記録媒体に対して1平方インチ当たり2
ギガビットの記録密度で良好な記録再生特性が得られ
た。また、内周から外周までのヘッドシーク試験5万回
後のビットエラー数は何れの磁気記録媒体においても1
0ビット/面以下であり、MTBFで15万時間が達成
できた。Next, using a magnetic head 12 formed on a magnetic head slider having an air bearing surface rail area of 1.25 square mm or less and a mass of 2 mg or less, a head flying height of 30 nm and a linear recording density of 210 kBPI Recording and reproduction were evaluated at a track density of 9.6 kTPI. In this case as well, the life was 150 in the drag test shown in the examples of the present invention.
2 times per square inch for k or more magnetic recording media
Good recording / reproducing characteristics were obtained at a gigabit recording density. Also, the number of bit errors after 50,000 head seek tests from the inner circumference to the outer circumference is 1 in any magnetic recording medium.
It was less than 0 bits / plane, and 150,000 hours could be achieved with MTBF.
【0038】以上より、本発明の実施例1,2,3のう
ちドラッグ回数が150k回を越した条件の磁気記録媒
体を組み込んだ磁気記憶装置では、保護層が薄く高記録
密度になっても高い信頼性が得られた。As described above, in the magnetic storage device incorporating the magnetic recording medium in which the number of times of drag exceeds 150 k times in the first, second and third embodiments of the present invention, even if the protective layer is thin and the recording density is high. High reliability was obtained.
【0039】[0039]
【発明の効果】本発明によれば、炭素,窒素,酸素から
なる保護層の表面における化学組成を最適化することに
より潤滑剤の結合力を強化できるので、保護層が薄く高
記録密度になっても信頼性に優れた磁気記録媒体を提供
できる。According to the present invention, since the bonding force of the lubricant can be enhanced by optimizing the chemical composition on the surface of the protective layer composed of carbon, nitrogen and oxygen, the protective layer is thin and has a high recording density. However, a highly reliable magnetic recording medium can be provided.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明の一実施例の磁気ディスク用記録媒体の
断面図。FIG. 1 is a sectional view of a recording medium for a magnetic disk according to an embodiment of the present invention.
【図2】本発明の一実施例に示す磁気ディスクのドラッ
グによる寿命を示す測定図。FIG. 2 is a measurement diagram showing the life of a magnetic disk due to dragging according to one embodiment of the present invention.
【図3】窒素/炭素の原子数比が0.48 の保護層のラ
マンスペクトルの測定図。FIG. 3 is a measurement diagram of a Raman spectrum of a protective layer having an atomic ratio of nitrogen / carbon of 0.48.
【図4】低ガス圧力下のスパッタ蒸着で形成した窒素/
炭素の原子数比が0.15 の保護層のラマンスペクトル
の測定図。FIG. 4 shows nitrogen / nitrogen formed by sputter deposition under low gas pressure.
FIG. 4 is a measurement diagram of a Raman spectrum of a protective layer in which the atomic ratio of carbon is 0.15.
【図5】ドラッグ試験で寿命が150k回以上であった
サンプルの原子数比の関係を示す図。FIG. 5 is a diagram showing a relationship between atomic ratios of samples whose life was 150 k times or more in a drag test.
【図6】本発明の一実施例の磁気記憶装置の平面図およ
び断面図。FIG. 6 is a plan view and a cross-sectional view of a magnetic storage device according to one embodiment of the present invention.
1…基板、2…Cr系下地層、3…CoCr系磁性層、
4…炭素に窒素,酸素を含む保護層、5…潤滑層、6…
磁気ヘッド、7…磁気ヘッド駆動部、8…記録再生信号
処理系、9…磁気記録媒体、10…磁気記録媒体駆動
部、11…基体。DESCRIPTION OF SYMBOLS 1 ... Substrate, 2 ... Cr-based underlayer, 3 ... CoCr-based magnetic layer,
4 ... Protective layer containing nitrogen and oxygen in carbon, 5 ... Lubricating layer, 6 ...
Magnetic head, 7: magnetic head driving unit, 8: recording / reproducing signal processing system, 9: magnetic recording medium, 10: magnetic recording medium driving unit, 11: base.
Claims (7)
た保護層を有する磁気記録媒体において、該保護層が少
なくとも炭素,窒素,酸素を含む皮膜から成り、該皮膜
の窒素/炭素の原子数比が0.05〜0.3であり、か
つ、該皮膜の表面での酸素/窒素の原子数比が0.5〜
2.0の範囲内にあることを特徴とする磁気記録媒体。1. A magnetic recording medium having a magnetic layer on a base material and a protective layer formed on the magnetic layer, wherein the protective layer comprises a film containing at least carbon, nitrogen, and oxygen. The atomic ratio of carbon / carbon is 0.05 to 0.3 and the atomic ratio of oxygen / nitrogen on the surface of the coating is 0.5 to 0.3.
2. A magnetic recording medium, which is in the range of 2.0.
前記保護層が表面にニトロ基を有することを特徴とする
磁気記録媒体。2. The magnetic recording medium according to claim 1, wherein
A magnetic recording medium, wherein the protective layer has a nitro group on the surface.
おいて、前記保護層の膜厚が10nm以下であり、か
つ、表面の中心線平均粗さRaが1nm以下であること
を特徴とする磁気記録媒体。3. The magnetic recording medium according to claim 1, wherein the thickness of the protective layer is 10 nm or less, and the center line average roughness Ra of the surface is 1 nm or less. Magnetic recording medium.
る駆動部と、記録部と再生部から成る磁気ヘッドと、上
記磁気ヘッドを上記磁気記録媒体に対して相対運動させ
る手段と、上記磁気ヘッドへの信号入力と該磁気ヘッド
からの出力信号再生を行うための記録再生信号処理手段
を有する磁気記憶装置において、前記磁気ヘッドの再生
部が磁気抵抗効果型磁気ヘッドで構成され、かつ、前記
磁気記録媒体が請求項1または2記載の磁気記録媒体で
構成されたことを特徴とする磁気記憶装置。4. A magnetic recording medium, a driving unit for driving the magnetic recording medium in a recording direction, a magnetic head comprising a recording unit and a reproducing unit, means for moving the magnetic head relative to the magnetic recording medium, In a magnetic storage device having recording / reproduction signal processing means for performing signal input to a magnetic head and reproduction of an output signal from the magnetic head, a reproduction unit of the magnetic head is constituted by a magnetoresistive magnetic head, and A magnetic storage device comprising: the magnetic recording medium according to claim 1.
る駆動部と、記録部と再生部から成る磁気ヘッドと、上
記磁気ヘッドを上記磁気記録媒体に対して相対運動させ
る手段と、上記磁気ヘッドへの信号入力と該磁気ヘッド
からの出力信号再生を行うための記録再生信号処理手段
を有する磁気記憶装置において、前記磁気ヘッドの浮上
面レールの面積が1.25mm2以下で質量が2mg以下の磁
気ヘッドスライダー上に形成され、かつ、前記磁気記録
媒体が請求項1または2に記載の磁気記録媒体で構成さ
れたことを特徴とする磁気記憶装置。5. A magnetic recording medium, a driving unit for driving the magnetic recording medium in a recording direction, a magnetic head comprising a recording unit and a reproducing unit, means for moving the magnetic head relative to the magnetic recording medium, In a magnetic storage device having recording / reproduction signal processing means for performing signal input to a magnetic head and reproduction of an output signal from the magnetic head, the air bearing surface rail of the magnetic head has an area of 1.25 mm 2 or less and a mass of 2 mg. A magnetic storage device formed on the following magnetic head slider, wherein the magnetic recording medium is constituted by the magnetic recording medium according to claim 1.
磁性層表面に少なくとも炭素,窒素,酸素からなる保護
層を形成する工程と、該保護層の表面に酸素雰囲気下で
プラズマによる表面処理を行うことを特徴とする磁気記
録媒体の製造方法。6. A step of forming a magnetic layer on the surface of a base material, a step of forming a protective layer made of at least carbon, nitrogen and oxygen on the surface of the magnetic layer, and using a plasma on the surface of the protective layer in an oxygen atmosphere. A method for producing a magnetic recording medium, comprising performing a surface treatment.
磁性層表面に少なくとも炭素,窒素,酸素からなる保護
層を形成する工程と、該保護層の表面に大気中で紫外線
を照射することを特徴とする磁気記録媒体の製造方法。7. A step of forming a magnetic layer on the surface of a base material, a step of forming a protective layer comprising at least carbon, nitrogen and oxygen on the surface of the magnetic layer, and irradiating the surface of the protective layer with ultraviolet rays in the air. A method for manufacturing a magnetic recording medium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19674797A JPH1139647A (en) | 1997-07-23 | 1997-07-23 | Magnetic recording medium, its production and magnetic storage device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19674797A JPH1139647A (en) | 1997-07-23 | 1997-07-23 | Magnetic recording medium, its production and magnetic storage device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1139647A true JPH1139647A (en) | 1999-02-12 |
Family
ID=16362944
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19674797A Pending JPH1139647A (en) | 1997-07-23 | 1997-07-23 | Magnetic recording medium, its production and magnetic storage device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1139647A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000331336A (en) * | 1999-04-22 | 2000-11-30 | Komag Inc | METHOD FOR SPUTTERING CARBON PROTECTIVE FILM ON MAGNETIC DISK HAVING HIGH sp3 CONTENT |
JP2002063717A (en) * | 2000-06-27 | 2002-02-28 | Komag Inc | Magnetic disk comprising first carbon coating film having high sp3 content and second carbon coating film having low sp3 content |
US7740961B2 (en) | 2005-05-16 | 2010-06-22 | Kabushiki Kaisha Toshiba | Magnetic recording medium |
-
1997
- 1997-07-23 JP JP19674797A patent/JPH1139647A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000331336A (en) * | 1999-04-22 | 2000-11-30 | Komag Inc | METHOD FOR SPUTTERING CARBON PROTECTIVE FILM ON MAGNETIC DISK HAVING HIGH sp3 CONTENT |
JP2002063717A (en) * | 2000-06-27 | 2002-02-28 | Komag Inc | Magnetic disk comprising first carbon coating film having high sp3 content and second carbon coating film having low sp3 content |
US6565719B1 (en) | 2000-06-27 | 2003-05-20 | Komag, Inc. | Magnetic disk comprising a first carbon overcoat having a high SP3 content and a second carbon overcoat having a low SP3 content |
US6682807B2 (en) | 2000-06-27 | 2004-01-27 | Komag, Inc. | Magnetic disk comprising a first carbon overcoat having a high SP3 content and a second carbon overcoat having a low SP3 content |
US6855232B2 (en) | 2000-06-27 | 2005-02-15 | Komag, Inc. | Magnetic disk comprising a first carbon overcoat having a high SP3 content and a second carbon overcoat having a low SP3 content |
US7740961B2 (en) | 2005-05-16 | 2010-06-22 | Kabushiki Kaisha Toshiba | Magnetic recording medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5452928B2 (en) | Method for manufacturing magnetic recording medium and method for manufacturing laminate | |
JP2874298B2 (en) | Magnetic recording medium and method of manufacturing the same | |
US5567512A (en) | Thin carbon overcoat and method of its making | |
JP2005158092A (en) | Magnetic recording medium, magnetic storage device, and manufacturing method for magnetic recording medium | |
US20060029806A1 (en) | Carbonaceous protective layer, magnetic recording medium, production method thereof, and magnetic disk apparatus | |
US20030228496A1 (en) | Magnetic recording medium and method for manufacturing the same | |
US6974642B2 (en) | Carbonaceous protective layer, magnetic recording medium, production method thereof, and magnetic disk apparatus | |
JPH1139647A (en) | Magnetic recording medium, its production and magnetic storage device | |
JPH05143972A (en) | Metal thin film magnetic recording medium and its production | |
JPH11149631A (en) | Magnetic record medium and magnetic storage device using same | |
JP2002032907A (en) | Carbon protective film, magnetic recording medium, method for manufacturing them and magnetic disk device | |
JP2002312923A (en) | Magnetic recording medium | |
JP2006085890A (en) | Magnetic recording medium and production method thereof | |
JP2000067428A (en) | Magnetic recording medium and magnetic storage device using the same | |
JP2004054991A (en) | Magnetic recording medium, its manufacturing method, and magnetic storage device | |
JP2003223710A (en) | Magnetic recording medium, lubrication film and magnetic recording device | |
JP2008276912A (en) | Vertical magnetic recording medium and its manufacturing method | |
JP4523705B2 (en) | Magnetic recording medium, magnetic recording medium manufacturing method, and information reproducing apparatus | |
JPH07192254A (en) | Magnetic disk and its manufacture | |
JPH10289419A (en) | Thin-film head and its production | |
JPH06267063A (en) | Magnetic disk and manufacture thereof | |
JPH10172130A (en) | Magnetic recording medium and its production and magnetic memory device | |
JP2006114203A (en) | Magnetic recording medium, its manufacturing method, and magnetic recording and reproducing device | |
JP2513688B2 (en) | Magnetic recording media | |
JP2857136B2 (en) | Magnetic recording medium and method of manufacturing the same |