JPH11149631A - Magnetic record medium and magnetic storage device using same - Google Patents

Magnetic record medium and magnetic storage device using same

Info

Publication number
JPH11149631A
JPH11149631A JP31681497A JP31681497A JPH11149631A JP H11149631 A JPH11149631 A JP H11149631A JP 31681497 A JP31681497 A JP 31681497A JP 31681497 A JP31681497 A JP 31681497A JP H11149631 A JPH11149631 A JP H11149631A
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
protective layer
nitrogen
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31681497A
Other languages
Japanese (ja)
Inventor
Hidekazu Kashiwase
英一 柏瀬
Shigehiko Fujimaki
成彦 藤巻
Yuzuru Hosoe
譲 細江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP31681497A priority Critical patent/JPH11149631A/en
Publication of JPH11149631A publication Critical patent/JPH11149631A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enhance the bonding strength of a lubricant by specifying the chemical compsn. of the surface of a protective layer contg. carbon, nitrogen and oxygen and further contg. at least one element selected from the group comprising silicon, boron and hydrogen. SOLUTION: The magnetic record medium has a magnetic layer on the substrate and a protective layer on the magnetic layer. The protective layer is a coating film contg. at least one element selected from the group comprising silicon, boron and hydrogen besides carbon, nitrogen and oxygen. The ratio of the number of nitrogen atoms to that of carbon atoms in the coating film is 0.005-0.3, the ratio of the number of oxygen atoms to that of nitrogen atoms in the surface of the coating film is 0.1-2.5 and the ratio of the number of silicon, boron or hydrogen atoms to that of carbon atoms in the surface is 0.07-0.28. Electron withdrawing groups are formed on the surface of the protective layer corresponding to the interface between the protective layer and a lubricative layer by the addition of nitrogen and oxygen having high electronegativity and the terminals of lubricant molecules bond tightly to the surface of the protective layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁気記憶装置と、
これに用いられる磁気記録媒体に係り、特に1平方イン
チあたり2ギガビット以上の記録密度を有し、且つ、信
頼性の高い磁気記憶装置とこれを実現するための磁気記
録媒体に関する。
[0001] The present invention relates to a magnetic storage device,
The present invention relates to a magnetic recording medium used therein, and more particularly to a highly reliable magnetic storage device having a recording density of 2 gigabits per square inch or more and a magnetic recording medium for realizing the same.

【0002】[0002]

【従来の技術】従来から知られている磁気ディスク用保
護層は、黒鉛状ターゲットのスパッタリングで形成した
材料から成り、化学的に安定で摩擦係数が小さく、摺動
時に摩耗粉を発生し難いなど保護層に適した性質を有す
るが、黒鉛状の炭素を多く含む。このため、硬度や耐摩
耗性を更に高めることは困難である。これに対して、炭
素のみから成る上記保護層に他の元素を添加することに
より黒鉛状構造の生成を阻止し、緻密化をはかるなどの
対策が提案されている。
2. Description of the Related Art A conventionally known protective layer for a magnetic disk is made of a material formed by sputtering a graphite target, is chemically stable, has a low coefficient of friction, and hardly generates abrasion powder during sliding. It has properties suitable for a protective layer, but contains a large amount of graphite-like carbon. For this reason, it is difficult to further increase hardness and wear resistance. On the other hand, measures have been proposed to prevent the formation of a graphite-like structure by adding another element to the above-mentioned protective layer made of only carbon, thereby achieving densification.

【0003】添加する元素としては、炭素と共有結合す
る水素、硼素、窒素、フッ素、珪素の他、金属、金属酸
化物や金属窒化物が提案されている。とくに、窒素を添
加した炭素系保護層は、窒素と炭素による多重結合の平
均エネルギーが炭素と炭素の場合よりも高く、また、炭
素と窒素が単結合した構造のうちβ-C3N4はダイヤモン
ドに匹敵する高硬度の材料になることが予測されている
など、保護層として高い性能をもつことが期待されてい
る。これらが記載されている例を具体的に例示すると、
特開平5-225556号公報や特開平7-320256号公報などがあ
る。
As elements to be added, metals, metal oxides and metal nitrides have been proposed in addition to hydrogen, boron, nitrogen, fluorine and silicon which are covalently bonded to carbon. In particular, the carbon-based protective layer to which nitrogen has been added has a higher average energy of multiple bonds of nitrogen and carbon than carbon and carbon, and β-C3N4 of the carbon-nitrogen single bond structure is comparable to diamond. It is expected to have high performance as a protective layer, for example, it is expected that the material will have a high hardness. To specifically illustrate the example where these are described,
There are JP-A-5-225556 and JP-A-7-320256.

【0004】[0004]

【発明が解決しようとする課題】上記の特開平5-225556
号公報に述べられたものは黒鉛状の炭素を多く含む材料
に窒素を添加することで保護層を強固にし、耐久性の向
上をはかったものである。しかし、磁気ヘッドの軽量
化、低浮上化及び保護層の薄膜化が進む現状では、保護
層の耐久性を支配する要因として、機械的強度よりも保
護層表面と潤滑剤の化学的作用の方が重要になってお
り、保護層の内部よりも表面の構造や化学的な性質が重
要な要素となってきた。このことから、保護層の機械的
な強度を上げるだけでは磁気ディスクの耐久性を向上で
きないという問題がある。
SUMMARY OF THE INVENTION The above-mentioned Japanese Patent Application Laid-Open No. 5-225556.
The technique disclosed in Japanese Patent Application Publication No. H10-115118 is to improve the durability by strengthening the protective layer by adding nitrogen to a graphite-like material containing a large amount of carbon. However, in the current situation where the magnetic head is becoming lighter, lower in flying height, and the protective layer is becoming thinner, the chemical action of the protective layer surface and the lubricant is more important than mechanical strength as a factor controlling the durability of the protective layer. Has become important, and the structure and chemical properties of the surface have become more important factors than the inside of the protective layer. Therefore, there is a problem that the durability of the magnetic disk cannot be improved only by increasing the mechanical strength of the protective layer.

【0005】一方、上記の特開平7-320256号公報に述べ
られたものは窒素元素を添加したことによる潤滑剤結合
力の強化をはかったものであるが、窒素を添加しても潤
滑層との界面にあたる保護層表面の化学構造を最適化し
いないと磁気記録媒体の耐久性を向上する効果が少ない
という問題点がある。
On the other hand, the one described in the above-mentioned Japanese Patent Application Laid-Open No. 7-320256 is intended to enhance the bonding strength of a lubricant by adding a nitrogen element. If the chemical structure of the surface of the protective layer corresponding to the interface is not optimized, there is a problem that the effect of improving the durability of the magnetic recording medium is small.

【0006】本発明の第一の目的は、上記のような従来
の保護膜が持つ問題点を解決する為、保護層の表面に於
ける化学的性質に着目し、機械的な強度を高めると同時
に、潤滑剤との結合力を高め、磁気記録媒体の耐久性を
向上することにある。本発明の第二の目的は、上記磁気
ディスクを用いて記録密度が高く、且つ信頼性の高い磁
気記憶装置を提供することである。
A first object of the present invention is to solve the above-mentioned problems of the conventional protective film by focusing on chemical properties on the surface of the protective layer and increasing the mechanical strength. At the same time, the object is to increase the bonding force with the lubricant and improve the durability of the magnetic recording medium. A second object of the present invention is to provide a magnetic storage device having a high recording density and high reliability using the magnetic disk.

【0007】[0007]

【課題を解決するための手段】上記第一の目的を達成す
るため、本発明の磁気記録媒体は、基材上に磁性層と該
磁性層に形成された保護層を有し、該保護層が少なくと
も炭素と窒素と酸素を含むと同時に珪素、硼素、水素よ
りなる群より選ばれた少なくとも1種の元素を含む皮膜
から成り、該皮膜の窒素/炭素の原子数比が0.05〜0.3
で、且つ、該皮膜の表面に於ける酸素/窒素の原子数比
が0.1〜2.5の範囲内にあり、また、この時の珪素、硼素
または水素/炭素の原子数比は0.07〜0.28の範囲内にあ
ることを特徴とする。
In order to achieve the first object, a magnetic recording medium of the present invention has a magnetic layer on a base material and a protective layer formed on the magnetic layer. Consists of a film containing at least one element selected from the group consisting of silicon, boron, and hydrogen while containing at least carbon, nitrogen, and oxygen, and the nitrogen / carbon atomic ratio of the film is 0.05 to 0.3.
And the atomic ratio of oxygen / nitrogen on the surface of the coating is in the range of 0.1 to 2.5, and the atomic ratio of silicon, boron or hydrogen / carbon at this time is in the range of 0.07 to 0.28. It is characterized by being in.

【0008】また、上記第一の目的を達成するための本
発明の磁気記録媒体は、表面の中心線平均粗さRaが1n
m以下であることを特徴とする。ここで、中心線平均粗
さの定義は、日本工業規格(JIS-B0601)の規定に準拠
する。
The magnetic recording medium of the present invention for achieving the first object has a center line average roughness Ra of 1n.
m or less. Here, the definition of the center line average roughness conforms to the provisions of the Japanese Industrial Standards (JIS-B0601).

【0009】上記第二の目的を達成するための磁気記憶
装置は、磁気記録媒体と、これを記録方向に駆動する駆
動部と、記録部と再生部から成る磁気ヘッドと、上記磁
気ヘッドを上記磁気記録媒体に対して相対運動させる手
段と、上記磁気ヘッドへの信号入力と該磁気ヘッドから
の出力信号再生を行うための記録再生信号処理手段を有
する磁気記憶装置において、前記磁気ヘッドの再生部が
磁気抵抗効果型磁気ヘッドで構成され、且つ、前記磁気
記録媒体が少なくとも炭素と窒素と酸素を含むと同時に
珪素、硼素、水素よりなる群より選ばれた少なくとも1
種の元素を含み、窒素/炭素の原子数比が0.05〜0.3で、
且つ、該皮膜の表面に於ける酸素/窒素の原子数比が0.1
〜2.5の範囲内にありまた、この時の珪素/炭素、硼素
/炭素または水素/炭素の原子数比は0.07〜0.28の範囲
内にある前記保護層を備えたことを特徴とする。
A magnetic storage device for achieving the second object has a magnetic recording medium, a driving unit for driving the magnetic recording medium in a recording direction, a magnetic head including a recording unit and a reproducing unit, and the magnetic head. A magnetic storage device comprising: means for causing relative movement with respect to a magnetic recording medium; and recording / reproduction signal processing means for performing signal input to the magnetic head and reproduction of an output signal from the magnetic head. Is a magnetoresistive magnetic head, and the magnetic recording medium contains at least carbon, nitrogen and oxygen and at least one selected from the group consisting of silicon, boron and hydrogen.
Containing the elements of the species, the atomic ratio of nitrogen / carbon is 0.05-0.3,
And the atomic ratio of oxygen / nitrogen on the surface of the film is 0.1
The protective layer is characterized in that the protective layer has an atomic ratio of silicon / carbon, boron / carbon or hydrogen / carbon within a range of 0.07 to 0.28.

【0010】また、上記第二の目的を達成するための磁
気記憶装置は、磁気記録媒体と、これを記録方向に駆動
する駆動部と、記録部と再生部から成る磁気ヘッドと、
上記磁気ヘッドを上記磁気記録媒体に対して相対運動さ
せる手段と、上記磁気ヘッドへの信号入力と該磁気ヘッ
ドからの出力信号再生を行うための記録再生信号処理手
段を有する磁気記憶装置において、前記磁気ヘッドが浮
上面レールの面積が1.25mm2以下で質量が2mg以下の磁気
ヘッドスライダー上に形成され、且つ、前記磁気記録媒
体が少なくとも炭素と窒素と酸素を含むと同時に珪素、
硼素、水素よりなる群より選ばれた少なくとも1種の元
素を含み、窒素/炭素の原子数比が0.05〜0.3で、且つ、
該皮膜の表面に於ける酸素/窒素の原子数比が0.1〜2.5
の範囲内にあり、また、この時の珪素/炭素、硼素/炭
素または水素/炭素の原子数比は0.07〜0.28の範囲内に
ある前記保護層を備えたことを特徴とする。
A magnetic storage device for achieving the second object has a magnetic recording medium, a driving unit for driving the magnetic recording medium in a recording direction, a magnetic head including a recording unit and a reproducing unit,
A magnetic storage device comprising: means for moving the magnetic head relative to the magnetic recording medium; and recording / reproducing signal processing means for reproducing a signal input to the magnetic head and an output signal from the magnetic head. A magnetic head is formed on a magnetic head slider having an air bearing surface rail area of 1.25 mm2 or less and a mass of 2 mg or less, and the magnetic recording medium contains at least carbon, nitrogen and oxygen, and silicon,
Boron, containing at least one element selected from the group consisting of hydrogen, the atomic ratio of nitrogen / carbon is 0.05 to 0.3, and,
The atomic ratio of oxygen / nitrogen on the surface of the coating is 0.1 to 2.5.
And the atomic ratio of silicon / carbon, boron / carbon or hydrogen / carbon at this time is in the range of 0.07 to 0.28.

【0011】本発明の磁気記録媒体の製造方法は、基材
表面に磁性層を形成する工程と、前記磁性層表面に少な
くとも炭素と窒素と酸素を含むと同時に珪素、硼素、水
素よりなる群より選ばれた少なくとも1種の元素を含む
保護層を形成する工程と、該保護層の表面を大気中で紫
外線照射することを特徴とする。
According to the method of manufacturing a magnetic recording medium of the present invention, a step of forming a magnetic layer on the surface of a base material and a step of forming a magnetic layer containing at least carbon, nitrogen and oxygen on the surface of the magnetic layer are performed at the same time. Forming a protective layer containing at least one selected element; and irradiating the surface of the protective layer with ultraviolet light in the air.

【0012】また、上記目的を達成するための本発明の
磁気記録媒体の製造方法は、基材表面に磁性層を形成す
る工程と、前記磁性層表面に少なくとも炭素と窒素と酸
素を含むと同時に珪素、硼素、水素よりなる群より選ば
れた少なくとも1種の元素を含む保護層を形成する工程
と、該保護層の表面を酸素雰囲気下でプラズマ処理をす
ることを特徴とする。
According to another aspect of the present invention, there is provided a method of manufacturing a magnetic recording medium, comprising: forming a magnetic layer on a surface of a base material; A step of forming a protective layer containing at least one element selected from the group consisting of silicon, boron, and hydrogen; and performing a plasma treatment on a surface of the protective layer in an oxygen atmosphere.

【0013】次に、上記構成について機能的に説明す
る。上記構成の磁気記録媒体は、保護層と潤滑層の界面
に当たる保護層の表面に電気陰性度の大きな窒素と酸素
が加わって強い電子吸引性基を形成し、潤滑剤分子の末
端が保護層の表面と強く結合する。とくに、芳香環や共
役二重結合に窒素、酸素からなるニトロ基などが結合す
れば、π電子の移動により一層の強い電子吸引性基にな
り、さらに潤滑剤と強く結合し、磁気ディスクの耐久性
の向上に寄与する。このような窒素や酸素による電子吸
引性基は、大気中に於ける酸素との反応によって形成さ
れるが、成膜の方式及び条件を整えたり、表面処理を施
すなどして酸素/窒素の原子数比を最適化すれば、さら
に潤滑剤との結合力が強固になる。例えば、表面の化学
組成の最適化には酸素プラズマや紫外線照射による表面
処理も有効な手段である。しかも、酸素プラズマ処理や
紫外線を照射すれば、酸素ラジカルやオゾンとの反応に
より有機コンタミを除去したり、アッシング或いはフォ
トエッチングにより凹凸を緩和するのにも効果がある。
しかし、窒素と酸素を含む場合でも表面の化学状態によ
っては、潤滑剤分子が分解し易くなるなど、耐久性が劣
化することもある。従って、磁気ディスクの耐久性を向
上させるためには保護層の表面元素比率を必要に応じて
最適化する必要がある。使用される潤滑剤は特に限定さ
れないが、パーフロロポリエチル、パーフロロポリエー
テル、パーフロロカルボン酸等のフッ素系ポリマーが好
適である。
Next, the above configuration will be functionally described. In the magnetic recording medium having the above configuration, nitrogen and oxygen having a large electronegativity are added to the surface of the protective layer at the interface between the protective layer and the lubricating layer to form a strong electron-withdrawing group. Strongly binds to the surface. In particular, if a nitro group consisting of nitrogen and oxygen is bonded to an aromatic ring or conjugated double bond, the transfer of π electrons becomes a stronger electron-withdrawing group, and furthermore, it is strongly bonded to a lubricant, and the durability of the magnetic disk is improved. It contributes to the improvement of performance. Such electron-withdrawing groups due to nitrogen or oxygen are formed by the reaction with oxygen in the atmosphere, but the oxygen / nitrogen atom is adjusted by adjusting the film formation method and conditions, or by performing surface treatment. By optimizing the ratio, the bonding force with the lubricant is further strengthened. For example, surface treatment using oxygen plasma or ultraviolet irradiation is also an effective means for optimizing the chemical composition of the surface. Moreover, irradiation with an oxygen plasma treatment or ultraviolet irradiation is effective in removing organic contaminants by reaction with oxygen radicals and ozone, and in mitigating unevenness by ashing or photoetching.
However, even when nitrogen and oxygen are contained, the durability may be deteriorated, for example, the lubricant molecules may be easily decomposed depending on the chemical state of the surface. Therefore, in order to improve the durability of the magnetic disk, it is necessary to optimize the surface element ratio of the protective layer as necessary. The lubricant used is not particularly limited, but fluoropolymers such as perfluoropolyethyl, perfluoropolyether, and perfluorocarboxylic acid are preferred.

【0014】次に、珪素、硼素または、水素の効果を説
明する。水素、硼素、珪素は何れも炭素と単結合するの
で黒鉛状構造の生成を阻止できる。特に、珪素を保護層
に含む場合、珪素は炭素と単結合をし四面体構造の骨格
を作るため、膜構造が緻密になり膜の硬度が向上し耐摩
耗性に優れた保護層となる。そのため、低浮上時の摺動
特性に優れた保護層となる。一方、硼素を保護層に含む
場合、硼素は摺動時の摩耗時に酸素と結合してB23
子を生成するため保護層表面に摩耗残渣を残さない。そ
のため、アブレシブ摩耗によるスクラッチ等の傷が発生
しにくく、低浮上時の摺動特性に優れた保護層となる。
また、水素を保護層に含む場合、保護層にポリマーが形
成されるため、水素との結合により終端された部分でひ
ずみが解放され、膜中の応力を緩和する効果がある。そ
のため、高硬度な保護層に水素を添加し応力を緩和する
ことにより密着性の優れた保護層となる。以上のよう
に、珪素、硼素、水素よりなる群より選ばれた少なくと
も1種の元素を含む保護層を用いることにより高記録密
度と高信頼性を備えた磁気記憶装置を達成できる。
Next, the effect of silicon, boron or hydrogen will be described. Since hydrogen, boron and silicon all form a single bond with carbon, the formation of a graphite-like structure can be prevented. In particular, when silicon is included in the protective layer, silicon forms a tetrahedral skeleton by forming a single bond with carbon, so that the protective layer has a dense film structure, improves the hardness of the film, and has excellent wear resistance. Therefore, it becomes a protective layer excellent in sliding characteristics at the time of low flying. On the other hand, when boron is contained in the protective layer, boron combines with oxygen to generate B 2 O 3 molecules during abrasion during sliding, so that no abrasion residue is left on the surface of the protective layer. Therefore, scratches and the like due to abrasive wear are unlikely to occur, and the protective layer has excellent sliding characteristics at low flying height.
Further, when hydrogen is contained in the protective layer, a polymer is formed on the protective layer, so that strain is released at a portion terminated by bonding with hydrogen, and there is an effect of relaxing stress in the film. Therefore, by adding hydrogen to the protective layer having high hardness to relieve stress, a protective layer having excellent adhesion can be obtained. As described above, by using a protective layer containing at least one element selected from the group consisting of silicon, boron, and hydrogen, a magnetic storage device having high recording density and high reliability can be achieved.

【0015】[0015]

【発明の実施の形態】以下、本発明に係わる磁気記録媒
体およびその製造方法の実施の形態を図面を用いて説明
する。図1は本発明の特徴を最もよく表しているハード
ディスク用磁気記録媒体の構成図、図2は本発明の実施
例に示すドラッグ試験での保護層の化学組成と摺動回数
の関係図、図3は本発明の一実施例に示す高周波マグネ
トロン方式により高ガス圧力下のスパッタ蒸着で形成し
た窒素/炭素の原子数比が0.48の保護層のラマンスペク
トル、図4は本発明の一実施例に示す高周波マグネトロ
ン方式により低ガス圧力下のスパッタ蒸着で形成した窒
素/炭素の原子数比が0.055の保護層のラマンスペクト
ル、図5は本実施例に示すシーク試験で10M回シーク後
の保護層摩耗量が3Å以下であったサンプルに於ける原
子数比の関係図、図6は本発明の磁気記録媒体を備えた
磁気記憶装置の構成図、以下に示す表1、表2、表3は
それぞれX線光電子分光法により測定した本実施例の代
表的な保護層の表面元素比率である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a magnetic recording medium according to the present invention and a method for manufacturing the same will be described with reference to the drawings. FIG. 1 is a configuration diagram of a magnetic recording medium for a hard disk that best illustrates the features of the present invention, and FIG. 3 is a Raman spectrum of a protective layer having a nitrogen / carbon atomic ratio of 0.48 formed by sputter deposition under a high gas pressure by a high-frequency magnetron method shown in one embodiment of the present invention, and FIG. 4 shows one embodiment of the present invention. Raman spectrum of a protective layer with an atomic ratio of nitrogen / carbon of 0.055 formed by sputter deposition under a low gas pressure using a high-frequency magnetron method, and FIG. 5 shows the wear of the protective layer after 10M seeks in a seek test shown in this example. FIG. 6 is a diagram showing the relationship between the atomic number ratios of the samples having an amount of 3 mm or less, FIG. 6 is a configuration diagram of a magnetic storage device having the magnetic recording medium of the present invention, and Tables 1, 2, and 3 shown below are respectively Measured by X-ray photoelectron spectroscopy A surface element ratio representative protecting layer of Example.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【表3】 [Table 3]

【0019】[実施例]図1に本実施例の代表的な磁気
記録媒体の構成を示す。この磁気記録媒体は、非磁性基
体の磁気ディスク基板1上にCr下地層2と、CoCr系合金か
らなる磁性層3と、炭素に窒素、酸素を含む保護層4と、
パーフロロポリエチル系の潤滑層5を順次積層した多層
膜から構成される。
[Embodiment] FIG. 1 shows the configuration of a typical magnetic recording medium of this embodiment. This magnetic recording medium has a Cr underlayer 2, a magnetic layer 3 made of a CoCr-based alloy on a non-magnetic base magnetic disk substrate 1, a protective layer 4 containing nitrogen and oxygen in carbon,
It is composed of a multilayer film in which perfluoropolyethyl-based lubricating layers 5 are sequentially laminated.

【0020】この磁気記録媒体は下記の実施例1〜3に示
す方式の黒鉛状ターゲットのスパッタ蒸着により、保護
層の窒素/炭素及び表面に於ける酸素/窒素の原子数比の
異なるサンプルとして形成した。膜厚はいずれの場合も
7nmとした。
This magnetic recording medium is formed as samples having different atomic ratios of nitrogen / carbon and oxygen / nitrogen on the surface of the protective layer by sputter deposition of a graphite-like target of the type shown in Examples 1-3 below. did. The film thickness in each case
7 nm.

【0021】更に、各実施例において保護層の表面に於
ける酸素/窒素の原子数比を変化させる目的で、酸素プ
ラズマ処理や大気中での紫外線照射も行った。酸素プラ
ズマ処理では酸素ガスを100mTorr導入した雰囲気におい
て高周波電源により150Wの出力でプラズマを発生し、サ
ンプルを4分間放置した。紫外線の照射ではサンプルの
表面から50mmの位置に反射鏡を備えた高圧水銀ランプを
設け、10kWの電力で4分間の処理を行った。このような
表面処理を行うことにより保護層の表面における酸素/
窒素の原子数比が処理前の1.2〜2倍に向上した。
Further, in each of the examples, in order to change the atomic ratio of oxygen / nitrogen on the surface of the protective layer, oxygen plasma treatment and ultraviolet irradiation in the air were also performed. In the oxygen plasma treatment, plasma was generated at a power of 150 W from a high-frequency power supply in an atmosphere in which oxygen gas was introduced at 100 mTorr, and the sample was left for 4 minutes. For UV irradiation, a high-pressure mercury lamp equipped with a reflecting mirror was installed at a position 50 mm from the surface of the sample, and treatment was performed for 4 minutes at a power of 10 kW. By performing such a surface treatment, oxygen /
The atomic ratio of nitrogen was improved to 1.2 to 2 times before the treatment.

【0022】[実施例1]本実施例では直流マグネトロ
ン電極を用いた反応性スパッタ蒸着法により下記の条件
で保護層を形成した。
Example 1 In this example, a protective layer was formed by a reactive sputter deposition method using a DC magnetron electrode under the following conditions.

【0023】[0023]

【表4】 [Table 4]

【0024】[比較例1]実施例1と同じ直流マグネトロ
ン電極によるスパッタ蒸着法を用いて、窒素ガスを導入
しない条件により保護層を形成した。
Comparative Example 1 A protective layer was formed using the same sputter deposition method using a DC magnetron electrode as in Example 1 under the condition that nitrogen gas was not introduced.

【0025】[実施例2]本実施例では高周波マグネト
ロン電極を用いた反応性スパッタ蒸着法により下記の条
件で保護層を形成した。本実施例では成膜時の動作圧力
を30mTorr及び5mTorrとした。但し、動作圧力を5mTorr
とすると気相中の電子が不足して自発的に放電が発生し
ないため、放電開始から1秒間の動作圧力は30mTorrに設
定した。
Example 2 In this example, a protective layer was formed by a reactive sputter deposition method using a high-frequency magnetron electrode under the following conditions. In this embodiment, the operating pressure during film formation was 30 mTorr and 5 mTorr. However, operating pressure is 5mTorr
Since the discharge in the gas phase is insufficient due to the lack of electrons in the gas phase, the operating pressure for one second from the start of the discharge was set to 30 mTorr.

【0026】[0026]

【表5】 [Table 5]

【0027】[実施例3]本実施例では非対称マグネトロ
ン電極を用いた反応性スパッタ蒸着法により下記の条件
で保護層を形成した。本実施例で用いた非対称マグネト
ロン電極によるスパッタ蒸着はマグネトロン電極の磁石
と配置を制御し電極間に広がる磁束の効果を利用してプ
ラズマを発生したもので、基板に1平方センチメートル
当たり数十mAのイオン電流が流れた。
[Embodiment 3] In this embodiment, a protective layer was formed by a reactive sputter deposition method using an asymmetric magnetron electrode under the following conditions. The sputter deposition using the asymmetric magnetron electrode used in this example is a method of controlling the magnet and the arrangement of the magnetron electrode and using the effect of the magnetic flux spreading between the electrodes to generate plasma. Electric current flowed.

【0028】[0028]

【表6】 [Table 6]

【0029】表1、表2、表3はそれぞれ実施例1〜3で
形成した代表的な保護層の表面元素比率をX線光電子分
光で測定した結果である。これらの値は光電子取出角度
を90度と30度として測定した。括弧内に示した数値
は電子取出角度が30度の値であり、最表面付近での元素
比率に相当する。
Tables 1, 2, and 3 show the results of X-ray photoelectron spectroscopy measurements of the surface element ratios of the representative protective layers formed in Examples 1 to 3, respectively. These values were measured at photoelectron take-out angles of 90 and 30 degrees. The values shown in parentheses are values at an electron extraction angle of 30 degrees, and correspond to the element ratio near the outermost surface.

【0030】この結果、実施例2のサンプルのうち高ガ
ス圧力で形成した場合の窒素濃度が最も高く、約30at%
の値を示した。これは、高周波放電によりスパッタ蒸着
時に活性窒素分子が高い濃度で発生したことよる。実施
例2のサンプルでも成膜時の動作圧力を下げたものは、
基板に発生した自己バイアスによるエッチング効果によ
り窒素濃度は15〜20at%であった。
As a result, the nitrogen concentration of the sample of Example 2 when formed at a high gas pressure was the highest, about 30 at%
The value of was shown. This is because active nitrogen molecules were generated at a high concentration during sputter deposition by high-frequency discharge. In the sample of Example 2, one in which the operating pressure at the time of film formation was lowered,
The nitrogen concentration was 15-20at% due to the etching effect by the self-bias generated on the substrate.

【0031】次に、これら実施例1〜3及び比較例1で
形成した保護層を備えた磁気ディスクにパーフロロポリ
エチル系潤滑剤を2nmの膜厚で塗布した。その後、0.5気
圧に減圧した雰囲気において円板を6300rpmで回転さ
せ、磁気ヘッドを荷重3gで押しつけ20Hzの早さでシーク
試験を行った。図2はシーク試験により10M回シーク後
の保護層摩耗量をエリフ゜ソで測定した結果をまとめたもの
である。これから、保護層の窒素/炭素の原子比率が0.0
5〜0.3のサンプルで耐摩耗性が著しく向上した。
Next, a perfluoropolyethyl-based lubricant was applied to a thickness of 2 nm on the magnetic disks provided with the protective layers formed in Examples 1 to 3 and Comparative Example 1. Thereafter, the disk was rotated at 6300 rpm in an atmosphere reduced to 0.5 atm, and the magnetic head was pressed with a load of 3 g to perform a seek test at a speed of 20 Hz. FIG. 2 summarizes the results of measurement of the wear amount of the protective layer after a seek operation of 10M by an ellipsometer by a seek test. From now on, the atomic ratio of nitrogen / carbon of the protective layer is 0.0
The wear resistance was remarkably improved in the samples of 5 to 0.3.

【0032】一方、窒素/炭素の原子比率が0.30を越え
るサンプルでは、シーク試験開始後すぐに保護層にスク
ラッチ痕が発生した。そこで、窒素/炭素の原子数比が
0.3を超えるサンプルでラマンスペクトルを測定したと
ころ、遊離した窒素化合物に起因する蛍光の放射が観測
された。例えば、図3は窒素/炭素の原子数比が0.48の
保護層で測定したラマンスペクトルであるが、遊離窒素
化合物から放出される蛍光によりバックグラウンドが大
きく傾斜した。このサンプルは高周波マグネトロン電極
により高ガス圧力下でスパッタ蒸着したもので、遊離窒
素化合物の存在により保護層の連続性が失われた為にシ
ーク試験による耐摩耗性は著しく短かった。しかし、高
周波マグネトロンによる反応性スパッタ蒸着でも動作圧
力を低くして形成したサンプルは、図4に示すようにラ
マンスペクトルの蛍光によるバックグラウンドの傾斜が
観測されず、窒素/炭素の原子比率は0.2以下であった。
高周波放電でも動作圧力を低くすれば基板に自己バイア
スが発生し、スパッタ蒸着時のイオン衝撃により遊離窒
素化合物が分解するのでシーク試験に対する耐久性は向
上した。
On the other hand, in the sample having an atomic ratio of nitrogen / carbon exceeding 0.30, scratch marks were generated on the protective layer immediately after the start of the seek test. Therefore, the atomic ratio of nitrogen / carbon is
When the Raman spectrum was measured for a sample exceeding 0.3, emission of fluorescence due to the released nitrogen compound was observed. For example, FIG. 3 shows a Raman spectrum measured with a protective layer having an atomic ratio of nitrogen / carbon of 0.48. The background was greatly inclined due to the fluorescence emitted from the free nitrogen compound. This sample was sputter-deposited under a high gas pressure with a high-frequency magnetron electrode, and the abrasion resistance by the seek test was extremely short because the continuity of the protective layer was lost due to the presence of the free nitrogen compound. However, in the sample formed at a low operating pressure even by reactive sputtering deposition using a high-frequency magnetron, no background gradient due to Raman spectrum fluorescence was observed as shown in FIG. 4, and the nitrogen / carbon atomic ratio was 0.2 or less. Met.
If the operating pressure is lowered even in the high-frequency discharge, a self-bias is generated in the substrate, and the free nitrogen compound is decomposed by the ion bombardment during the sputter deposition, so that the durability in the seek test is improved.

【0033】一般に、膜厚10nm以下の保護層を対象にし
た軽量ヘッドによる低荷重のシーク試験では、耐摺動特
性を支配する主要因は、械的強度ではなく保護層表面と
潤滑剤の化学的作用である。それ故、保護層の内部より
も表面の構造や化学的な性質に着目する必要がある。従
って、磁気ディスクの耐久性を向上させるには保護層の
機械的な強度を上げるだけでは不十分で、保護層と潤滑
層の界面にあたる保護層表面の化学組成を最適化する必
要がある。
Generally, in a low-load seek test using a lightweight head for a protective layer having a thickness of 10 nm or less, the main factor governing the sliding resistance is not the mechanical strength but the chemical property of the protective layer surface and the lubricant. Action. Therefore, it is necessary to pay more attention to the structure and chemical properties of the surface than to the inside of the protective layer. Therefore, increasing the mechanical strength of the protective layer is not enough to improve the durability of the magnetic disk, and it is necessary to optimize the chemical composition of the surface of the protective layer at the interface between the protective layer and the lubricating layer.

【0034】図5は、本実施例のシーク試験で10M回シ
ーク後の保護層摩耗量が3Å以下であったサンプルの原
子数比をプロットした結果である。このように磁気ヘッ
ドによるシーク試験では、保護層と潤滑層の相互作用に
よる効果が大きく、保護層の窒素/炭素の原子数比に加
えて、潤滑層と保護層の界面にあたる保護層表面の化学
組成の違いによっても寿命が変化した。その結果、シー
ク試験で10M回シーク後の保護層摩耗量が3Å以下のサン
プルの窒素/炭素の原子数比は0.05〜0.3であり、且つ、
表面の酸素/窒素の原子数比は0.5〜1.0の範囲内にあ
り、珪素、硼素、水素と炭素の原子数比が、それぞれ0.
07〜0.28の範囲内にあった。このようにシーク試験に対
する耐久性の優れたサンプルのもうひとつの特徴として
は、テクスチャを施していない表面の中心線平均粗さが
1nm以下と極めて平滑であった。
FIG. 5 shows the results of plotting the atomic ratios of the samples in which the protective layer abrasion after 10M seeks was 3 ° or less in the seek test of this embodiment. As described above, in the seek test using the magnetic head, the effect of the interaction between the protective layer and the lubricating layer is large, and in addition to the atomic ratio of nitrogen / carbon in the protective layer, the chemical effect on the surface of the protective layer at the interface between the lubricating layer and the protective layer. The life was also changed by the difference in composition. As a result, in the seek test, the wear ratio of the protective layer after the 10M seek operation was 3 mm or less, and the nitrogen / carbon atomic ratio of the sample was 0.05 to 0.3, and
The atomic ratio of oxygen / nitrogen on the surface is in the range of 0.5 to 1.0, and the atomic ratio of silicon, boron, hydrogen and carbon is each 0.1.
It was in the range of 07-0.28. Another feature of the sample with high durability in the seek test is that the center line average roughness of the untextured surface is low.
It was extremely smooth at 1 nm or less.

【0035】[実施例4]本発明の実施例は図6を用い
て説明する。この装置は磁気ヘッド6、及びその駆動部7
と、該磁気ヘッド8の記録再生信号処理手段9と磁気記録
媒体10とこれを回転させる駆動部11とからなる周知の構
造を持つ磁気記憶装置である。磁気ヘッド6は記録用の
電磁誘導型磁気ヘッド、再生用の磁気抵抗効果型磁気ヘ
ッドを併せ持つ複合型ヘッドである。この磁気記憶装置
に本発明の実施例1、2、3のうちシーク回数が10M回を越
した条件の磁気記録媒体を組み込んで、ヘッド浮上量30
nm、線記録密度210kBPI、トラック密度9.6kTPIで記録再
生評価を行ったところ、何れの磁気記録媒体においても
1平方インチ当たり2ギガビットの記録密度に対し、良好
な記録再生特性が得られた。また、内周から外周までの
ヘッドシーク試験1000万回後のビットエラー数は何れの
磁気記録媒体においても10ビット/面以下であり、MTBF
で15万時間が達成できた。
Embodiment 4 An embodiment of the present invention will be described with reference to FIG. This device comprises a magnetic head 6 and a driving unit 7 thereof.
And a recording / reproducing signal processing means 9 for the magnetic head 8, a magnetic recording medium 10, and a driving unit 11 for rotating the magnetic recording medium 10. The magnetic head 6 is a composite head having both an electromagnetic induction type magnetic head for recording and a magnetoresistive effect type magnetic head for reproduction. In this magnetic storage device, a magnetic recording medium of the conditions in which the number of seeks exceeds 10M among the first, second, and third embodiments of the present invention is incorporated, and a head flying height of 30 is provided.
nm, linear recording density of 210 kBPI, track density of 9.6 kTPI was evaluated for recording and reproduction.
Good recording and reproducing characteristics were obtained for a recording density of 2 gigabits per square inch. In addition, the number of bit errors after 10 million head seek tests from the inner circumference to the outer circumference is 10 bits / surface or less for any magnetic recording medium, and the MTBF
In 150,000 hours.

【0036】次に、磁気ヘッド12として浮上面レールの
面積が1.25平方mm以下で質量が2mg以下の磁気ヘッドス
ライダー上に形成されたものを用いて、ヘッド浮上量30
nm、線記録密度210kBPI、トラック密度9.6kTPIで記録再
生評価を行った。この場合も、本発明の実施例に示すシ
ーク試験で10M回シーク後の保護層摩耗量が3Å以下の磁
気記録媒体に対して1平方インチ当たり2ギガビットの記
録密度で良好な記録再生特性が得られた。また、内周か
ら外周までのヘッドシーク試験1000万回後のビットエラ
ー数は何れの磁気記録媒体においても10ビット/面以下
であり、MTBFで15万時間が達成できた。
Next, using a magnetic head 12 formed on a magnetic head slider having an air bearing surface rail area of 1.25 square mm or less and a mass of 2 mg or less, the head flying height 30
The recording and reproduction were evaluated at nm, a linear recording density of 210 kBPI, and a track density of 9.6 kTPI. Also in this case, in the seek test shown in Examples of the present invention, good recording / reproducing characteristics were obtained at a recording density of 2 gigabits per square inch with respect to a magnetic recording medium having a protective layer abrasion of 3 mm or less after 10M seeks. Was done. Also, the number of bit errors after 10 million head seek tests from the inner circumference to the outer circumference was 10 bits / surface or less in any of the magnetic recording media, and 150,000 hours of MTBF could be achieved.

【0037】以上より、本発明の実施例1、2、3のうち
シーク試験で10M回シーク後の保護層摩耗量が3Å以下で
ある条件の磁気記録媒体を組み込んだ磁気記憶装置で
は、保護層が薄く高記録密度になっても高い信頼性が得
られた。
As described above, in Examples 1, 2, and 3 of the present invention, in the magnetic storage device incorporating the magnetic recording medium in which the wear amount of the protective layer after 10M seeks in the seek test is 3 mm or less, the protective layer However, high reliability was obtained even when the recording density became thin and the recording density became high.

【0038】[0038]

【発明の効果】以上のように、本発明によれば、炭素と
窒素と酸素を含むと同時に珪素、硼素、水素よりなる群
より選ばれた少なくとも1種の元素を含む保護層の表面
における化学組成を最適化することにより潤滑剤の結合
力を強化できるので、保護層が薄く高記録密度になって
も信頼性に優れた磁気記録媒体を提供できる。
As described above, according to the present invention, the chemical reaction on the surface of the protective layer containing at least one element selected from the group consisting of silicon, boron and hydrogen while containing carbon, nitrogen and oxygen is performed. By optimizing the composition, the bonding force of the lubricant can be strengthened, so that a highly reliable magnetic recording medium can be provided even when the protective layer is thin and has a high recording density.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の磁気記録媒体の構成を示す図。FIG. 1 is a diagram showing a configuration of a magnetic recording medium of the present invention.

【図2】本発明の実施例に示すシーク試験で10M回シー
ク後の保護層摩耗量をエリプソで測定した結果を示す
図。
FIG. 2 is a view showing the results of measurement of the wear amount of a protective layer after a 10M seek operation by an ellipsometer in a seek test shown in Examples of the present invention.

【図3】本発明の実施例を示した高周波マグネトロン方
式により高ガス圧力下のスパッタ蒸着で形成した窒素/
炭素の原子数比が0.48の保護層のラマンスペクトル。
FIG. 3 shows a nitrogen / nitrogen film formed by sputter deposition under a high gas pressure by a high-frequency magnetron method showing an embodiment of the present invention.
Raman spectrum of a protective layer having a carbon atom ratio of 0.48.

【図4】本発明の実施例を示した高周波マグネトロン方
式により低ガス圧力下のスパッタ蒸着で形成した窒素/
炭素の原子数比が0.15の保護層のラマンスペクトル。
FIG. 4 shows a nitrogen / nitrogen film formed by sputter deposition under a low gas pressure by a high-frequency magnetron system showing an embodiment of the present invention.
Raman spectrum of a protective layer having a carbon atom ratio of 0.15.

【図5】本発明の実施例に示したシーク試験で10M回シ
ーク後の保護層摩耗量が3Å以下であったサンプルの原
子数比の関係図。
FIG. 5 is a diagram showing the relationship between the atomic ratios of samples in which the amount of wear of the protective layer after 10M seeks was 3 ° or less in the seek test shown in Examples of the present invention.

【図6】本発明の磁気記録媒体を用いた本発明の磁気記
憶装置の構成図。
FIG. 6 is a configuration diagram of a magnetic storage device of the present invention using the magnetic recording medium of the present invention.

【符号の説明】[Explanation of symbols]

1…基板、2…Cr系下地層、3…CoCr系磁性層、4…炭素と
窒素と酸素を含むと同時に珪素、硼素、水素よりなる群
より選ばれた少なくとも1種の元素を含む保護層、5…
潤滑層、6…磁気ヘッド、7…磁気ヘッド駆動部、8…記
録再生信号処理系、9…磁気記録媒体、10…磁気記録媒
体駆動部、11…基体。
1 ... substrate, 2 ... Cr-based underlayer, 3 ... CoCr-based magnetic layer, 4 ... Protective layer containing carbon, nitrogen and oxygen and at least one element selected from the group consisting of silicon, boron and hydrogen ,Five…
Lubricating layer, 6: magnetic head, 7: magnetic head driving unit, 8: recording / reproducing signal processing system, 9: magnetic recording medium, 10: magnetic recording medium driving unit, 11: base.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】基材上に磁性層と、該磁性層上に形成され
た保護層を有する磁気記録媒体において、該保護層が少
なくとも炭素と窒素と酸素を含み、さらに珪素、硼素、
水素よりなる群より選ばれた少なくとも1種の元素を含
む皮膜から成り、該皮膜の窒素/炭素の原子数比が0.05
〜0.3であり、且つ、該皮膜の表面での酸素/窒素の原子
数比が0.1〜2.5の範囲内にあることを特徴とする磁気記
録媒体。
1. A magnetic recording medium having a magnetic layer on a substrate and a protective layer formed on the magnetic layer, wherein the protective layer contains at least carbon, nitrogen and oxygen, and further comprises silicon, boron,
A film containing at least one element selected from the group consisting of hydrogen, wherein the nitrogen / carbon atomic ratio of the film is 0.05
A magnetic recording medium, wherein the atomic ratio of oxygen / nitrogen on the surface of the film is in the range of 0.1 to 2.5.
【請求項2】上記珪素/炭素の原子数比が0.07以上0.28
以下であることを特徴とする請求項1記載の磁気記録媒
体。
2. The method according to claim 1, wherein the silicon / carbon atomic ratio is 0.07 or more and 0.28 or more.
2. The magnetic recording medium according to claim 1, wherein:
【請求項3】上記硼素/炭素の原子数比が0.07以上0.28
以下であることを特徴とする請求項1記載の磁気記録媒
体。
3. The method according to claim 1, wherein the atomic ratio of boron / carbon is 0.07 or more and 0.28 or more.
2. The magnetic recording medium according to claim 1, wherein:
【請求項4】上記水素/炭素の原子数比が0.07以上0.28
以下であることを特徴とする請求項1記載の磁気記録媒
体。
4. The method according to claim 1, wherein the atomic ratio of hydrogen / carbon is 0.07 or more and 0.28 or more.
2. The magnetic recording medium according to claim 1, wherein:
【請求項5】上記保護層の膜厚が10nm以下であり、且
つ、表面の中心線平均粗さRaが1nm以下であることを
特徴とする請求項1記載の磁気記録媒体。
5. The magnetic recording medium according to claim 1, wherein the thickness of the protective layer is 10 nm or less, and the center line average roughness Ra of the surface is 1 nm or less.
【請求項6】磁気記録媒体と、これを記録方向に駆動す
る駆動部と、記録部と再生部から成る磁気ヘッドと、上
記磁気ヘッドを上記磁気記録媒体に対して相対運動させ
る手段と、前記磁気ヘッドへの信号入力と該磁気ヘッド
からの出力信号再生を行うための記録再生信号処理手段
を有する磁気記憶装置において、前記磁気ヘッドの再生
部が磁気抵抗効果型磁気ヘッドで構成され、且つ、前記
磁気記録媒体が請求項1、2、3、4または5に記載の
磁気記録媒体で構成されたことを特徴とする磁気記憶装
置。
6. A magnetic recording medium, a driving unit for driving the magnetic recording medium in a recording direction, a magnetic head comprising a recording unit and a reproducing unit, means for moving the magnetic head relative to the magnetic recording medium, In a magnetic storage device having recording / reproduction signal processing means for performing signal input to a magnetic head and reproduction of an output signal from the magnetic head, a reproduction unit of the magnetic head is constituted by a magnetoresistive magnetic head, and A magnetic storage device comprising the magnetic recording medium according to claim 1, 2, 3, 4 or 5.
【請求項7】磁気記録媒体と、これを記録方向に駆動す
る駆動部と、記録部と再生部から成る磁気ヘッドと、上
記磁気ヘッドを上記磁気記録媒体に対して相対運動させ
る手段と、前記磁気ヘッドへの信号入力と該磁気ヘッド
からの出力信号再生を行うための記録再生信号処理手段
を有する磁気記憶装置において、前記磁気ヘッドが浮上
面レールの面積が1.25mm2以下で質量が2mg以下の磁気ヘ
ッドスライダー上に形成され、且つ、前記磁気記録媒体
が請求項1、2、3、4または5に記載の磁気記録媒体
で構成されたことを特徴とする磁気記憶装置。
7. A magnetic recording medium, a driving unit for driving the magnetic recording medium in a recording direction, a magnetic head comprising a recording unit and a reproducing unit, means for moving the magnetic head relative to the magnetic recording medium, In a magnetic storage device having recording / reproduction signal processing means for performing signal input to a magnetic head and reproduction of an output signal from the magnetic head, the magnetic head has an air bearing surface rail area of 1.25 mm2 or less and a mass of 2 mg or less. A magnetic storage device formed on a magnetic head slider, wherein the magnetic recording medium is constituted by the magnetic recording medium according to claim 1, 2, 3, 4, or 5.
JP31681497A 1997-11-18 1997-11-18 Magnetic record medium and magnetic storage device using same Pending JPH11149631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31681497A JPH11149631A (en) 1997-11-18 1997-11-18 Magnetic record medium and magnetic storage device using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31681497A JPH11149631A (en) 1997-11-18 1997-11-18 Magnetic record medium and magnetic storage device using same

Publications (1)

Publication Number Publication Date
JPH11149631A true JPH11149631A (en) 1999-06-02

Family

ID=18081222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31681497A Pending JPH11149631A (en) 1997-11-18 1997-11-18 Magnetic record medium and magnetic storage device using same

Country Status (1)

Country Link
JP (1) JPH11149631A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001155325A (en) * 1999-11-26 2001-06-08 Fujitsu Ltd Magnetic disk device, magnetic disk and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001155325A (en) * 1999-11-26 2001-06-08 Fujitsu Ltd Magnetic disk device, magnetic disk and its manufacturing method

Similar Documents

Publication Publication Date Title
JP5452928B2 (en) Method for manufacturing magnetic recording medium and method for manufacturing laminate
JP2874298B2 (en) Magnetic recording medium and method of manufacturing the same
JP5183134B2 (en) Magnetic disk and magnetic disk manufacturing method
JP4247535B2 (en) Magnetic disk for load / unload system, method for manufacturing magnetic disk for load / unload system, and method for evaluating magnetic disk for load / unload system
WO2007111245A1 (en) Method for manufacturing magnetic disc, and magnetic disc
JP2005158092A (en) Magnetic recording medium, magnetic storage device, and manufacturing method for magnetic recording medium
US20060029806A1 (en) Carbonaceous protective layer, magnetic recording medium, production method thereof, and magnetic disk apparatus
JPH06195691A (en) Magnetic recording medium and its production
US20030228496A1 (en) Magnetic recording medium and method for manufacturing the same
US6974642B2 (en) Carbonaceous protective layer, magnetic recording medium, production method thereof, and magnetic disk apparatus
JPH11149631A (en) Magnetic record medium and magnetic storage device using same
JPH1139647A (en) Magnetic recording medium, its production and magnetic storage device
JP2006085890A (en) Magnetic recording medium and production method thereof
JP2000212738A (en) Magnetron sputtering method and production of magnetic recording medium
JP2000067428A (en) Magnetic recording medium and magnetic storage device using the same
JP3904143B2 (en) Magnetic recording medium and magnetic recording apparatus
JP2008276912A (en) Vertical magnetic recording medium and its manufacturing method
JP2006351135A (en) Magnetic disk and manufacturing method for magnetic disk
JP2004054991A (en) Magnetic recording medium, its manufacturing method, and magnetic storage device
JP2006114203A (en) Magnetic recording medium, its manufacturing method, and magnetic recording and reproducing device
Shi et al. Tetrahedral amorphous carbon (ta-C) ultra thin films for slider overcoat application
JPH08212533A (en) Magnetic recording medium
JPH11120529A (en) Magnetic head slider and its production
JPH11306539A (en) Magnetic storage device
JP3020245B2 (en) Magnetron sputtering method and method for manufacturing magnetic recording medium